1 | //! A Hardware Abstraction Layer (HAL) for embedded systems |
2 | //! |
3 | //! **NOTE** This HAL is still is active development. Expect the traits presented here to be |
4 | //! tweaked, split or be replaced wholesale before being stabilized, i.e. before hitting the 1.0.0 |
5 | //! release. That being said there's a part of the HAL that's currently considered unproven and is |
6 | //! hidden behind an "unproven" Cargo feature. This API is even more volatile and it's exempt from |
7 | //! semver rules: it can change in a non-backward compatible fashion or even disappear in between |
8 | //! patch releases. |
9 | //! |
10 | //! # Design goals |
11 | //! |
12 | //! The HAL |
13 | //! |
14 | //! - Must *erase* device specific details. Neither register, register blocks or magic values should |
15 | //! appear in the API. |
16 | //! |
17 | //! - Must be generic *within* a device and *across* devices. The API to use a serial interface must |
18 | //! be the same regardless of whether the implementation uses the USART1 or UART4 peripheral of a |
19 | //! device or the UART0 peripheral of another device. |
20 | //! |
21 | //! - Where possible must *not* be tied to a specific asynchronous model. The API should be usable |
22 | //! in blocking mode, with the `futures` model, with an async/await model or with a callback model. |
23 | //! (cf. the [`nb`] crate) |
24 | //! |
25 | //! - Must be minimal, and thus easy to implement and zero cost, yet highly composable. People that |
26 | //! want higher level abstraction should *prefer to use this HAL* rather than *re-implement* |
27 | //! register manipulation code. |
28 | //! |
29 | //! - Serve as a foundation for building an ecosystem of platform agnostic drivers. Here driver |
30 | //! means a library crate that lets a target platform interface an external device like a digital |
31 | //! sensor or a wireless transceiver. The advantage of this system is that by writing the driver as |
32 | //! a generic library on top of `embedded-hal` driver authors can support any number of target |
33 | //! platforms (e.g. Cortex-M microcontrollers, AVR microcontrollers, embedded Linux, etc.). The |
34 | //! advantage for application developers is that by adopting `embedded-hal` they can unlock all |
35 | //! these drivers for their platform. |
36 | //! |
37 | //! # Out of scope |
38 | //! |
39 | //! - Initialization and configuration stuff like "ensure this serial interface and that SPI |
40 | //! interface are not using the same pins". The HAL will focus on *doing I/O*. |
41 | //! |
42 | //! # Reference implementation |
43 | //! |
44 | //! The [`stm32f30x-hal`] crate contains a reference implementation of this HAL. |
45 | //! |
46 | //! [`stm32f30x-hal`]: https://crates.io/crates/stm32f30x-hal/0.1.0 |
47 | //! |
48 | //! # Platform agnostic drivers |
49 | //! |
50 | //! You can find platform agnostic drivers built on top of `embedded-hal` on crates.io by [searching |
51 | //! for the *embedded-hal* keyword](https://crates.io/keywords/embedded-hal). |
52 | //! |
53 | //! If you writing a platform agnostic driver yourself you are highly encouraged to [add the |
54 | //! embedded-hal keyword](https://doc.rust-lang.org/cargo/reference/manifest.html#package-metadata) |
55 | //! to your crate before publishing it! |
56 | //! |
57 | //! # Detailed design |
58 | //! |
59 | //! ## Traits |
60 | //! |
61 | //! The HAL is specified as traits to allow generic programming. These traits make use of the |
62 | //! [`nb`][] crate (*please go read that crate documentation before continuing*) to abstract over |
63 | //! the asynchronous model and to also provide a blocking operation mode. |
64 | //! |
65 | //! [`nb`]: https://crates.io/crates/nb |
66 | //! |
67 | //! Here's how a HAL trait may look like: |
68 | //! |
69 | //! ``` |
70 | //! extern crate nb; |
71 | //! |
72 | //! /// A serial interface |
73 | //! pub trait Serial { |
74 | //! /// Error type associated to this serial interface |
75 | //! type Error; |
76 | //! |
77 | //! /// Reads a single byte |
78 | //! fn read(&mut self) -> nb::Result<u8, Self::Error>; |
79 | //! |
80 | //! /// Writes a single byte |
81 | //! fn write(&mut self, byte: u8) -> nb::Result<(), Self::Error>; |
82 | //! } |
83 | //! ``` |
84 | //! |
85 | //! The `nb::Result` enum is used to add a [`WouldBlock`] variant to the errors |
86 | //! of the serial interface. As explained in the documentation of the `nb` crate this single API, |
87 | //! when paired with the macros in the `nb` crate, can operate in a blocking manner, or in a |
88 | //! non-blocking manner compatible with `futures` and with the `await!` operator. |
89 | //! |
90 | //! [`WouldBlock`]: https://docs.rs/nb/0.1.0/nb/enum.Error.html |
91 | //! |
92 | //! Some traits, like the one shown below, may expose possibly blocking APIs that can't fail. In |
93 | //! those cases `nb::Result<_, Void>` is used. |
94 | //! |
95 | //! ``` |
96 | //! extern crate nb; |
97 | //! extern crate void; |
98 | //! |
99 | //! use void::Void; |
100 | //! |
101 | //! /// A count down timer |
102 | //! pub trait CountDown { |
103 | //! // .. |
104 | //! |
105 | //! /// "waits" until the count down is over |
106 | //! fn wait(&mut self) -> nb::Result<(), Void>; |
107 | //! } |
108 | //! |
109 | //! # fn main() {} |
110 | //! ``` |
111 | //! |
112 | //! ## Suggested implementation |
113 | //! |
114 | //! The HAL traits should be implemented for device crates generated via [`svd2rust`] to maximize |
115 | //! code reuse. |
116 | //! |
117 | //! [`svd2rust`]: https://crates.io/crates/svd2rust |
118 | //! |
119 | //! Shown below is an implementation of some of the HAL traits for the [`stm32f30x`] crate. This |
120 | //! single implementation will work for *any* microcontroller in the STM32F30x family. |
121 | //! |
122 | //! [`stm32f30x`]: https://crates.io/crates/stm32f30x |
123 | //! |
124 | //! ``` |
125 | //! // crate: stm32f30x-hal |
126 | //! // An implementation of the `embedded-hal` traits for STM32F30x microcontrollers |
127 | //! |
128 | //! extern crate embedded_hal as hal; |
129 | //! extern crate nb; |
130 | //! |
131 | //! // device crate |
132 | //! extern crate stm32f30x; |
133 | //! |
134 | //! use stm32f30x::USART1; |
135 | //! |
136 | //! /// A serial interface |
137 | //! // NOTE generic over the USART peripheral |
138 | //! pub struct Serial<USART> { usart: USART } |
139 | //! |
140 | //! // convenience type alias |
141 | //! pub type Serial1 = Serial<USART1>; |
142 | //! |
143 | //! /// Serial interface error |
144 | //! pub enum Error { |
145 | //! /// Buffer overrun |
146 | //! Overrun, |
147 | //! // omitted: other error variants |
148 | //! } |
149 | //! |
150 | //! impl hal::serial::Read<u8> for Serial<USART1> { |
151 | //! type Error = Error; |
152 | //! |
153 | //! fn read(&mut self) -> nb::Result<u8, Error> { |
154 | //! // read the status register |
155 | //! let isr = self.usart.isr.read(); |
156 | //! |
157 | //! if isr.ore().bit_is_set() { |
158 | //! // Error: Buffer overrun |
159 | //! Err(nb::Error::Other(Error::Overrun)) |
160 | //! } |
161 | //! // omitted: checks for other errors |
162 | //! else if isr.rxne().bit_is_set() { |
163 | //! // Data available: read the data register |
164 | //! Ok(self.usart.rdr.read().bits() as u8) |
165 | //! } else { |
166 | //! // No data available yet |
167 | //! Err(nb::Error::WouldBlock) |
168 | //! } |
169 | //! } |
170 | //! } |
171 | //! |
172 | //! impl hal::serial::Write<u8> for Serial<USART1> { |
173 | //! type Error = Error; |
174 | //! |
175 | //! fn write(&mut self, byte: u8) -> nb::Result<(), Error> { |
176 | //! // Similar to the `read` implementation |
177 | //! # Ok(()) |
178 | //! } |
179 | //! |
180 | //! fn flush(&mut self) -> nb::Result<(), Error> { |
181 | //! // Similar to the `read` implementation |
182 | //! # Ok(()) |
183 | //! } |
184 | //! } |
185 | //! |
186 | //! # fn main() {} |
187 | //! ``` |
188 | //! |
189 | //! ## Intended usage |
190 | //! |
191 | //! Thanks to the [`nb`] crate the HAL API can be used in a blocking manner, |
192 | //! with `futures` or with the `await` operator using the [`block!`], |
193 | //! [`try_nb!`] and [`await!`] macros respectively. |
194 | //! |
195 | //! [`block!`]: https://docs.rs/nb/0.1.0/nb/macro.block.html |
196 | //! [`try_nb!`]: https://docs.rs/nb/0.1.0/nb/index.html#how-to-use-this-crate |
197 | //! [`await!`]: https://docs.rs/nb/0.1.0/nb/index.html#how-to-use-this-crate |
198 | //! |
199 | //! ### Blocking mode |
200 | //! |
201 | //! An example of sending a string over the serial interface in a blocking |
202 | //! fashion: |
203 | //! |
204 | //! ``` |
205 | //! extern crate embedded_hal; |
206 | //! #[macro_use(block)] |
207 | //! extern crate nb; |
208 | //! |
209 | //! use stm32f30x_hal::Serial1; |
210 | //! use embedded_hal::serial::Write; |
211 | //! |
212 | //! # fn main() { |
213 | //! let mut serial: Serial1 = { |
214 | //! // .. |
215 | //! # Serial1 |
216 | //! }; |
217 | //! |
218 | //! for byte in b"Hello, world!" { |
219 | //! // NOTE `block!` blocks until `serial.write()` completes and returns |
220 | //! // `Result<(), Error>` |
221 | //! block!(serial.write(*byte)).unwrap(); |
222 | //! } |
223 | //! # } |
224 | //! |
225 | //! # mod stm32f30x_hal { |
226 | //! # extern crate void; |
227 | //! # use self::void::Void; |
228 | //! # pub struct Serial1; |
229 | //! # impl Serial1 { |
230 | //! # pub fn write(&mut self, _: u8) -> ::nb::Result<(), Void> { |
231 | //! # Ok(()) |
232 | //! # } |
233 | //! # } |
234 | //! # } |
235 | //! ``` |
236 | //! |
237 | //! ### `futures` |
238 | //! |
239 | //! An example of running two tasks concurrently. First task: blink an LED every |
240 | //! second. Second task: loop back data over the serial interface. |
241 | //! |
242 | //! ``` |
243 | //! extern crate embedded_hal as hal; |
244 | //! extern crate futures; |
245 | //! extern crate void; |
246 | //! |
247 | //! #[macro_use(try_nb)] |
248 | //! extern crate nb; |
249 | //! |
250 | //! use hal::prelude::*; |
251 | //! use futures::{ |
252 | //! future, |
253 | //! Async, |
254 | //! Future, |
255 | //! }; |
256 | //! use futures::future::Loop; |
257 | //! use stm32f30x_hal::{Led, Serial1, Timer6}; |
258 | //! use void::Void; |
259 | //! |
260 | //! /// `futures` version of `CountDown.wait` |
261 | //! /// |
262 | //! /// This returns a future that must be polled to completion |
263 | //! fn wait<T>(mut timer: T) -> impl Future<Item = T, Error = Void> |
264 | //! where |
265 | //! T: hal::timer::CountDown, |
266 | //! { |
267 | //! let mut timer = Some(timer); |
268 | //! future::poll_fn(move || { |
269 | //! try_nb!(timer.as_mut().unwrap().wait()); |
270 | //! |
271 | //! Ok(Async::Ready(timer.take().unwrap())) |
272 | //! }) |
273 | //! } |
274 | //! |
275 | //! /// `futures` version of `Serial.read` |
276 | //! /// |
277 | //! /// This returns a future that must be polled to completion |
278 | //! fn read<S>(mut serial: S) -> impl Future<Item = (S, u8), Error = S::Error> |
279 | //! where |
280 | //! S: hal::serial::Read<u8>, |
281 | //! { |
282 | //! let mut serial = Some(serial); |
283 | //! future::poll_fn(move || { |
284 | //! let byte = try_nb!(serial.as_mut().unwrap().read()); |
285 | //! |
286 | //! Ok(Async::Ready((serial.take().unwrap(), byte))) |
287 | //! }) |
288 | //! } |
289 | //! |
290 | //! /// `futures` version of `Serial.write` |
291 | //! /// |
292 | //! /// This returns a future that must be polled to completion |
293 | //! fn write<S>(mut serial: S, byte: u8) -> impl Future<Item = S, Error = S::Error> |
294 | //! where |
295 | //! S: hal::serial::Write<u8>, |
296 | //! { |
297 | //! let mut serial = Some(serial); |
298 | //! future::poll_fn(move || { |
299 | //! try_nb!(serial.as_mut().unwrap().write(byte)); |
300 | //! |
301 | //! Ok(Async::Ready(serial.take().unwrap())) |
302 | //! }) |
303 | //! } |
304 | //! |
305 | //! fn main() { |
306 | //! // HAL implementers |
307 | //! let timer: Timer6 = { |
308 | //! // .. |
309 | //! # Timer6 |
310 | //! }; |
311 | //! let serial: Serial1 = { |
312 | //! // .. |
313 | //! # Serial1 |
314 | //! }; |
315 | //! let led: Led = { |
316 | //! // .. |
317 | //! # Led |
318 | //! }; |
319 | //! |
320 | //! // Tasks |
321 | //! let mut blinky = future::loop_fn::<_, (), _, _>( |
322 | //! (led, timer, true), |
323 | //! |(mut led, mut timer, state)| { |
324 | //! wait(timer).map(move |timer| { |
325 | //! if state { |
326 | //! led.on(); |
327 | //! } else { |
328 | //! led.off(); |
329 | //! } |
330 | //! |
331 | //! Loop::Continue((led, timer, !state)) |
332 | //! }) |
333 | //! }); |
334 | //! |
335 | //! let mut loopback = future::loop_fn::<_, (), _, _>(serial, |mut serial| { |
336 | //! read(serial).and_then(|(serial, byte)| { |
337 | //! write(serial, byte) |
338 | //! }).map(|serial| { |
339 | //! Loop::Continue(serial) |
340 | //! }) |
341 | //! }); |
342 | //! |
343 | //! // Event loop |
344 | //! loop { |
345 | //! blinky.poll().unwrap(); // NOTE(unwrap) E = Void |
346 | //! loopback.poll().unwrap(); |
347 | //! # break; |
348 | //! } |
349 | //! } |
350 | //! |
351 | //! # mod stm32f30x_hal { |
352 | //! # extern crate void; |
353 | //! # use self::void::Void; |
354 | //! # pub struct Timer6; |
355 | //! # impl ::hal::timer::CountDown for Timer6 { |
356 | //! # type Time = (); |
357 | //! # |
358 | //! # fn start<T>(&mut self, _: T) where T: Into<()> {} |
359 | //! # fn wait(&mut self) -> ::nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } |
360 | //! # } |
361 | //! # |
362 | //! # pub struct Serial1; |
363 | //! # impl ::hal::serial::Read<u8> for Serial1 { |
364 | //! # type Error = Void; |
365 | //! # fn read(&mut self) -> ::nb::Result<u8, Void> { Err(::nb::Error::WouldBlock) } |
366 | //! # } |
367 | //! # impl ::hal::serial::Write<u8> for Serial1 { |
368 | //! # type Error = Void; |
369 | //! # fn flush(&mut self) -> ::nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } |
370 | //! # fn write(&mut self, _: u8) -> ::nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } |
371 | //! # } |
372 | //! # |
373 | //! # pub struct Led; |
374 | //! # impl Led { |
375 | //! # pub fn off(&mut self) {} |
376 | //! # pub fn on(&mut self) {} |
377 | //! # } |
378 | //! # } |
379 | //! ``` |
380 | //! |
381 | //! ### `await` |
382 | //! |
383 | //! Same example as above but using `await!` instead of `futures`. |
384 | //! |
385 | //! ``` |
386 | //! #![feature(generator_trait)] |
387 | //! #![feature(generators)] |
388 | //! |
389 | //! extern crate embedded_hal as hal; |
390 | //! |
391 | //! #[macro_use(await)] |
392 | //! extern crate nb; |
393 | //! |
394 | //! use std::ops::Generator; |
395 | //! use std::pin::Pin; |
396 | //! |
397 | //! use hal::prelude::*; |
398 | //! use stm32f30x_hal::{Led, Serial1, Timer6}; |
399 | //! |
400 | //! fn main() { |
401 | //! // HAL implementers |
402 | //! let mut timer: Timer6 = { |
403 | //! // .. |
404 | //! # Timer6 |
405 | //! }; |
406 | //! let mut serial: Serial1 = { |
407 | //! // .. |
408 | //! # Serial1 |
409 | //! }; |
410 | //! let mut led: Led = { |
411 | //! // .. |
412 | //! # Led |
413 | //! }; |
414 | //! |
415 | //! // Tasks |
416 | //! let mut blinky = (move || { |
417 | //! let mut state = false; |
418 | //! loop { |
419 | //! // `await!` means "suspend / yield here" instead of "block until |
420 | //! // completion" |
421 | //! await!(timer.wait()).unwrap(); // NOTE(unwrap) E = Void |
422 | //! |
423 | //! state = !state; |
424 | //! |
425 | //! if state { |
426 | //! led.on(); |
427 | //! } else { |
428 | //! led.off(); |
429 | //! } |
430 | //! } |
431 | //! }); |
432 | //! |
433 | //! let mut loopback = (move || { |
434 | //! loop { |
435 | //! let byte = await!(serial.read()).unwrap(); |
436 | //! await!(serial.write(byte)).unwrap(); |
437 | //! } |
438 | //! }); |
439 | //! |
440 | //! // Event loop |
441 | //! loop { |
442 | //! Pin::new(&mut blinky).resume(()); |
443 | //! Pin::new(&mut loopback).resume(()); |
444 | //! # break; |
445 | //! } |
446 | //! } |
447 | //! |
448 | //! # mod stm32f30x_hal { |
449 | //! # extern crate void; |
450 | //! # use self::void::Void; |
451 | //! # pub struct Serial1; |
452 | //! # impl Serial1 { |
453 | //! # pub fn read(&mut self) -> ::nb::Result<u8, Void> { Err(::nb::Error::WouldBlock) } |
454 | //! # pub fn write(&mut self, _: u8) -> ::nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } |
455 | //! # } |
456 | //! # pub struct Timer6; |
457 | //! # impl Timer6 { |
458 | //! # pub fn wait(&mut self) -> ::nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } |
459 | //! # } |
460 | //! # pub struct Led; |
461 | //! # impl Led { |
462 | //! # pub fn off(&mut self) {} |
463 | //! # pub fn on(&mut self) {} |
464 | //! # } |
465 | //! # } |
466 | //! ``` |
467 | //! |
468 | //! ## Generic programming and higher level abstractions |
469 | //! |
470 | //! The core of the HAL has been kept minimal on purpose to encourage building **generic** higher |
471 | //! level abstractions on top of it. Some higher level abstractions that pick an asynchronous model |
472 | //! or that have blocking behavior and that are deemed useful to build other abstractions can be |
473 | //! found in the `blocking` module and, in the future, in the `futures` and `async` modules. |
474 | //! |
475 | //! Some examples: |
476 | //! |
477 | //! **NOTE** All the functions shown below could have been written as trait |
478 | //! methods with default implementation to allow specialization, but they have |
479 | //! been written as functions to keep things simple. |
480 | //! |
481 | //! - Write a whole buffer to a serial device in blocking a fashion. |
482 | //! |
483 | //! ``` |
484 | //! extern crate embedded_hal as hal; |
485 | //! #[macro_use(block)] |
486 | //! extern crate nb; |
487 | //! |
488 | //! use hal::prelude::*; |
489 | //! |
490 | //! fn write_all<S>(serial: &mut S, buffer: &[u8]) -> Result<(), S::Error> |
491 | //! where |
492 | //! S: hal::serial::Write<u8> |
493 | //! { |
494 | //! for &byte in buffer { |
495 | //! block!(serial.write(byte))?; |
496 | //! } |
497 | //! |
498 | //! Ok(()) |
499 | //! } |
500 | //! |
501 | //! # fn main() {} |
502 | //! ``` |
503 | //! |
504 | //! - Blocking serial read with timeout |
505 | //! |
506 | //! ``` |
507 | //! extern crate embedded_hal as hal; |
508 | //! extern crate nb; |
509 | //! |
510 | //! use hal::prelude::*; |
511 | //! |
512 | //! enum Error<E> { |
513 | //! /// Serial interface error |
514 | //! Serial(E), |
515 | //! TimedOut, |
516 | //! } |
517 | //! |
518 | //! fn read_with_timeout<S, T>( |
519 | //! serial: &mut S, |
520 | //! timer: &mut T, |
521 | //! timeout: T::Time, |
522 | //! ) -> Result<u8, Error<S::Error>> |
523 | //! where |
524 | //! T: hal::timer::CountDown, |
525 | //! S: hal::serial::Read<u8>, |
526 | //! { |
527 | //! timer.start(timeout); |
528 | //! |
529 | //! loop { |
530 | //! match serial.read() { |
531 | //! // raise error |
532 | //! Err(nb::Error::Other(e)) => return Err(Error::Serial(e)), |
533 | //! Err(nb::Error::WouldBlock) => { |
534 | //! // no data available yet, check the timer below |
535 | //! }, |
536 | //! Ok(byte) => return Ok(byte), |
537 | //! } |
538 | //! |
539 | //! match timer.wait() { |
540 | //! Err(nb::Error::Other(e)) => { |
541 | //! // The error type specified by `timer.wait()` is `!`, which |
542 | //! // means no error can actually occur. The Rust compiler |
543 | //! // still forces us to provide this match arm, though. |
544 | //! unreachable!() |
545 | //! }, |
546 | //! // no timeout yet, try again |
547 | //! Err(nb::Error::WouldBlock) => continue, |
548 | //! Ok(()) => return Err(Error::TimedOut), |
549 | //! } |
550 | //! } |
551 | //! } |
552 | //! |
553 | //! # fn main() {} |
554 | //! ``` |
555 | //! |
556 | //! - Asynchronous SPI transfer |
557 | //! |
558 | //! ``` |
559 | //! #![feature(conservative_impl_trait)] |
560 | //! #![feature(generators)] |
561 | //! #![feature(generator_trait)] |
562 | //! |
563 | //! extern crate embedded_hal as hal; |
564 | //! #[macro_use(await)] |
565 | //! extern crate nb; |
566 | //! |
567 | //! use std::ops::Generator; |
568 | //! |
569 | //! /// Transfers a byte buffer of size N |
570 | //! /// |
571 | //! /// Returns the same byte buffer but filled with the data received from the |
572 | //! /// slave device |
573 | //! fn transfer<S, B>( |
574 | //! mut spi: S, |
575 | //! mut buffer: [u8; 16], // NOTE this should be generic over the size of the array |
576 | //! ) -> impl Generator<Return = Result<(S, [u8; 16]), S::Error>, Yield = ()> |
577 | //! where |
578 | //! S: hal::spi::FullDuplex<u8>, |
579 | //! { |
580 | //! move || { |
581 | //! let n = buffer.len(); |
582 | //! for i in 0..n { |
583 | //! await!(spi.send(buffer[i]))?; |
584 | //! buffer[i] = await!(spi.read())?; |
585 | //! } |
586 | //! |
587 | //! Ok((spi, buffer)) |
588 | //! } |
589 | //! } |
590 | //! |
591 | //! # fn main() {} |
592 | //! ``` |
593 | //! |
594 | //! - Buffered serial interface with periodic flushing in interrupt handler |
595 | //! |
596 | //! ``` |
597 | //! extern crate embedded_hal as hal; |
598 | //! extern crate nb; |
599 | //! extern crate void; |
600 | //! |
601 | //! use hal::prelude::*; |
602 | //! use void::Void; |
603 | //! |
604 | //! fn flush<S>(serial: &mut S, cb: &mut CircularBuffer) |
605 | //! where |
606 | //! S: hal::serial::Write<u8, Error = Void>, |
607 | //! { |
608 | //! loop { |
609 | //! if let Some(byte) = cb.peek() { |
610 | //! match serial.write(*byte) { |
611 | //! Err(nb::Error::Other(_)) => unreachable!(), |
612 | //! Err(nb::Error::WouldBlock) => return, |
613 | //! Ok(()) => {}, // keep flushing data |
614 | //! } |
615 | //! } |
616 | //! |
617 | //! cb.pop(); |
618 | //! } |
619 | //! } |
620 | //! |
621 | //! // The stuff below could be in some other crate |
622 | //! |
623 | //! /// Global singleton |
624 | //! pub struct BufferedSerial1; |
625 | //! |
626 | //! // NOTE private |
627 | //! static BUFFER1: Mutex<CircularBuffer> = { |
628 | //! // .. |
629 | //! # Mutex(CircularBuffer) |
630 | //! }; |
631 | //! static SERIAL1: Mutex<Serial1> = { |
632 | //! // .. |
633 | //! # Mutex(Serial1) |
634 | //! }; |
635 | //! |
636 | //! impl BufferedSerial1 { |
637 | //! pub fn write(&self, byte: u8) { |
638 | //! self.write_all(&[byte]) |
639 | //! } |
640 | //! |
641 | //! pub fn write_all(&self, bytes: &[u8]) { |
642 | //! let mut buffer = BUFFER1.lock(); |
643 | //! for byte in bytes { |
644 | //! buffer.push(*byte).expect("buffer overrun" ); |
645 | //! } |
646 | //! // omitted: pend / enable interrupt_handler |
647 | //! } |
648 | //! } |
649 | //! |
650 | //! fn interrupt_handler() { |
651 | //! let mut serial = SERIAL1.lock(); |
652 | //! let mut buffer = BUFFER1.lock(); |
653 | //! |
654 | //! flush(&mut *serial, &mut buffer); |
655 | //! } |
656 | //! |
657 | //! # struct Mutex<T>(T); |
658 | //! # impl<T> Mutex<T> { |
659 | //! # fn lock(&self) -> RefMut<T> { unimplemented!() } |
660 | //! # } |
661 | //! # struct RefMut<'a, T>(&'a mut T) where T: 'a; |
662 | //! # impl<'a, T> ::std::ops::Deref for RefMut<'a, T> { |
663 | //! # type Target = T; |
664 | //! # fn deref(&self) -> &T { self.0 } |
665 | //! # } |
666 | //! # impl<'a, T> ::std::ops::DerefMut for RefMut<'a, T> { |
667 | //! # fn deref_mut(&mut self) -> &mut T { self.0 } |
668 | //! # } |
669 | //! # struct Serial1; |
670 | //! # impl ::hal::serial::Write<u8> for Serial1 { |
671 | //! # type Error = Void; |
672 | //! # fn write(&mut self, _: u8) -> nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } |
673 | //! # fn flush(&mut self) -> nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } |
674 | //! # } |
675 | //! # struct CircularBuffer; |
676 | //! # impl CircularBuffer { |
677 | //! # pub fn peek(&mut self) -> Option<&u8> { None } |
678 | //! # pub fn pop(&mut self) -> Option<u8> { None } |
679 | //! # pub fn push(&mut self, _: u8) -> Result<(), ()> { Ok(()) } |
680 | //! # } |
681 | //! |
682 | //! # fn main() {} |
683 | //! ``` |
684 | |
685 | #![deny (missing_docs)] |
686 | #![no_std ] |
687 | |
688 | #[macro_use ] |
689 | extern crate nb; |
690 | extern crate void; |
691 | |
692 | pub mod adc; |
693 | pub mod blocking; |
694 | pub mod can; |
695 | pub mod digital; |
696 | pub mod fmt; |
697 | pub mod prelude; |
698 | pub mod serial; |
699 | pub mod spi; |
700 | pub mod timer; |
701 | pub mod watchdog; |
702 | |
703 | /// Input capture |
704 | /// |
705 | /// *This trait is available if embedded-hal is built with the `"unproven"` feature.* |
706 | /// |
707 | /// # Examples |
708 | /// |
709 | /// You can use this interface to measure the period of (quasi) periodic signals |
710 | /// / events |
711 | /// |
712 | /// ``` |
713 | /// extern crate embedded_hal as hal; |
714 | /// #[macro_use(block)] |
715 | /// extern crate nb; |
716 | /// |
717 | /// use hal::prelude::*; |
718 | /// |
719 | /// fn main() { |
720 | /// let mut capture: Capture1 = { |
721 | /// // .. |
722 | /// # Capture1 |
723 | /// }; |
724 | /// |
725 | /// capture.set_resolution(1.ms()); |
726 | /// |
727 | /// let before = block!(capture.capture(Channel::_1)).unwrap(); |
728 | /// let after = block!(capture.capture(Channel::_1)).unwrap(); |
729 | /// |
730 | /// let period = after.wrapping_sub(before); |
731 | /// |
732 | /// println!("Period: {} ms" , period); |
733 | /// } |
734 | /// |
735 | /// # extern crate void; |
736 | /// # use void::Void; |
737 | /// # struct MilliSeconds(u32); |
738 | /// # trait U32Ext { fn ms(self) -> MilliSeconds; } |
739 | /// # impl U32Ext for u32 { fn ms(self) -> MilliSeconds { MilliSeconds(self) } } |
740 | /// # struct Capture1; |
741 | /// # enum Channel { _1 } |
742 | /// # impl hal::Capture for Capture1 { |
743 | /// # type Capture = u16; |
744 | /// # type Channel = Channel; |
745 | /// # type Error = Void; |
746 | /// # type Time = MilliSeconds; |
747 | /// # fn capture(&mut self, _: Channel) -> ::nb::Result<u16, Void> { Ok(0) } |
748 | /// # fn disable(&mut self, _: Channel) { unimplemented!() } |
749 | /// # fn enable(&mut self, _: Channel) { unimplemented!() } |
750 | /// # fn get_resolution(&self) -> MilliSeconds { unimplemented!() } |
751 | /// # fn set_resolution<T>(&mut self, _: T) where T: Into<MilliSeconds> {} |
752 | /// # } |
753 | /// ``` |
754 | #[cfg (feature = "unproven" )] |
755 | // reason: pre-singletons API. With singletons a `CapturePin` (cf. `PwmPin`) trait seems more |
756 | // appropriate |
757 | pub trait Capture { |
758 | /// Enumeration of `Capture` errors |
759 | /// |
760 | /// Possible errors: |
761 | /// |
762 | /// - *overcapture*, the previous capture value was overwritten because it |
763 | /// was not read in a timely manner |
764 | type Error; |
765 | |
766 | /// Enumeration of channels that can be used with this `Capture` interface |
767 | /// |
768 | /// If your `Capture` interface has no channels you can use the type `()` |
769 | /// here |
770 | type Channel; |
771 | |
772 | /// A time unit that can be converted into a human time unit (e.g. seconds) |
773 | type Time; |
774 | |
775 | /// The type of the value returned by `capture` |
776 | type Capture; |
777 | |
778 | /// "Waits" for a transition in the capture `channel` and returns the value |
779 | /// of counter at that instant |
780 | /// |
781 | /// NOTE that you must multiply the returned value by the *resolution* of |
782 | /// this `Capture` interface to get a human time unit (e.g. seconds) |
783 | fn capture(&mut self, channel: Self::Channel) -> nb::Result<Self::Capture, Self::Error>; |
784 | |
785 | /// Disables a capture `channel` |
786 | fn disable(&mut self, channel: Self::Channel); |
787 | |
788 | /// Enables a capture `channel` |
789 | fn enable(&mut self, channel: Self::Channel); |
790 | |
791 | /// Returns the current resolution |
792 | fn get_resolution(&self) -> Self::Time; |
793 | |
794 | /// Sets the resolution of the capture timer |
795 | fn set_resolution<R>(&mut self, resolution: R) |
796 | where |
797 | R: Into<Self::Time>; |
798 | } |
799 | |
800 | /// Pulse Width Modulation |
801 | /// |
802 | /// *This trait is available if embedded-hal is built with the `"unproven"` feature.* |
803 | /// |
804 | /// # Examples |
805 | /// |
806 | /// Use this interface to control the power output of some actuator |
807 | /// |
808 | /// ``` |
809 | /// extern crate embedded_hal as hal; |
810 | /// |
811 | /// use hal::prelude::*; |
812 | /// |
813 | /// fn main() { |
814 | /// let mut pwm: Pwm1 = { |
815 | /// // .. |
816 | /// # Pwm1 |
817 | /// }; |
818 | /// |
819 | /// pwm.set_period(1.khz()); |
820 | /// |
821 | /// let max_duty = pwm.get_max_duty(); |
822 | /// |
823 | /// // brightest LED |
824 | /// pwm.set_duty(Channel::_1, max_duty); |
825 | /// |
826 | /// // dimmer LED |
827 | /// pwm.set_duty(Channel::_2, max_duty / 4); |
828 | /// } |
829 | /// |
830 | /// # struct KiloHertz(u32); |
831 | /// # trait U32Ext { fn khz(self) -> KiloHertz; } |
832 | /// # impl U32Ext for u32 { fn khz(self) -> KiloHertz { KiloHertz(self) } } |
833 | /// # enum Channel { _1, _2 } |
834 | /// # struct Pwm1; |
835 | /// # impl hal::Pwm for Pwm1 { |
836 | /// # type Channel = Channel; |
837 | /// # type Time = KiloHertz; |
838 | /// # type Duty = u16; |
839 | /// # fn disable(&mut self, _: Channel) { unimplemented!() } |
840 | /// # fn enable(&mut self, _: Channel) { unimplemented!() } |
841 | /// # fn get_duty(&self, _: Channel) -> u16 { unimplemented!() } |
842 | /// # fn get_max_duty(&self) -> u16 { 0 } |
843 | /// # fn set_duty(&mut self, _: Channel, _: u16) {} |
844 | /// # fn get_period(&self) -> KiloHertz { unimplemented!() } |
845 | /// # fn set_period<T>(&mut self, _: T) where T: Into<KiloHertz> {} |
846 | /// # } |
847 | /// ``` |
848 | #[cfg (feature = "unproven" )] |
849 | // reason: pre-singletons API. The `PwmPin` trait seems more useful because it models independent |
850 | // PWM channels. Here a certain number of channels are multiplexed in a single implementer. |
851 | pub trait Pwm { |
852 | /// Enumeration of channels that can be used with this `Pwm` interface |
853 | /// |
854 | /// If your `Pwm` interface has no channels you can use the type `()` |
855 | /// here |
856 | type Channel; |
857 | |
858 | /// A time unit that can be converted into a human time unit (e.g. seconds) |
859 | type Time; |
860 | |
861 | /// Type for the `duty` methods |
862 | /// |
863 | /// The implementer is free to choose a float / percentage representation |
864 | /// (e.g. `0.0 .. 1.0`) or an integer representation (e.g. `0 .. 65535`) |
865 | type Duty; |
866 | |
867 | /// Disables a PWM `channel` |
868 | fn disable(&mut self, channel: Self::Channel); |
869 | |
870 | /// Enables a PWM `channel` |
871 | fn enable(&mut self, channel: Self::Channel); |
872 | |
873 | /// Returns the current PWM period |
874 | fn get_period(&self) -> Self::Time; |
875 | |
876 | /// Returns the current duty cycle |
877 | fn get_duty(&self, channel: Self::Channel) -> Self::Duty; |
878 | |
879 | /// Returns the maximum duty cycle value |
880 | fn get_max_duty(&self) -> Self::Duty; |
881 | |
882 | /// Sets a new duty cycle |
883 | fn set_duty(&mut self, channel: Self::Channel, duty: Self::Duty); |
884 | |
885 | /// Sets a new PWM period |
886 | fn set_period<P>(&mut self, period: P) |
887 | where |
888 | P: Into<Self::Time>; |
889 | } |
890 | |
891 | /// A single PWM channel / pin |
892 | /// |
893 | /// See `Pwm` for details |
894 | pub trait PwmPin { |
895 | /// Type for the `duty` methods |
896 | /// |
897 | /// The implementer is free to choose a float / percentage representation |
898 | /// (e.g. `0.0 .. 1.0`) or an integer representation (e.g. `0 .. 65535`) |
899 | type Duty; |
900 | |
901 | /// Disables a PWM `channel` |
902 | fn disable(&mut self); |
903 | |
904 | /// Enables a PWM `channel` |
905 | fn enable(&mut self); |
906 | |
907 | /// Returns the current duty cycle |
908 | fn get_duty(&self) -> Self::Duty; |
909 | |
910 | /// Returns the maximum duty cycle value |
911 | fn get_max_duty(&self) -> Self::Duty; |
912 | |
913 | /// Sets a new duty cycle |
914 | fn set_duty(&mut self, duty: Self::Duty); |
915 | } |
916 | |
917 | /// Quadrature encoder interface |
918 | /// |
919 | /// *This trait is available if embedded-hal is built with the `"unproven"` feature.* |
920 | /// |
921 | /// # Examples |
922 | /// |
923 | /// You can use this interface to measure the speed of a motor |
924 | /// |
925 | /// ``` |
926 | /// extern crate embedded_hal as hal; |
927 | /// #[macro_use(block)] |
928 | /// extern crate nb; |
929 | /// |
930 | /// use hal::prelude::*; |
931 | /// |
932 | /// fn main() { |
933 | /// let mut qei: Qei1 = { |
934 | /// // .. |
935 | /// # Qei1 |
936 | /// }; |
937 | /// let mut timer: Timer6 = { |
938 | /// // .. |
939 | /// # Timer6 |
940 | /// }; |
941 | /// |
942 | /// |
943 | /// let before = qei.count(); |
944 | /// timer.start(1.s()); |
945 | /// block!(timer.wait()); |
946 | /// let after = qei.count(); |
947 | /// |
948 | /// let speed = after.wrapping_sub(before); |
949 | /// println!("Speed: {} pulses per second" , speed); |
950 | /// } |
951 | /// |
952 | /// # extern crate void; |
953 | /// # use void::Void; |
954 | /// # struct Seconds(u32); |
955 | /// # trait U32Ext { fn s(self) -> Seconds; } |
956 | /// # impl U32Ext for u32 { fn s(self) -> Seconds { Seconds(self) } } |
957 | /// # struct Qei1; |
958 | /// # impl hal::Qei for Qei1 { |
959 | /// # type Count = u16; |
960 | /// # fn count(&self) -> u16 { 0 } |
961 | /// # fn direction(&self) -> ::hal::Direction { unimplemented!() } |
962 | /// # } |
963 | /// # struct Timer6; |
964 | /// # impl hal::timer::CountDown for Timer6 { |
965 | /// # type Time = Seconds; |
966 | /// # fn start<T>(&mut self, _: T) where T: Into<Seconds> {} |
967 | /// # fn wait(&mut self) -> ::nb::Result<(), Void> { Ok(()) } |
968 | /// # } |
969 | /// ``` |
970 | #[cfg (feature = "unproven" )] |
971 | // reason: needs to be re-evaluated in the new singletons world. At the very least this needs a |
972 | // reference implementation |
973 | pub trait Qei { |
974 | /// The type of the value returned by `count` |
975 | type Count; |
976 | |
977 | /// Returns the current pulse count of the encoder |
978 | fn count(&self) -> Self::Count; |
979 | |
980 | /// Returns the count direction |
981 | fn direction(&self) -> Direction; |
982 | } |
983 | |
984 | /// Count direction |
985 | /// |
986 | /// *This enumeration is available if embedded-hal is built with the `"unproven"` feature.* |
987 | #[derive (Clone, Copy, Debug, Eq, PartialEq)] |
988 | #[cfg (feature = "unproven" )] |
989 | // reason: part of the unproven `Qei` interface |
990 | pub enum Direction { |
991 | /// 3, 2, 1 |
992 | Downcounting, |
993 | /// 1, 2, 3 |
994 | Upcounting, |
995 | } |
996 | |
997 | mod private { |
998 | pub trait Sealed {} |
999 | } |
1000 | |