| 1 | //! A Hardware Abstraction Layer (HAL) for embedded systems |
| 2 | //! |
| 3 | //! **NOTE** This HAL is still is active development. Expect the traits presented here to be |
| 4 | //! tweaked, split or be replaced wholesale before being stabilized, i.e. before hitting the 1.0.0 |
| 5 | //! release. That being said there's a part of the HAL that's currently considered unproven and is |
| 6 | //! hidden behind an "unproven" Cargo feature. This API is even more volatile and it's exempt from |
| 7 | //! semver rules: it can change in a non-backward compatible fashion or even disappear in between |
| 8 | //! patch releases. |
| 9 | //! |
| 10 | //! # Design goals |
| 11 | //! |
| 12 | //! The HAL |
| 13 | //! |
| 14 | //! - Must *erase* device specific details. Neither register, register blocks or magic values should |
| 15 | //! appear in the API. |
| 16 | //! |
| 17 | //! - Must be generic *within* a device and *across* devices. The API to use a serial interface must |
| 18 | //! be the same regardless of whether the implementation uses the USART1 or UART4 peripheral of a |
| 19 | //! device or the UART0 peripheral of another device. |
| 20 | //! |
| 21 | //! - Where possible must *not* be tied to a specific asynchronous model. The API should be usable |
| 22 | //! in blocking mode, with the `futures` model, with an async/await model or with a callback model. |
| 23 | //! (cf. the [`nb`] crate) |
| 24 | //! |
| 25 | //! - Must be minimal, and thus easy to implement and zero cost, yet highly composable. People that |
| 26 | //! want higher level abstraction should *prefer to use this HAL* rather than *re-implement* |
| 27 | //! register manipulation code. |
| 28 | //! |
| 29 | //! - Serve as a foundation for building an ecosystem of platform agnostic drivers. Here driver |
| 30 | //! means a library crate that lets a target platform interface an external device like a digital |
| 31 | //! sensor or a wireless transceiver. The advantage of this system is that by writing the driver as |
| 32 | //! a generic library on top of `embedded-hal` driver authors can support any number of target |
| 33 | //! platforms (e.g. Cortex-M microcontrollers, AVR microcontrollers, embedded Linux, etc.). The |
| 34 | //! advantage for application developers is that by adopting `embedded-hal` they can unlock all |
| 35 | //! these drivers for their platform. |
| 36 | //! |
| 37 | //! # Out of scope |
| 38 | //! |
| 39 | //! - Initialization and configuration stuff like "ensure this serial interface and that SPI |
| 40 | //! interface are not using the same pins". The HAL will focus on *doing I/O*. |
| 41 | //! |
| 42 | //! # Reference implementation |
| 43 | //! |
| 44 | //! The [`stm32f30x-hal`] crate contains a reference implementation of this HAL. |
| 45 | //! |
| 46 | //! [`stm32f30x-hal`]: https://crates.io/crates/stm32f30x-hal/0.1.0 |
| 47 | //! |
| 48 | //! # Platform agnostic drivers |
| 49 | //! |
| 50 | //! You can find platform agnostic drivers built on top of `embedded-hal` on crates.io by [searching |
| 51 | //! for the *embedded-hal* keyword](https://crates.io/keywords/embedded-hal). |
| 52 | //! |
| 53 | //! If you writing a platform agnostic driver yourself you are highly encouraged to [add the |
| 54 | //! embedded-hal keyword](https://doc.rust-lang.org/cargo/reference/manifest.html#package-metadata) |
| 55 | //! to your crate before publishing it! |
| 56 | //! |
| 57 | //! # Detailed design |
| 58 | //! |
| 59 | //! ## Traits |
| 60 | //! |
| 61 | //! The HAL is specified as traits to allow generic programming. These traits make use of the |
| 62 | //! [`nb`][] crate (*please go read that crate documentation before continuing*) to abstract over |
| 63 | //! the asynchronous model and to also provide a blocking operation mode. |
| 64 | //! |
| 65 | //! [`nb`]: https://crates.io/crates/nb |
| 66 | //! |
| 67 | //! Here's how a HAL trait may look like: |
| 68 | //! |
| 69 | //! ``` |
| 70 | //! extern crate nb; |
| 71 | //! |
| 72 | //! /// A serial interface |
| 73 | //! pub trait Serial { |
| 74 | //! /// Error type associated to this serial interface |
| 75 | //! type Error; |
| 76 | //! |
| 77 | //! /// Reads a single byte |
| 78 | //! fn read(&mut self) -> nb::Result<u8, Self::Error>; |
| 79 | //! |
| 80 | //! /// Writes a single byte |
| 81 | //! fn write(&mut self, byte: u8) -> nb::Result<(), Self::Error>; |
| 82 | //! } |
| 83 | //! ``` |
| 84 | //! |
| 85 | //! The `nb::Result` enum is used to add a [`WouldBlock`] variant to the errors |
| 86 | //! of the serial interface. As explained in the documentation of the `nb` crate this single API, |
| 87 | //! when paired with the macros in the `nb` crate, can operate in a blocking manner, or in a |
| 88 | //! non-blocking manner compatible with `futures` and with the `await!` operator. |
| 89 | //! |
| 90 | //! [`WouldBlock`]: https://docs.rs/nb/0.1.0/nb/enum.Error.html |
| 91 | //! |
| 92 | //! Some traits, like the one shown below, may expose possibly blocking APIs that can't fail. In |
| 93 | //! those cases `nb::Result<_, Void>` is used. |
| 94 | //! |
| 95 | //! ``` |
| 96 | //! extern crate nb; |
| 97 | //! extern crate void; |
| 98 | //! |
| 99 | //! use void::Void; |
| 100 | //! |
| 101 | //! /// A count down timer |
| 102 | //! pub trait CountDown { |
| 103 | //! // .. |
| 104 | //! |
| 105 | //! /// "waits" until the count down is over |
| 106 | //! fn wait(&mut self) -> nb::Result<(), Void>; |
| 107 | //! } |
| 108 | //! |
| 109 | //! # fn main() {} |
| 110 | //! ``` |
| 111 | //! |
| 112 | //! ## Suggested implementation |
| 113 | //! |
| 114 | //! The HAL traits should be implemented for device crates generated via [`svd2rust`] to maximize |
| 115 | //! code reuse. |
| 116 | //! |
| 117 | //! [`svd2rust`]: https://crates.io/crates/svd2rust |
| 118 | //! |
| 119 | //! Shown below is an implementation of some of the HAL traits for the [`stm32f30x`] crate. This |
| 120 | //! single implementation will work for *any* microcontroller in the STM32F30x family. |
| 121 | //! |
| 122 | //! [`stm32f30x`]: https://crates.io/crates/stm32f30x |
| 123 | //! |
| 124 | //! ``` |
| 125 | //! // crate: stm32f30x-hal |
| 126 | //! // An implementation of the `embedded-hal` traits for STM32F30x microcontrollers |
| 127 | //! |
| 128 | //! extern crate embedded_hal as hal; |
| 129 | //! extern crate nb; |
| 130 | //! |
| 131 | //! // device crate |
| 132 | //! extern crate stm32f30x; |
| 133 | //! |
| 134 | //! use stm32f30x::USART1; |
| 135 | //! |
| 136 | //! /// A serial interface |
| 137 | //! // NOTE generic over the USART peripheral |
| 138 | //! pub struct Serial<USART> { usart: USART } |
| 139 | //! |
| 140 | //! // convenience type alias |
| 141 | //! pub type Serial1 = Serial<USART1>; |
| 142 | //! |
| 143 | //! /// Serial interface error |
| 144 | //! pub enum Error { |
| 145 | //! /// Buffer overrun |
| 146 | //! Overrun, |
| 147 | //! // omitted: other error variants |
| 148 | //! } |
| 149 | //! |
| 150 | //! impl hal::serial::Read<u8> for Serial<USART1> { |
| 151 | //! type Error = Error; |
| 152 | //! |
| 153 | //! fn read(&mut self) -> nb::Result<u8, Error> { |
| 154 | //! // read the status register |
| 155 | //! let isr = self.usart.isr.read(); |
| 156 | //! |
| 157 | //! if isr.ore().bit_is_set() { |
| 158 | //! // Error: Buffer overrun |
| 159 | //! Err(nb::Error::Other(Error::Overrun)) |
| 160 | //! } |
| 161 | //! // omitted: checks for other errors |
| 162 | //! else if isr.rxne().bit_is_set() { |
| 163 | //! // Data available: read the data register |
| 164 | //! Ok(self.usart.rdr.read().bits() as u8) |
| 165 | //! } else { |
| 166 | //! // No data available yet |
| 167 | //! Err(nb::Error::WouldBlock) |
| 168 | //! } |
| 169 | //! } |
| 170 | //! } |
| 171 | //! |
| 172 | //! impl hal::serial::Write<u8> for Serial<USART1> { |
| 173 | //! type Error = Error; |
| 174 | //! |
| 175 | //! fn write(&mut self, byte: u8) -> nb::Result<(), Error> { |
| 176 | //! // Similar to the `read` implementation |
| 177 | //! # Ok(()) |
| 178 | //! } |
| 179 | //! |
| 180 | //! fn flush(&mut self) -> nb::Result<(), Error> { |
| 181 | //! // Similar to the `read` implementation |
| 182 | //! # Ok(()) |
| 183 | //! } |
| 184 | //! } |
| 185 | //! |
| 186 | //! # fn main() {} |
| 187 | //! ``` |
| 188 | //! |
| 189 | //! ## Intended usage |
| 190 | //! |
| 191 | //! Thanks to the [`nb`] crate the HAL API can be used in a blocking manner, |
| 192 | //! with `futures` or with the `await` operator using the [`block!`], |
| 193 | //! [`try_nb!`] and [`await!`] macros respectively. |
| 194 | //! |
| 195 | //! [`block!`]: https://docs.rs/nb/0.1.0/nb/macro.block.html |
| 196 | //! [`try_nb!`]: https://docs.rs/nb/0.1.0/nb/index.html#how-to-use-this-crate |
| 197 | //! [`await!`]: https://docs.rs/nb/0.1.0/nb/index.html#how-to-use-this-crate |
| 198 | //! |
| 199 | //! ### Blocking mode |
| 200 | //! |
| 201 | //! An example of sending a string over the serial interface in a blocking |
| 202 | //! fashion: |
| 203 | //! |
| 204 | //! ``` |
| 205 | //! extern crate embedded_hal; |
| 206 | //! #[macro_use(block)] |
| 207 | //! extern crate nb; |
| 208 | //! |
| 209 | //! use stm32f30x_hal::Serial1; |
| 210 | //! use embedded_hal::serial::Write; |
| 211 | //! |
| 212 | //! # fn main() { |
| 213 | //! let mut serial: Serial1 = { |
| 214 | //! // .. |
| 215 | //! # Serial1 |
| 216 | //! }; |
| 217 | //! |
| 218 | //! for byte in b"Hello, world!" { |
| 219 | //! // NOTE `block!` blocks until `serial.write()` completes and returns |
| 220 | //! // `Result<(), Error>` |
| 221 | //! block!(serial.write(*byte)).unwrap(); |
| 222 | //! } |
| 223 | //! # } |
| 224 | //! |
| 225 | //! # mod stm32f30x_hal { |
| 226 | //! # extern crate void; |
| 227 | //! # use self::void::Void; |
| 228 | //! # pub struct Serial1; |
| 229 | //! # impl Serial1 { |
| 230 | //! # pub fn write(&mut self, _: u8) -> ::nb::Result<(), Void> { |
| 231 | //! # Ok(()) |
| 232 | //! # } |
| 233 | //! # } |
| 234 | //! # } |
| 235 | //! ``` |
| 236 | //! |
| 237 | //! ### `futures` |
| 238 | //! |
| 239 | //! An example of running two tasks concurrently. First task: blink an LED every |
| 240 | //! second. Second task: loop back data over the serial interface. |
| 241 | //! |
| 242 | //! ``` |
| 243 | //! extern crate embedded_hal as hal; |
| 244 | //! extern crate futures; |
| 245 | //! extern crate void; |
| 246 | //! |
| 247 | //! #[macro_use(try_nb)] |
| 248 | //! extern crate nb; |
| 249 | //! |
| 250 | //! use hal::prelude::*; |
| 251 | //! use futures::{ |
| 252 | //! future, |
| 253 | //! Async, |
| 254 | //! Future, |
| 255 | //! }; |
| 256 | //! use futures::future::Loop; |
| 257 | //! use stm32f30x_hal::{Led, Serial1, Timer6}; |
| 258 | //! use void::Void; |
| 259 | //! |
| 260 | //! /// `futures` version of `CountDown.wait` |
| 261 | //! /// |
| 262 | //! /// This returns a future that must be polled to completion |
| 263 | //! fn wait<T>(mut timer: T) -> impl Future<Item = T, Error = Void> |
| 264 | //! where |
| 265 | //! T: hal::timer::CountDown, |
| 266 | //! { |
| 267 | //! let mut timer = Some(timer); |
| 268 | //! future::poll_fn(move || { |
| 269 | //! try_nb!(timer.as_mut().unwrap().wait()); |
| 270 | //! |
| 271 | //! Ok(Async::Ready(timer.take().unwrap())) |
| 272 | //! }) |
| 273 | //! } |
| 274 | //! |
| 275 | //! /// `futures` version of `Serial.read` |
| 276 | //! /// |
| 277 | //! /// This returns a future that must be polled to completion |
| 278 | //! fn read<S>(mut serial: S) -> impl Future<Item = (S, u8), Error = S::Error> |
| 279 | //! where |
| 280 | //! S: hal::serial::Read<u8>, |
| 281 | //! { |
| 282 | //! let mut serial = Some(serial); |
| 283 | //! future::poll_fn(move || { |
| 284 | //! let byte = try_nb!(serial.as_mut().unwrap().read()); |
| 285 | //! |
| 286 | //! Ok(Async::Ready((serial.take().unwrap(), byte))) |
| 287 | //! }) |
| 288 | //! } |
| 289 | //! |
| 290 | //! /// `futures` version of `Serial.write` |
| 291 | //! /// |
| 292 | //! /// This returns a future that must be polled to completion |
| 293 | //! fn write<S>(mut serial: S, byte: u8) -> impl Future<Item = S, Error = S::Error> |
| 294 | //! where |
| 295 | //! S: hal::serial::Write<u8>, |
| 296 | //! { |
| 297 | //! let mut serial = Some(serial); |
| 298 | //! future::poll_fn(move || { |
| 299 | //! try_nb!(serial.as_mut().unwrap().write(byte)); |
| 300 | //! |
| 301 | //! Ok(Async::Ready(serial.take().unwrap())) |
| 302 | //! }) |
| 303 | //! } |
| 304 | //! |
| 305 | //! fn main() { |
| 306 | //! // HAL implementers |
| 307 | //! let timer: Timer6 = { |
| 308 | //! // .. |
| 309 | //! # Timer6 |
| 310 | //! }; |
| 311 | //! let serial: Serial1 = { |
| 312 | //! // .. |
| 313 | //! # Serial1 |
| 314 | //! }; |
| 315 | //! let led: Led = { |
| 316 | //! // .. |
| 317 | //! # Led |
| 318 | //! }; |
| 319 | //! |
| 320 | //! // Tasks |
| 321 | //! let mut blinky = future::loop_fn::<_, (), _, _>( |
| 322 | //! (led, timer, true), |
| 323 | //! |(mut led, mut timer, state)| { |
| 324 | //! wait(timer).map(move |timer| { |
| 325 | //! if state { |
| 326 | //! led.on(); |
| 327 | //! } else { |
| 328 | //! led.off(); |
| 329 | //! } |
| 330 | //! |
| 331 | //! Loop::Continue((led, timer, !state)) |
| 332 | //! }) |
| 333 | //! }); |
| 334 | //! |
| 335 | //! let mut loopback = future::loop_fn::<_, (), _, _>(serial, |mut serial| { |
| 336 | //! read(serial).and_then(|(serial, byte)| { |
| 337 | //! write(serial, byte) |
| 338 | //! }).map(|serial| { |
| 339 | //! Loop::Continue(serial) |
| 340 | //! }) |
| 341 | //! }); |
| 342 | //! |
| 343 | //! // Event loop |
| 344 | //! loop { |
| 345 | //! blinky.poll().unwrap(); // NOTE(unwrap) E = Void |
| 346 | //! loopback.poll().unwrap(); |
| 347 | //! # break; |
| 348 | //! } |
| 349 | //! } |
| 350 | //! |
| 351 | //! # mod stm32f30x_hal { |
| 352 | //! # extern crate void; |
| 353 | //! # use self::void::Void; |
| 354 | //! # pub struct Timer6; |
| 355 | //! # impl ::hal::timer::CountDown for Timer6 { |
| 356 | //! # type Time = (); |
| 357 | //! # |
| 358 | //! # fn start<T>(&mut self, _: T) where T: Into<()> {} |
| 359 | //! # fn wait(&mut self) -> ::nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } |
| 360 | //! # } |
| 361 | //! # |
| 362 | //! # pub struct Serial1; |
| 363 | //! # impl ::hal::serial::Read<u8> for Serial1 { |
| 364 | //! # type Error = Void; |
| 365 | //! # fn read(&mut self) -> ::nb::Result<u8, Void> { Err(::nb::Error::WouldBlock) } |
| 366 | //! # } |
| 367 | //! # impl ::hal::serial::Write<u8> for Serial1 { |
| 368 | //! # type Error = Void; |
| 369 | //! # fn flush(&mut self) -> ::nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } |
| 370 | //! # fn write(&mut self, _: u8) -> ::nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } |
| 371 | //! # } |
| 372 | //! # |
| 373 | //! # pub struct Led; |
| 374 | //! # impl Led { |
| 375 | //! # pub fn off(&mut self) {} |
| 376 | //! # pub fn on(&mut self) {} |
| 377 | //! # } |
| 378 | //! # } |
| 379 | //! ``` |
| 380 | //! |
| 381 | //! ### `await` |
| 382 | //! |
| 383 | //! Same example as above but using `await!` instead of `futures`. |
| 384 | //! |
| 385 | //! ``` |
| 386 | //! #![feature(generator_trait)] |
| 387 | //! #![feature(generators)] |
| 388 | //! |
| 389 | //! extern crate embedded_hal as hal; |
| 390 | //! |
| 391 | //! #[macro_use(await)] |
| 392 | //! extern crate nb; |
| 393 | //! |
| 394 | //! use std::ops::Generator; |
| 395 | //! use std::pin::Pin; |
| 396 | //! |
| 397 | //! use hal::prelude::*; |
| 398 | //! use stm32f30x_hal::{Led, Serial1, Timer6}; |
| 399 | //! |
| 400 | //! fn main() { |
| 401 | //! // HAL implementers |
| 402 | //! let mut timer: Timer6 = { |
| 403 | //! // .. |
| 404 | //! # Timer6 |
| 405 | //! }; |
| 406 | //! let mut serial: Serial1 = { |
| 407 | //! // .. |
| 408 | //! # Serial1 |
| 409 | //! }; |
| 410 | //! let mut led: Led = { |
| 411 | //! // .. |
| 412 | //! # Led |
| 413 | //! }; |
| 414 | //! |
| 415 | //! // Tasks |
| 416 | //! let mut blinky = (move || { |
| 417 | //! let mut state = false; |
| 418 | //! loop { |
| 419 | //! // `await!` means "suspend / yield here" instead of "block until |
| 420 | //! // completion" |
| 421 | //! await!(timer.wait()).unwrap(); // NOTE(unwrap) E = Void |
| 422 | //! |
| 423 | //! state = !state; |
| 424 | //! |
| 425 | //! if state { |
| 426 | //! led.on(); |
| 427 | //! } else { |
| 428 | //! led.off(); |
| 429 | //! } |
| 430 | //! } |
| 431 | //! }); |
| 432 | //! |
| 433 | //! let mut loopback = (move || { |
| 434 | //! loop { |
| 435 | //! let byte = await!(serial.read()).unwrap(); |
| 436 | //! await!(serial.write(byte)).unwrap(); |
| 437 | //! } |
| 438 | //! }); |
| 439 | //! |
| 440 | //! // Event loop |
| 441 | //! loop { |
| 442 | //! Pin::new(&mut blinky).resume(()); |
| 443 | //! Pin::new(&mut loopback).resume(()); |
| 444 | //! # break; |
| 445 | //! } |
| 446 | //! } |
| 447 | //! |
| 448 | //! # mod stm32f30x_hal { |
| 449 | //! # extern crate void; |
| 450 | //! # use self::void::Void; |
| 451 | //! # pub struct Serial1; |
| 452 | //! # impl Serial1 { |
| 453 | //! # pub fn read(&mut self) -> ::nb::Result<u8, Void> { Err(::nb::Error::WouldBlock) } |
| 454 | //! # pub fn write(&mut self, _: u8) -> ::nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } |
| 455 | //! # } |
| 456 | //! # pub struct Timer6; |
| 457 | //! # impl Timer6 { |
| 458 | //! # pub fn wait(&mut self) -> ::nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } |
| 459 | //! # } |
| 460 | //! # pub struct Led; |
| 461 | //! # impl Led { |
| 462 | //! # pub fn off(&mut self) {} |
| 463 | //! # pub fn on(&mut self) {} |
| 464 | //! # } |
| 465 | //! # } |
| 466 | //! ``` |
| 467 | //! |
| 468 | //! ## Generic programming and higher level abstractions |
| 469 | //! |
| 470 | //! The core of the HAL has been kept minimal on purpose to encourage building **generic** higher |
| 471 | //! level abstractions on top of it. Some higher level abstractions that pick an asynchronous model |
| 472 | //! or that have blocking behavior and that are deemed useful to build other abstractions can be |
| 473 | //! found in the `blocking` module and, in the future, in the `futures` and `async` modules. |
| 474 | //! |
| 475 | //! Some examples: |
| 476 | //! |
| 477 | //! **NOTE** All the functions shown below could have been written as trait |
| 478 | //! methods with default implementation to allow specialization, but they have |
| 479 | //! been written as functions to keep things simple. |
| 480 | //! |
| 481 | //! - Write a whole buffer to a serial device in blocking a fashion. |
| 482 | //! |
| 483 | //! ``` |
| 484 | //! extern crate embedded_hal as hal; |
| 485 | //! #[macro_use(block)] |
| 486 | //! extern crate nb; |
| 487 | //! |
| 488 | //! use hal::prelude::*; |
| 489 | //! |
| 490 | //! fn write_all<S>(serial: &mut S, buffer: &[u8]) -> Result<(), S::Error> |
| 491 | //! where |
| 492 | //! S: hal::serial::Write<u8> |
| 493 | //! { |
| 494 | //! for &byte in buffer { |
| 495 | //! block!(serial.write(byte))?; |
| 496 | //! } |
| 497 | //! |
| 498 | //! Ok(()) |
| 499 | //! } |
| 500 | //! |
| 501 | //! # fn main() {} |
| 502 | //! ``` |
| 503 | //! |
| 504 | //! - Blocking serial read with timeout |
| 505 | //! |
| 506 | //! ``` |
| 507 | //! extern crate embedded_hal as hal; |
| 508 | //! extern crate nb; |
| 509 | //! |
| 510 | //! use hal::prelude::*; |
| 511 | //! |
| 512 | //! enum Error<E> { |
| 513 | //! /// Serial interface error |
| 514 | //! Serial(E), |
| 515 | //! TimedOut, |
| 516 | //! } |
| 517 | //! |
| 518 | //! fn read_with_timeout<S, T>( |
| 519 | //! serial: &mut S, |
| 520 | //! timer: &mut T, |
| 521 | //! timeout: T::Time, |
| 522 | //! ) -> Result<u8, Error<S::Error>> |
| 523 | //! where |
| 524 | //! T: hal::timer::CountDown, |
| 525 | //! S: hal::serial::Read<u8>, |
| 526 | //! { |
| 527 | //! timer.start(timeout); |
| 528 | //! |
| 529 | //! loop { |
| 530 | //! match serial.read() { |
| 531 | //! // raise error |
| 532 | //! Err(nb::Error::Other(e)) => return Err(Error::Serial(e)), |
| 533 | //! Err(nb::Error::WouldBlock) => { |
| 534 | //! // no data available yet, check the timer below |
| 535 | //! }, |
| 536 | //! Ok(byte) => return Ok(byte), |
| 537 | //! } |
| 538 | //! |
| 539 | //! match timer.wait() { |
| 540 | //! Err(nb::Error::Other(e)) => { |
| 541 | //! // The error type specified by `timer.wait()` is `!`, which |
| 542 | //! // means no error can actually occur. The Rust compiler |
| 543 | //! // still forces us to provide this match arm, though. |
| 544 | //! unreachable!() |
| 545 | //! }, |
| 546 | //! // no timeout yet, try again |
| 547 | //! Err(nb::Error::WouldBlock) => continue, |
| 548 | //! Ok(()) => return Err(Error::TimedOut), |
| 549 | //! } |
| 550 | //! } |
| 551 | //! } |
| 552 | //! |
| 553 | //! # fn main() {} |
| 554 | //! ``` |
| 555 | //! |
| 556 | //! - Asynchronous SPI transfer |
| 557 | //! |
| 558 | //! ``` |
| 559 | //! #![feature(conservative_impl_trait)] |
| 560 | //! #![feature(generators)] |
| 561 | //! #![feature(generator_trait)] |
| 562 | //! |
| 563 | //! extern crate embedded_hal as hal; |
| 564 | //! #[macro_use(await)] |
| 565 | //! extern crate nb; |
| 566 | //! |
| 567 | //! use std::ops::Generator; |
| 568 | //! |
| 569 | //! /// Transfers a byte buffer of size N |
| 570 | //! /// |
| 571 | //! /// Returns the same byte buffer but filled with the data received from the |
| 572 | //! /// slave device |
| 573 | //! fn transfer<S, B>( |
| 574 | //! mut spi: S, |
| 575 | //! mut buffer: [u8; 16], // NOTE this should be generic over the size of the array |
| 576 | //! ) -> impl Generator<Return = Result<(S, [u8; 16]), S::Error>, Yield = ()> |
| 577 | //! where |
| 578 | //! S: hal::spi::FullDuplex<u8>, |
| 579 | //! { |
| 580 | //! move || { |
| 581 | //! let n = buffer.len(); |
| 582 | //! for i in 0..n { |
| 583 | //! await!(spi.send(buffer[i]))?; |
| 584 | //! buffer[i] = await!(spi.read())?; |
| 585 | //! } |
| 586 | //! |
| 587 | //! Ok((spi, buffer)) |
| 588 | //! } |
| 589 | //! } |
| 590 | //! |
| 591 | //! # fn main() {} |
| 592 | //! ``` |
| 593 | //! |
| 594 | //! - Buffered serial interface with periodic flushing in interrupt handler |
| 595 | //! |
| 596 | //! ``` |
| 597 | //! extern crate embedded_hal as hal; |
| 598 | //! extern crate nb; |
| 599 | //! extern crate void; |
| 600 | //! |
| 601 | //! use hal::prelude::*; |
| 602 | //! use void::Void; |
| 603 | //! |
| 604 | //! fn flush<S>(serial: &mut S, cb: &mut CircularBuffer) |
| 605 | //! where |
| 606 | //! S: hal::serial::Write<u8, Error = Void>, |
| 607 | //! { |
| 608 | //! loop { |
| 609 | //! if let Some(byte) = cb.peek() { |
| 610 | //! match serial.write(*byte) { |
| 611 | //! Err(nb::Error::Other(_)) => unreachable!(), |
| 612 | //! Err(nb::Error::WouldBlock) => return, |
| 613 | //! Ok(()) => {}, // keep flushing data |
| 614 | //! } |
| 615 | //! } |
| 616 | //! |
| 617 | //! cb.pop(); |
| 618 | //! } |
| 619 | //! } |
| 620 | //! |
| 621 | //! // The stuff below could be in some other crate |
| 622 | //! |
| 623 | //! /// Global singleton |
| 624 | //! pub struct BufferedSerial1; |
| 625 | //! |
| 626 | //! // NOTE private |
| 627 | //! static BUFFER1: Mutex<CircularBuffer> = { |
| 628 | //! // .. |
| 629 | //! # Mutex(CircularBuffer) |
| 630 | //! }; |
| 631 | //! static SERIAL1: Mutex<Serial1> = { |
| 632 | //! // .. |
| 633 | //! # Mutex(Serial1) |
| 634 | //! }; |
| 635 | //! |
| 636 | //! impl BufferedSerial1 { |
| 637 | //! pub fn write(&self, byte: u8) { |
| 638 | //! self.write_all(&[byte]) |
| 639 | //! } |
| 640 | //! |
| 641 | //! pub fn write_all(&self, bytes: &[u8]) { |
| 642 | //! let mut buffer = BUFFER1.lock(); |
| 643 | //! for byte in bytes { |
| 644 | //! buffer.push(*byte).expect("buffer overrun" ); |
| 645 | //! } |
| 646 | //! // omitted: pend / enable interrupt_handler |
| 647 | //! } |
| 648 | //! } |
| 649 | //! |
| 650 | //! fn interrupt_handler() { |
| 651 | //! let mut serial = SERIAL1.lock(); |
| 652 | //! let mut buffer = BUFFER1.lock(); |
| 653 | //! |
| 654 | //! flush(&mut *serial, &mut buffer); |
| 655 | //! } |
| 656 | //! |
| 657 | //! # struct Mutex<T>(T); |
| 658 | //! # impl<T> Mutex<T> { |
| 659 | //! # fn lock(&self) -> RefMut<T> { unimplemented!() } |
| 660 | //! # } |
| 661 | //! # struct RefMut<'a, T>(&'a mut T) where T: 'a; |
| 662 | //! # impl<'a, T> ::std::ops::Deref for RefMut<'a, T> { |
| 663 | //! # type Target = T; |
| 664 | //! # fn deref(&self) -> &T { self.0 } |
| 665 | //! # } |
| 666 | //! # impl<'a, T> ::std::ops::DerefMut for RefMut<'a, T> { |
| 667 | //! # fn deref_mut(&mut self) -> &mut T { self.0 } |
| 668 | //! # } |
| 669 | //! # struct Serial1; |
| 670 | //! # impl ::hal::serial::Write<u8> for Serial1 { |
| 671 | //! # type Error = Void; |
| 672 | //! # fn write(&mut self, _: u8) -> nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } |
| 673 | //! # fn flush(&mut self) -> nb::Result<(), Void> { Err(::nb::Error::WouldBlock) } |
| 674 | //! # } |
| 675 | //! # struct CircularBuffer; |
| 676 | //! # impl CircularBuffer { |
| 677 | //! # pub fn peek(&mut self) -> Option<&u8> { None } |
| 678 | //! # pub fn pop(&mut self) -> Option<u8> { None } |
| 679 | //! # pub fn push(&mut self, _: u8) -> Result<(), ()> { Ok(()) } |
| 680 | //! # } |
| 681 | //! |
| 682 | //! # fn main() {} |
| 683 | //! ``` |
| 684 | |
| 685 | #![deny (missing_docs)] |
| 686 | #![no_std ] |
| 687 | |
| 688 | #[macro_use ] |
| 689 | extern crate nb; |
| 690 | extern crate void; |
| 691 | |
| 692 | pub mod adc; |
| 693 | pub mod blocking; |
| 694 | pub mod can; |
| 695 | pub mod digital; |
| 696 | pub mod fmt; |
| 697 | pub mod prelude; |
| 698 | pub mod serial; |
| 699 | pub mod spi; |
| 700 | pub mod timer; |
| 701 | pub mod watchdog; |
| 702 | |
| 703 | /// Input capture |
| 704 | /// |
| 705 | /// *This trait is available if embedded-hal is built with the `"unproven"` feature.* |
| 706 | /// |
| 707 | /// # Examples |
| 708 | /// |
| 709 | /// You can use this interface to measure the period of (quasi) periodic signals |
| 710 | /// / events |
| 711 | /// |
| 712 | /// ``` |
| 713 | /// extern crate embedded_hal as hal; |
| 714 | /// #[macro_use(block)] |
| 715 | /// extern crate nb; |
| 716 | /// |
| 717 | /// use hal::prelude::*; |
| 718 | /// |
| 719 | /// fn main() { |
| 720 | /// let mut capture: Capture1 = { |
| 721 | /// // .. |
| 722 | /// # Capture1 |
| 723 | /// }; |
| 724 | /// |
| 725 | /// capture.set_resolution(1.ms()); |
| 726 | /// |
| 727 | /// let before = block!(capture.capture(Channel::_1)).unwrap(); |
| 728 | /// let after = block!(capture.capture(Channel::_1)).unwrap(); |
| 729 | /// |
| 730 | /// let period = after.wrapping_sub(before); |
| 731 | /// |
| 732 | /// println!("Period: {} ms" , period); |
| 733 | /// } |
| 734 | /// |
| 735 | /// # extern crate void; |
| 736 | /// # use void::Void; |
| 737 | /// # struct MilliSeconds(u32); |
| 738 | /// # trait U32Ext { fn ms(self) -> MilliSeconds; } |
| 739 | /// # impl U32Ext for u32 { fn ms(self) -> MilliSeconds { MilliSeconds(self) } } |
| 740 | /// # struct Capture1; |
| 741 | /// # enum Channel { _1 } |
| 742 | /// # impl hal::Capture for Capture1 { |
| 743 | /// # type Capture = u16; |
| 744 | /// # type Channel = Channel; |
| 745 | /// # type Error = Void; |
| 746 | /// # type Time = MilliSeconds; |
| 747 | /// # fn capture(&mut self, _: Channel) -> ::nb::Result<u16, Void> { Ok(0) } |
| 748 | /// # fn disable(&mut self, _: Channel) { unimplemented!() } |
| 749 | /// # fn enable(&mut self, _: Channel) { unimplemented!() } |
| 750 | /// # fn get_resolution(&self) -> MilliSeconds { unimplemented!() } |
| 751 | /// # fn set_resolution<T>(&mut self, _: T) where T: Into<MilliSeconds> {} |
| 752 | /// # } |
| 753 | /// ``` |
| 754 | #[cfg (feature = "unproven" )] |
| 755 | // reason: pre-singletons API. With singletons a `CapturePin` (cf. `PwmPin`) trait seems more |
| 756 | // appropriate |
| 757 | pub trait Capture { |
| 758 | /// Enumeration of `Capture` errors |
| 759 | /// |
| 760 | /// Possible errors: |
| 761 | /// |
| 762 | /// - *overcapture*, the previous capture value was overwritten because it |
| 763 | /// was not read in a timely manner |
| 764 | type Error; |
| 765 | |
| 766 | /// Enumeration of channels that can be used with this `Capture` interface |
| 767 | /// |
| 768 | /// If your `Capture` interface has no channels you can use the type `()` |
| 769 | /// here |
| 770 | type Channel; |
| 771 | |
| 772 | /// A time unit that can be converted into a human time unit (e.g. seconds) |
| 773 | type Time; |
| 774 | |
| 775 | /// The type of the value returned by `capture` |
| 776 | type Capture; |
| 777 | |
| 778 | /// "Waits" for a transition in the capture `channel` and returns the value |
| 779 | /// of counter at that instant |
| 780 | /// |
| 781 | /// NOTE that you must multiply the returned value by the *resolution* of |
| 782 | /// this `Capture` interface to get a human time unit (e.g. seconds) |
| 783 | fn capture(&mut self, channel: Self::Channel) -> nb::Result<Self::Capture, Self::Error>; |
| 784 | |
| 785 | /// Disables a capture `channel` |
| 786 | fn disable(&mut self, channel: Self::Channel); |
| 787 | |
| 788 | /// Enables a capture `channel` |
| 789 | fn enable(&mut self, channel: Self::Channel); |
| 790 | |
| 791 | /// Returns the current resolution |
| 792 | fn get_resolution(&self) -> Self::Time; |
| 793 | |
| 794 | /// Sets the resolution of the capture timer |
| 795 | fn set_resolution<R>(&mut self, resolution: R) |
| 796 | where |
| 797 | R: Into<Self::Time>; |
| 798 | } |
| 799 | |
| 800 | /// Pulse Width Modulation |
| 801 | /// |
| 802 | /// *This trait is available if embedded-hal is built with the `"unproven"` feature.* |
| 803 | /// |
| 804 | /// # Examples |
| 805 | /// |
| 806 | /// Use this interface to control the power output of some actuator |
| 807 | /// |
| 808 | /// ``` |
| 809 | /// extern crate embedded_hal as hal; |
| 810 | /// |
| 811 | /// use hal::prelude::*; |
| 812 | /// |
| 813 | /// fn main() { |
| 814 | /// let mut pwm: Pwm1 = { |
| 815 | /// // .. |
| 816 | /// # Pwm1 |
| 817 | /// }; |
| 818 | /// |
| 819 | /// pwm.set_period(1.khz()); |
| 820 | /// |
| 821 | /// let max_duty = pwm.get_max_duty(); |
| 822 | /// |
| 823 | /// // brightest LED |
| 824 | /// pwm.set_duty(Channel::_1, max_duty); |
| 825 | /// |
| 826 | /// // dimmer LED |
| 827 | /// pwm.set_duty(Channel::_2, max_duty / 4); |
| 828 | /// } |
| 829 | /// |
| 830 | /// # struct KiloHertz(u32); |
| 831 | /// # trait U32Ext { fn khz(self) -> KiloHertz; } |
| 832 | /// # impl U32Ext for u32 { fn khz(self) -> KiloHertz { KiloHertz(self) } } |
| 833 | /// # enum Channel { _1, _2 } |
| 834 | /// # struct Pwm1; |
| 835 | /// # impl hal::Pwm for Pwm1 { |
| 836 | /// # type Channel = Channel; |
| 837 | /// # type Time = KiloHertz; |
| 838 | /// # type Duty = u16; |
| 839 | /// # fn disable(&mut self, _: Channel) { unimplemented!() } |
| 840 | /// # fn enable(&mut self, _: Channel) { unimplemented!() } |
| 841 | /// # fn get_duty(&self, _: Channel) -> u16 { unimplemented!() } |
| 842 | /// # fn get_max_duty(&self) -> u16 { 0 } |
| 843 | /// # fn set_duty(&mut self, _: Channel, _: u16) {} |
| 844 | /// # fn get_period(&self) -> KiloHertz { unimplemented!() } |
| 845 | /// # fn set_period<T>(&mut self, _: T) where T: Into<KiloHertz> {} |
| 846 | /// # } |
| 847 | /// ``` |
| 848 | #[cfg (feature = "unproven" )] |
| 849 | // reason: pre-singletons API. The `PwmPin` trait seems more useful because it models independent |
| 850 | // PWM channels. Here a certain number of channels are multiplexed in a single implementer. |
| 851 | pub trait Pwm { |
| 852 | /// Enumeration of channels that can be used with this `Pwm` interface |
| 853 | /// |
| 854 | /// If your `Pwm` interface has no channels you can use the type `()` |
| 855 | /// here |
| 856 | type Channel; |
| 857 | |
| 858 | /// A time unit that can be converted into a human time unit (e.g. seconds) |
| 859 | type Time; |
| 860 | |
| 861 | /// Type for the `duty` methods |
| 862 | /// |
| 863 | /// The implementer is free to choose a float / percentage representation |
| 864 | /// (e.g. `0.0 .. 1.0`) or an integer representation (e.g. `0 .. 65535`) |
| 865 | type Duty; |
| 866 | |
| 867 | /// Disables a PWM `channel` |
| 868 | fn disable(&mut self, channel: Self::Channel); |
| 869 | |
| 870 | /// Enables a PWM `channel` |
| 871 | fn enable(&mut self, channel: Self::Channel); |
| 872 | |
| 873 | /// Returns the current PWM period |
| 874 | fn get_period(&self) -> Self::Time; |
| 875 | |
| 876 | /// Returns the current duty cycle |
| 877 | fn get_duty(&self, channel: Self::Channel) -> Self::Duty; |
| 878 | |
| 879 | /// Returns the maximum duty cycle value |
| 880 | fn get_max_duty(&self) -> Self::Duty; |
| 881 | |
| 882 | /// Sets a new duty cycle |
| 883 | fn set_duty(&mut self, channel: Self::Channel, duty: Self::Duty); |
| 884 | |
| 885 | /// Sets a new PWM period |
| 886 | fn set_period<P>(&mut self, period: P) |
| 887 | where |
| 888 | P: Into<Self::Time>; |
| 889 | } |
| 890 | |
| 891 | /// A single PWM channel / pin |
| 892 | /// |
| 893 | /// See `Pwm` for details |
| 894 | pub trait PwmPin { |
| 895 | /// Type for the `duty` methods |
| 896 | /// |
| 897 | /// The implementer is free to choose a float / percentage representation |
| 898 | /// (e.g. `0.0 .. 1.0`) or an integer representation (e.g. `0 .. 65535`) |
| 899 | type Duty; |
| 900 | |
| 901 | /// Disables a PWM `channel` |
| 902 | fn disable(&mut self); |
| 903 | |
| 904 | /// Enables a PWM `channel` |
| 905 | fn enable(&mut self); |
| 906 | |
| 907 | /// Returns the current duty cycle |
| 908 | fn get_duty(&self) -> Self::Duty; |
| 909 | |
| 910 | /// Returns the maximum duty cycle value |
| 911 | fn get_max_duty(&self) -> Self::Duty; |
| 912 | |
| 913 | /// Sets a new duty cycle |
| 914 | fn set_duty(&mut self, duty: Self::Duty); |
| 915 | } |
| 916 | |
| 917 | /// Quadrature encoder interface |
| 918 | /// |
| 919 | /// *This trait is available if embedded-hal is built with the `"unproven"` feature.* |
| 920 | /// |
| 921 | /// # Examples |
| 922 | /// |
| 923 | /// You can use this interface to measure the speed of a motor |
| 924 | /// |
| 925 | /// ``` |
| 926 | /// extern crate embedded_hal as hal; |
| 927 | /// #[macro_use(block)] |
| 928 | /// extern crate nb; |
| 929 | /// |
| 930 | /// use hal::prelude::*; |
| 931 | /// |
| 932 | /// fn main() { |
| 933 | /// let mut qei: Qei1 = { |
| 934 | /// // .. |
| 935 | /// # Qei1 |
| 936 | /// }; |
| 937 | /// let mut timer: Timer6 = { |
| 938 | /// // .. |
| 939 | /// # Timer6 |
| 940 | /// }; |
| 941 | /// |
| 942 | /// |
| 943 | /// let before = qei.count(); |
| 944 | /// timer.start(1.s()); |
| 945 | /// block!(timer.wait()); |
| 946 | /// let after = qei.count(); |
| 947 | /// |
| 948 | /// let speed = after.wrapping_sub(before); |
| 949 | /// println!("Speed: {} pulses per second" , speed); |
| 950 | /// } |
| 951 | /// |
| 952 | /// # extern crate void; |
| 953 | /// # use void::Void; |
| 954 | /// # struct Seconds(u32); |
| 955 | /// # trait U32Ext { fn s(self) -> Seconds; } |
| 956 | /// # impl U32Ext for u32 { fn s(self) -> Seconds { Seconds(self) } } |
| 957 | /// # struct Qei1; |
| 958 | /// # impl hal::Qei for Qei1 { |
| 959 | /// # type Count = u16; |
| 960 | /// # fn count(&self) -> u16 { 0 } |
| 961 | /// # fn direction(&self) -> ::hal::Direction { unimplemented!() } |
| 962 | /// # } |
| 963 | /// # struct Timer6; |
| 964 | /// # impl hal::timer::CountDown for Timer6 { |
| 965 | /// # type Time = Seconds; |
| 966 | /// # fn start<T>(&mut self, _: T) where T: Into<Seconds> {} |
| 967 | /// # fn wait(&mut self) -> ::nb::Result<(), Void> { Ok(()) } |
| 968 | /// # } |
| 969 | /// ``` |
| 970 | #[cfg (feature = "unproven" )] |
| 971 | // reason: needs to be re-evaluated in the new singletons world. At the very least this needs a |
| 972 | // reference implementation |
| 973 | pub trait Qei { |
| 974 | /// The type of the value returned by `count` |
| 975 | type Count; |
| 976 | |
| 977 | /// Returns the current pulse count of the encoder |
| 978 | fn count(&self) -> Self::Count; |
| 979 | |
| 980 | /// Returns the count direction |
| 981 | fn direction(&self) -> Direction; |
| 982 | } |
| 983 | |
| 984 | /// Count direction |
| 985 | /// |
| 986 | /// *This enumeration is available if embedded-hal is built with the `"unproven"` feature.* |
| 987 | #[derive (Clone, Copy, Debug, Eq, PartialEq)] |
| 988 | #[cfg (feature = "unproven" )] |
| 989 | // reason: part of the unproven `Qei` interface |
| 990 | pub enum Direction { |
| 991 | /// 3, 2, 1 |
| 992 | Downcounting, |
| 993 | /// 1, 2, 3 |
| 994 | Upcounting, |
| 995 | } |
| 996 | |
| 997 | mod private { |
| 998 | pub trait Sealed {} |
| 999 | } |
| 1000 | |