1 | // Take a look at the license at the top of the repository in the LICENSE file. |
2 | |
3 | mod async_test; |
4 | mod boxed_derive; |
5 | mod clone; |
6 | mod clone_old; |
7 | mod closure; |
8 | mod closure_old; |
9 | mod derived_properties_attribute; |
10 | mod downgrade_derive; |
11 | mod enum_derive; |
12 | mod error_domain_derive; |
13 | mod flags_attribute; |
14 | mod object_impl_attributes; |
15 | mod properties; |
16 | mod shared_boxed_derive; |
17 | mod value_delegate_derive; |
18 | mod variant_derive; |
19 | |
20 | mod utils; |
21 | |
22 | use flags_attribute::AttrInput; |
23 | use proc_macro::{TokenStream, TokenTree}; |
24 | use proc_macro2::Span; |
25 | use syn::{parse_macro_input, DeriveInput}; |
26 | use utils::{parse_nested_meta_items_from_stream, NestedMetaItem}; |
27 | |
28 | /// Macro for passing variables as strong or weak references into a closure. |
29 | /// |
30 | /// This macro can be useful in combination with closures, e.g. signal handlers, to reduce the |
31 | /// boilerplate required for passing strong or weak references into the closure. It will |
32 | /// automatically create the new reference and pass it with the same name into the closure. |
33 | /// |
34 | /// If upgrading the weak reference to a strong reference inside the closure is failing, the |
35 | /// closure is immediately returning an optional default return value. If none is provided, `()` is |
36 | /// returned. |
37 | /// |
38 | /// **⚠️ IMPORTANT ⚠️** |
39 | /// |
40 | /// `glib` needs to be in scope, so unless it's one of the direct crate dependencies, you need to |
41 | /// import it because `clone!` is using it. For example: |
42 | /// |
43 | /// ```rust,ignore |
44 | /// use gtk::glib; |
45 | /// ``` |
46 | /// |
47 | /// ### Debugging |
48 | /// |
49 | /// In case something goes wrong inside the `clone!` macro, we use the [`g_debug`] macro. Meaning |
50 | /// that if you want to see these debug messages, you'll have to set the `G_MESSAGES_DEBUG` |
51 | /// environment variable when running your code (either in the code directly or when running the |
52 | /// binary) to either "all" or [`CLONE_MACRO_LOG_DOMAIN`]: |
53 | /// |
54 | /// [`g_debug`]: ../glib/macro.g_debug.html |
55 | /// [`CLONE_MACRO_LOG_DOMAIN`]: ../glib/constant.CLONE_MACRO_LOG_DOMAIN.html |
56 | /// |
57 | /// ```rust,ignore |
58 | /// use glib::CLONE_MACRO_LOG_DOMAIN; |
59 | /// |
60 | /// std::env::set_var("G_MESSAGES_DEBUG" , CLONE_MACRO_LOG_DOMAIN); |
61 | /// std::env::set_var("G_MESSAGES_DEBUG" , "all" ); |
62 | /// ``` |
63 | /// |
64 | /// Or: |
65 | /// |
66 | /// ```bash |
67 | /// $ G_MESSAGES_DEBUG=all ./binary |
68 | /// ``` |
69 | /// |
70 | /// ### Passing a strong reference |
71 | /// |
72 | /// ``` |
73 | /// use glib; |
74 | /// use glib_macros::clone; |
75 | /// use std::rc::Rc; |
76 | /// |
77 | /// let v = Rc::new(1); |
78 | /// let closure = clone!( |
79 | /// #[strong] v, |
80 | /// move |x| { |
81 | /// println!("v: {}, x: {}" , v, x); |
82 | /// }, |
83 | /// ); |
84 | /// |
85 | /// closure(2); |
86 | /// ``` |
87 | /// |
88 | /// ### Passing a weak reference |
89 | /// |
90 | /// ``` |
91 | /// use glib; |
92 | /// use glib_macros::clone; |
93 | /// use std::rc::Rc; |
94 | /// |
95 | /// let u = Rc::new(2); |
96 | /// let closure = clone!( |
97 | /// #[weak] |
98 | /// u, |
99 | /// move |x| { |
100 | /// println!("u: {}, x: {}" , u, x); |
101 | /// }, |
102 | /// ); |
103 | /// |
104 | /// closure(3); |
105 | /// ``` |
106 | /// |
107 | /// #### Allowing a nullable weak reference |
108 | /// |
109 | /// In some cases, even if the weak references can't be retrieved, you might want to still have |
110 | /// your closure called. In this case, you need to use `#[weak_allow_none]` instead of `#[weak]`: |
111 | /// |
112 | /// ``` |
113 | /// use glib; |
114 | /// use glib_macros::clone; |
115 | /// use std::rc::Rc; |
116 | /// |
117 | /// let closure = { |
118 | /// // This `Rc` won't be available in the closure because it's dropped at the end of the |
119 | /// // current block |
120 | /// let u = Rc::new(2); |
121 | /// clone!( |
122 | /// #[weak_allow_none] |
123 | /// u, |
124 | /// move |x| { |
125 | /// // We need to use a Debug print for `u` because it'll be an `Option`. |
126 | /// println!("u: {:?}, x: {}" , u, x); |
127 | /// true |
128 | /// }, |
129 | /// ) |
130 | /// }; |
131 | /// |
132 | /// assert_eq!(closure(3), true); |
133 | /// ``` |
134 | /// |
135 | /// ### Creating owned values from references (`ToOwned`) |
136 | /// |
137 | /// ``` |
138 | /// use glib; |
139 | /// use glib_macros::clone; |
140 | /// |
141 | /// let v = "123" ; |
142 | /// let closure = clone!( |
143 | /// #[to_owned] v, |
144 | /// move |x| { |
145 | /// // v is passed as `String` here |
146 | /// println!("v: {}, x: {}" , v, x); |
147 | /// }, |
148 | /// ); |
149 | /// |
150 | /// closure(2); |
151 | /// ``` |
152 | /// |
153 | /// ### Renaming variables |
154 | /// |
155 | /// ``` |
156 | /// use glib; |
157 | /// use glib_macros::clone; |
158 | /// use std::rc::Rc; |
159 | /// |
160 | /// let v = Rc::new(1); |
161 | /// let u = Rc::new(2); |
162 | /// let closure = clone!( |
163 | /// #[strong(rename_to = y)] |
164 | /// v, |
165 | /// #[weak] u, |
166 | /// move |x| { |
167 | /// println!("v as y: {}, u: {}, x: {}" , y, u, x); |
168 | /// }, |
169 | /// ); |
170 | /// |
171 | /// closure(3); |
172 | /// ``` |
173 | /// |
174 | /// ### Providing a return value if upgrading a weak reference fails |
175 | /// |
176 | /// By default, `()` is returned if upgrading a weak reference fails. This behaviour can be |
177 | /// adjusted in two different ways: |
178 | /// |
179 | /// Either by providing the value yourself using one of |
180 | /// |
181 | /// * `#[upgrade_or]`: Requires an expression that returns a `Copy` value of the expected return type, |
182 | /// * `#[upgrade_or_else]`: Requires a closure that returns a value of the expected return type, |
183 | /// * `#[upgrade_or_default]`: Requires that the return type implements `Default` and returns that. |
184 | /// |
185 | /// ``` |
186 | /// use glib; |
187 | /// use glib_macros::clone; |
188 | /// use std::rc::Rc; |
189 | /// |
190 | /// let v = Rc::new(1); |
191 | /// let closure = clone!( |
192 | /// #[weak] v, |
193 | /// #[upgrade_or] |
194 | /// false, |
195 | /// move |x| { |
196 | /// println!("v: {}, x: {}" , v, x); |
197 | /// true |
198 | /// }, |
199 | /// ); |
200 | /// |
201 | /// // Drop value so that the weak reference can't be upgraded. |
202 | /// drop(v); |
203 | /// |
204 | /// assert_eq!(closure(2), false); |
205 | /// ``` |
206 | /// |
207 | /// Or by using `#[upgrade_or_panic]`: If the value fails to get upgraded, it'll panic. |
208 | /// |
209 | /// ```should_panic |
210 | /// # use glib; |
211 | /// # use glib_macros::clone; |
212 | /// # use std::rc::Rc; |
213 | /// # let v = Rc::new(1); |
214 | /// let closure = clone!( |
215 | /// #[weak] v, |
216 | /// #[upgrade_or_panic] |
217 | /// move |x| { |
218 | /// println!("v: {}, x: {}" , v, x); |
219 | /// true |
220 | /// }, |
221 | /// ); |
222 | /// # drop(v); |
223 | /// # assert_eq!(closure(2), false); |
224 | /// ``` |
225 | /// |
226 | /// ### Errors |
227 | /// |
228 | /// Here is a list of errors you might encounter: |
229 | /// |
230 | /// **Missing `#[weak]` or `#[strong]`**: |
231 | /// |
232 | /// ```compile_fail |
233 | /// # use glib; |
234 | /// # use glib_macros::clone; |
235 | /// # use std::rc::Rc; |
236 | /// let v = Rc::new(1); |
237 | /// |
238 | /// let closure = clone!( |
239 | /// v, |
240 | /// move |x| println!("v: {}, x: {}" , v, x), |
241 | /// ); |
242 | /// # drop(v); |
243 | /// # closure(2); |
244 | /// ``` |
245 | /// |
246 | /// **Passing `self` as an argument**: |
247 | /// |
248 | /// ```compile_fail |
249 | /// # use glib; |
250 | /// # use glib_macros::clone; |
251 | /// # use std::rc::Rc; |
252 | /// #[derive(Debug)] |
253 | /// struct Foo; |
254 | /// |
255 | /// impl Foo { |
256 | /// fn foo(&self) { |
257 | /// let closure = clone!( |
258 | /// #[strong] self, |
259 | /// move |x| { |
260 | /// println!("self: {:?}" , self); |
261 | /// }, |
262 | /// ); |
263 | /// # closure(2); |
264 | /// } |
265 | /// } |
266 | /// ``` |
267 | /// |
268 | /// If you want to use `self` directly, you'll need to rename it: |
269 | /// |
270 | /// ``` |
271 | /// # use glib; |
272 | /// # use glib_macros::clone; |
273 | /// # use std::rc::Rc; |
274 | /// #[derive(Debug)] |
275 | /// struct Foo; |
276 | /// |
277 | /// impl Foo { |
278 | /// fn foo(&self) { |
279 | /// let closure = clone!( |
280 | /// #[strong(rename_to = this)] |
281 | /// self, |
282 | /// move |x| { |
283 | /// println!("self: {:?}" , this); |
284 | /// }, |
285 | /// ); |
286 | /// # closure(2); |
287 | /// } |
288 | /// } |
289 | /// ``` |
290 | /// |
291 | /// **Passing fields directly** |
292 | /// |
293 | /// ```compile_fail |
294 | /// # use glib; |
295 | /// # use glib_macros::clone; |
296 | /// # use std::rc::Rc; |
297 | /// #[derive(Debug)] |
298 | /// struct Foo { |
299 | /// v: Rc<usize>, |
300 | /// } |
301 | /// |
302 | /// impl Foo { |
303 | /// fn foo(&self) { |
304 | /// let closure = clone!( |
305 | /// #[strong] self.v, |
306 | /// move |x| { |
307 | /// println!("self.v: {:?}" , v); |
308 | /// }, |
309 | /// ); |
310 | /// # closure(2); |
311 | /// } |
312 | /// } |
313 | /// ``` |
314 | /// |
315 | /// You can do it by renaming it: |
316 | /// |
317 | /// ``` |
318 | /// # use glib; |
319 | /// # use glib_macros::clone; |
320 | /// # use std::rc::Rc; |
321 | /// # struct Foo { |
322 | /// # v: Rc<usize>, |
323 | /// # } |
324 | /// impl Foo { |
325 | /// fn foo(&self) { |
326 | /// let closure = clone!( |
327 | /// #[strong(rename_to = v)] |
328 | /// self.v, |
329 | /// move |x| { |
330 | /// println!("self.v: {}" , v); |
331 | /// }, |
332 | /// ); |
333 | /// # closure(2); |
334 | /// } |
335 | /// } |
336 | /// ``` |
337 | #[proc_macro ] |
338 | pub fn clone(item: TokenStream) -> TokenStream { |
339 | // Check if this is an old-style clone macro invocation. |
340 | // These always start with an '@' punctuation. |
341 | let Some(first: TokenTree) = item.clone().into_iter().next() else { |
342 | return synTokenStream::Error::new(Span::call_site(), message:"expected a closure or async block" ) |
343 | .to_compile_error() |
344 | .into(); |
345 | }; |
346 | |
347 | match first { |
348 | TokenTree::Punct(ref p: &Punct) if p.to_string() == "@" => clone_old::clone_inner(item), |
349 | _ => clone::clone_inner(input:item), |
350 | } |
351 | } |
352 | |
353 | /// Macro for creating a [`Closure`] object. This is a wrapper around [`Closure::new`] that |
354 | /// automatically type checks its arguments at run-time. |
355 | /// |
356 | /// A `Closure` takes [`Value`] objects as inputs and output. This macro will automatically convert |
357 | /// the inputs to Rust types when invoking its callback, and then will convert the output back to a |
358 | /// `Value`. All inputs must implement the [`FromValue`] trait, and outputs must either implement |
359 | /// the [`ToValue`] trait or be the unit type `()`. Type-checking of inputs is done at run-time; if |
360 | /// incorrect types are passed via [`Closure::invoke`] then the closure will panic. Note that when |
361 | /// passing input types derived from [`Object`] or [`Interface`], you must take care to upcast to |
362 | /// the exact object or interface type that is being received. |
363 | /// |
364 | /// Similarly to [`clone!`](crate::clone!), this macro can be useful in combination with signal |
365 | /// handlers to reduce boilerplate when passing references. Unique to `Closure` objects is the |
366 | /// ability to watch an object using the `#[watch]` attribute. Only an [`Object`] value can be |
367 | /// passed to `#[watch]`, and only one object can be watched per closure. When an object is watched, |
368 | /// a weak reference to the object is held in the closure. When the object is destroyed, the |
369 | /// closure will become invalidated: all signal handlers connected to the closure will become |
370 | /// disconnected, and any calls to [`Closure::invoke`] on the closure will be silently ignored. |
371 | /// Internally, this is accomplished using [`Object::watch_closure`] on the watched object. |
372 | /// |
373 | /// The `#[weak]`, `#[weak_allow_none]`, `#[strong]`, `#[to_owned]` captures are also supported and |
374 | /// behave the same as in [`clone!`](crate::clone!), as is aliasing captures via `rename_to`. |
375 | /// Similarly, upgrade failure of weak references can be adjusted via `#[upgrade_or]`, |
376 | /// `#[upgrade_or_else]`, `#[upgrade_or_default]` and `#[upgrade_or_panic]`. |
377 | /// |
378 | /// Notably, these captures are able to reference `Rc` and `Arc` values in addition to `Object` |
379 | /// values. |
380 | /// |
381 | /// [`Closure`]: ../glib/closure/struct.Closure.html |
382 | /// [`Closure::new`]: ../glib/closure/struct.Closure.html#method.new |
383 | /// [`Closure::new_local`]: ../glib/closure/struct.Closure.html#method.new_local |
384 | /// [`Closure::invoke`]: ../glib/closure/struct.Closure.html#method.invoke |
385 | /// [`Value`]: ../glib/value/struct.Value.html |
386 | /// [`FromValue`]: ../glib/value/trait.FromValue.html |
387 | /// [`ToValue`]: ../glib/value/trait.ToValue.html |
388 | /// [`Interface`]: ../glib/object/struct.Interface.html |
389 | /// [`Object`]: ../glib/object/struct.Object.html |
390 | /// [`Object::watch_closure`]: ../glib/object/trait.ObjectExt.html#tymethod.watch_closure |
391 | /// **⚠️ IMPORTANT ⚠️** |
392 | /// |
393 | /// `glib` needs to be in scope, so unless it's one of the direct crate dependencies, you need to |
394 | /// import it because `closure!` is using it. For example: |
395 | /// |
396 | /// ```rust,ignore |
397 | /// use gtk::glib; |
398 | /// ``` |
399 | /// |
400 | /// ### Using as a closure object |
401 | /// |
402 | /// ``` |
403 | /// use glib_macros::closure; |
404 | /// |
405 | /// let concat_str = closure!(|s: &str| s.to_owned() + " World" ); |
406 | /// let result = concat_str.invoke::<String>(&[&"Hello" ]); |
407 | /// assert_eq!(result, "Hello World" ); |
408 | /// ``` |
409 | /// |
410 | /// ### Connecting to a signal |
411 | /// |
412 | /// For wrapping closures that can't be sent across threads, the |
413 | /// [`closure_local!`](crate::closure_local!) macro can be used. It has the same syntax as |
414 | /// `closure!`, but instead uses [`Closure::new_local`] internally. |
415 | /// |
416 | /// ``` |
417 | /// use glib; |
418 | /// use glib::prelude::*; |
419 | /// use glib_macros::closure_local; |
420 | /// |
421 | /// let obj = glib::Object::new::<glib::Object>(); |
422 | /// obj.connect_closure( |
423 | /// "notify" , false, |
424 | /// closure_local!(|_obj: glib::Object, pspec: glib::ParamSpec| { |
425 | /// println!("property notify: {}" , pspec.name()); |
426 | /// })); |
427 | /// ``` |
428 | /// |
429 | /// ### Object Watching |
430 | /// |
431 | /// ``` |
432 | /// use glib; |
433 | /// use glib::prelude::*; |
434 | /// use glib_macros::closure_local; |
435 | /// |
436 | /// let closure = { |
437 | /// let obj = glib::Object::new::<glib::Object>(); |
438 | /// let closure = closure_local!( |
439 | /// #[watch] obj, |
440 | /// move || { |
441 | /// obj.type_().name() |
442 | /// }, |
443 | /// ); |
444 | /// assert_eq!(closure.invoke::<String>(&[]), "GObject" ); |
445 | /// closure |
446 | /// }; |
447 | /// // `obj` is dropped, closure invalidated so it always does nothing and returns None |
448 | /// closure.invoke::<()>(&[]); |
449 | /// ``` |
450 | /// |
451 | /// `#[watch]` has special behavior when connected to a signal: |
452 | /// |
453 | /// ``` |
454 | /// use glib; |
455 | /// use glib::prelude::*; |
456 | /// use glib_macros::closure_local; |
457 | /// |
458 | /// let obj = glib::Object::new::<glib::Object>(); |
459 | /// { |
460 | /// let other = glib::Object::new::<glib::Object>(); |
461 | /// obj.connect_closure( |
462 | /// "notify" , false, |
463 | /// closure_local!( |
464 | /// #[watch(rename_to = b)] |
465 | /// other, |
466 | /// move |a: glib::Object, pspec: glib::ParamSpec| { |
467 | /// let value = a.property_value(pspec.name()); |
468 | /// b.set_property(pspec.name(), &value); |
469 | /// }, |
470 | /// ), |
471 | /// ); |
472 | /// // The signal handler will disconnect automatically at the end of this |
473 | /// // block when `other` is dropped. |
474 | /// } |
475 | /// ``` |
476 | /// |
477 | /// ### Weak and Strong References |
478 | /// |
479 | /// ``` |
480 | /// use glib; |
481 | /// use glib::prelude::*; |
482 | /// use glib_macros::closure; |
483 | /// use std::sync::Arc; |
484 | /// |
485 | /// let closure = { |
486 | /// let a = Arc::new(String::from("Hello" )); |
487 | /// let b = Arc::new(String::from("World" )); |
488 | /// let c = "!" ; |
489 | /// let closure = closure!( |
490 | /// #[strong] a, |
491 | /// #[weak_allow_none] |
492 | /// b, |
493 | /// #[to_owned] |
494 | /// c, |
495 | /// move || { |
496 | /// // `a` is Arc<String>, `b` is Option<Arc<String>>, `c` is a `String` |
497 | /// format!("{} {}{}" , a, b.as_ref().map(|b| b.as_str()).unwrap_or_else(|| "Moon" ), c) |
498 | /// }, |
499 | /// ); |
500 | /// assert_eq!(closure.invoke::<String>(&[]), "Hello World!" ); |
501 | /// closure |
502 | /// }; |
503 | /// // `a`, `c` still kept alive, `b` is dropped |
504 | /// assert_eq!(closure.invoke::<String>(&[]), "Hello Moon!" ); |
505 | /// ``` |
506 | #[proc_macro ] |
507 | pub fn closure(item: TokenStream) -> TokenStream { |
508 | // Check if this is an old-style closure macro invocation. |
509 | // These always start with an '@' punctuation. |
510 | let Some(first: TokenTree) = item.clone().into_iter().next() else { |
511 | return synTokenStream::Error::new(Span::call_site(), message:"expected a closure" ) |
512 | .to_compile_error() |
513 | .into(); |
514 | }; |
515 | |
516 | match first { |
517 | TokenTree::Punct(ref p: &Punct) if p.to_string() == "@" => closure_old::closure_inner(input:item, constructor:"new" ), |
518 | _ => closure::closure_inner(input:item, constructor:"new" ), |
519 | } |
520 | } |
521 | |
522 | /// The same as [`closure!`](crate::closure!) but uses [`Closure::new_local`] as a constructor. |
523 | /// This is useful for closures which can't be sent across threads. See the documentation of |
524 | /// [`closure!`](crate::closure!) for details. |
525 | /// |
526 | /// [`Closure::new_local`]: ../glib/closure/struct.Closure.html#method.new_local |
527 | #[proc_macro ] |
528 | pub fn closure_local(item: TokenStream) -> TokenStream { |
529 | // Check if this is an old-style closure macro invocation. |
530 | // These always start with an '@' punctuation. |
531 | let Some(first: TokenTree) = item.clone().into_iter().next() else { |
532 | return synTokenStream::Error::new(Span::call_site(), message:"expected a closure" ) |
533 | .to_compile_error() |
534 | .into(); |
535 | }; |
536 | |
537 | match first { |
538 | TokenTree::Punct(ref p: &Punct) if p.to_string() == "@" => { |
539 | closure_old::closure_inner(input:item, constructor:"new_local" ) |
540 | } |
541 | _ => closure::closure_inner(input:item, constructor:"new_local" ), |
542 | } |
543 | } |
544 | |
545 | /// Derive macro to register a Rust enum in the GLib type system and derive the |
546 | /// [`glib::Value`] traits. |
547 | /// |
548 | /// # Example |
549 | /// |
550 | /// ``` |
551 | /// use glib::prelude::*; |
552 | /// use glib::subclass::prelude::*; |
553 | /// |
554 | /// #[derive(Debug, Copy, Clone, PartialEq, Eq, glib::Enum)] |
555 | /// #[enum_type(name = "MyEnum" )] |
556 | /// enum MyEnum { |
557 | /// Val, |
558 | /// #[enum_value(name = "My Val" )] |
559 | /// ValWithCustomName, |
560 | /// #[enum_value(name = "My Other Val" , nick = "other" )] |
561 | /// ValWithCustomNameAndNick, |
562 | /// } |
563 | /// ``` |
564 | /// |
565 | /// An enum can be registered as a dynamic type by setting the derive macro |
566 | /// helper attribute `enum_dynamic`: |
567 | /// |
568 | /// ```ignore |
569 | /// use glib::prelude::*; |
570 | /// use glib::subclass::prelude::*; |
571 | /// |
572 | /// #[derive(Debug, Copy, Clone, PartialEq, Eq, glib::Enum)] |
573 | /// #[enum_type(name = "MyEnum" )] |
574 | /// #[enum_dynamic] |
575 | /// enum MyEnum { |
576 | /// ... |
577 | /// } |
578 | /// ``` |
579 | /// |
580 | /// As a dynamic type, an enum must be explicitly registered when the system |
581 | /// loads the implementation (see [`TypePlugin`] and [`TypeModule`]). |
582 | /// Therefore, whereas an enum can be registered only once as a static type, |
583 | /// it can be registered several times as a dynamic type. |
584 | /// |
585 | /// An enum registered as a dynamic type is never unregistered. The system |
586 | /// calls [`TypePluginExt::unuse`] to unload the implementation. If the |
587 | /// [`TypePlugin`] subclass is a [`TypeModule`], the enum registered as a |
588 | /// dynamic type is marked as unloaded and must be registered again when the |
589 | /// module is reloaded. |
590 | /// |
591 | /// The derive macro helper attribute `enum_dynamic` provides two behaviors |
592 | /// when registering an enum as a dynamic type: |
593 | /// |
594 | /// - lazy registration: by default an enum is registered as a dynamic type |
595 | /// when the system loads the implementation (e.g. when the module is loaded). |
596 | /// Optionally setting `lazy_registration` to `true` postpones registration on |
597 | /// the first use (when `static_type()` is called for the first time): |
598 | /// |
599 | /// ```ignore |
600 | /// #[derive(Debug, Copy, Clone, PartialEq, Eq, glib::Enum)] |
601 | /// #[enum_type(name = "MyEnum" )] |
602 | /// #[enum_dynamic(lazy_registration = true)] |
603 | /// enum MyEnum { |
604 | /// ... |
605 | /// } |
606 | /// ``` |
607 | /// |
608 | /// - registration within [`TypeModule`] subclass or within [`TypePlugin`] |
609 | /// subclass: an enum is usually registered as a dynamic type within a |
610 | /// [`TypeModule`] subclass: |
611 | /// |
612 | /// ```ignore |
613 | /// #[derive(Debug, Copy, Clone, PartialEq, Eq, glib::Enum)] |
614 | /// #[enum_type(name = "MyModuleEnum" )] |
615 | /// #[enum_dynamic] |
616 | /// enum MyModuleEnum { |
617 | /// ... |
618 | /// } |
619 | /// ... |
620 | /// #[derive(Default)] |
621 | /// pub struct MyModule; |
622 | /// ... |
623 | /// impl TypeModuleImpl for MyModule { |
624 | /// fn load(&self) -> bool { |
625 | /// // registers enums as dynamic types. |
626 | /// let my_module = self.obj(); |
627 | /// let type_module: &glib::TypeModule = my_module.upcast_ref(); |
628 | /// MyModuleEnum::on_implementation_load(type_module) |
629 | /// } |
630 | /// ... |
631 | /// } |
632 | /// ``` |
633 | /// |
634 | /// Optionally setting `plugin_type` allows to register an enum as a dynamic |
635 | /// type within a [`TypePlugin`] subclass that is not a [`TypeModule`]: |
636 | /// |
637 | /// ```ignore |
638 | /// #[derive(Debug, Copy, Clone, PartialEq, Eq, glib::Enum)] |
639 | /// #[enum_type(name = "MyPluginEnum" )] |
640 | /// #[enum_dynamic(plugin_type = MyPlugin)] |
641 | /// enum MyPluginEnum { |
642 | /// ... |
643 | /// } |
644 | /// ... |
645 | /// #[derive(Default)] |
646 | /// pub struct MyPlugin; |
647 | /// ... |
648 | /// impl TypePluginImpl for MyPlugin { |
649 | /// fn use_plugin(&self) { |
650 | /// // register enums as dynamic types. |
651 | /// let my_plugin = self.obj(); |
652 | /// MyPluginEnum::on_implementation_load(my_plugin.as_ref()); |
653 | /// } |
654 | /// ... |
655 | /// } |
656 | /// ``` |
657 | /// |
658 | /// [`glib::Value`]: ../glib/value/struct.Value.html |
659 | /// [`TypePlugin`]: ../glib/gobject/type_plugin/struct.TypePlugin.html |
660 | /// [`TypeModule`]: ../glib/gobject/type_module/struct.TypeModule.html |
661 | /// [`TypePluginExt::unuse`]: ../glib/gobject/type_plugin/trait.TypePluginExt. |
662 | #[proc_macro_derive (Enum, attributes(enum_type, enum_dynamic, enum_value))] |
663 | pub fn enum_derive(input: TokenStream) -> TokenStream { |
664 | let input: DeriveInput = parse_macro_input!(input as DeriveInput); |
665 | enum_deriveTokenStream::impl_enum(&input) |
666 | .unwrap_or_else(op:syn::Error::into_compile_error) |
667 | .into() |
668 | } |
669 | |
670 | /// Attribute macro for defining flags using the `bitflags` crate. |
671 | /// This macro will also define a `GFlags::type_` function and |
672 | /// the [`glib::Value`] traits. |
673 | /// |
674 | /// The expected `GType` name has to be passed as macro attribute. |
675 | /// The name and nick of each flag can also be optionally defined. |
676 | /// Default name is the flag identifier in CamelCase and default nick |
677 | /// is the identifier in kebab-case. |
678 | /// Combined flags should not be registered with the `GType` system |
679 | /// and so need to be tagged with the `#[flags_value(skip)]` attribute. |
680 | /// |
681 | /// # Example |
682 | /// |
683 | /// ``` |
684 | /// use glib::prelude::*; |
685 | /// use glib::subclass::prelude::*; |
686 | /// |
687 | /// #[glib::flags(name = "MyFlags" )] |
688 | /// enum MyFlags { |
689 | /// #[flags_value(name = "Flag A" , nick = "nick-a" )] |
690 | /// A = 0b00000001, |
691 | /// #[flags_value(name = "Flag B" )] |
692 | /// B = 0b00000010, |
693 | /// #[flags_value(skip)] |
694 | /// AB = Self::A.bits() | Self::B.bits(), |
695 | /// C = 0b00000100, |
696 | /// } |
697 | /// ``` |
698 | /// |
699 | /// The flags can be registered as a dynamic type by setting the macro helper |
700 | /// attribute `flags_dynamic`: |
701 | /// ```ignore |
702 | /// use glib::prelude::*; |
703 | /// use glib::subclass::prelude::*; |
704 | /// |
705 | /// #[glib::flags(name = "MyFlags" )] |
706 | /// #[flags_dynamic] |
707 | /// enum MyFlags { |
708 | /// ... |
709 | /// } |
710 | /// ``` |
711 | /// |
712 | /// As a dynamic type, the flags must be explicitly registered when the system |
713 | /// loads the implementation (see [`TypePlugin`] and [`TypeModule`]). |
714 | /// Therefore, whereas the flags can be registered only once as a static type, |
715 | /// they can be registered several times as a dynamic type. |
716 | /// |
717 | /// The flags registered as a dynamic type are never unregistered. The system |
718 | /// calls [`TypePluginExt::unuse`] to unload the implementation. If the |
719 | /// [`TypePlugin`] subclass is a [`TypeModule`], the flags registered as a |
720 | /// dynamic type are marked as unloaded and must be registered again when the |
721 | /// module is reloaded. |
722 | /// |
723 | /// The macro helper attribute `flags_dynamic` provides two behaviors when |
724 | /// registering the flags as a dynamic type: |
725 | /// |
726 | /// - lazy registration: by default the flags are registered as a dynamic type |
727 | /// when the system loads the implementation (e.g. when the module is loaded). |
728 | /// Optionally setting `lazy_registration` to `true` postpones registration on |
729 | /// the first use (when `static_type()` is called for the first time): |
730 | /// |
731 | /// ```ignore |
732 | /// #[glib::flags(name = "MyFlags" )] |
733 | /// #[flags_dynamic(lazy_registration = true)] |
734 | /// enum MyFlags { |
735 | /// ... |
736 | /// } |
737 | /// ``` |
738 | /// |
739 | /// - registration within [`TypeModule`] subclass or within [`TypePlugin`] |
740 | /// subclass: the flags are usually registered as a dynamic type within a |
741 | /// [`TypeModule`] subclass: |
742 | /// |
743 | /// ```ignore |
744 | /// #[glib::flags(name = "MyModuleFlags" )] |
745 | /// #[flags_dynamic] |
746 | /// enum MyModuleFlags { |
747 | /// ... |
748 | /// } |
749 | /// ... |
750 | /// #[derive(Default)] |
751 | /// pub struct MyModule; |
752 | /// ... |
753 | /// impl TypeModuleImpl for MyModule { |
754 | /// fn load(&self) -> bool { |
755 | /// // registers flags as dynamic types. |
756 | /// let my_module = self.obj(); |
757 | /// let type_module: &glib::TypeModule = my_module.upcast_ref(); |
758 | /// MyModuleFlags::on_implementation_load(type_module) |
759 | /// } |
760 | /// ... |
761 | /// } |
762 | /// ``` |
763 | /// |
764 | /// Optionally setting `plugin_type` allows to register the flags as a dynamic |
765 | /// type within a [`TypePlugin`] subclass that is not a [`TypeModule`]: |
766 | /// ```ignore |
767 | /// #[glib::flags(name = "MyModuleFlags" )] |
768 | /// #[flags_dynamic(plugin_type = MyPlugin)] |
769 | /// enum MyModuleFlags { |
770 | /// ... |
771 | /// } |
772 | /// ... |
773 | /// #[derive(Default)] |
774 | /// pub struct MyPlugin; |
775 | /// ... |
776 | /// impl TypePluginImpl for MyPlugin { |
777 | /// fn use_plugin(&self) { |
778 | /// // register flags as dynamic types. |
779 | /// let my_plugin = self.obj(); |
780 | /// MyPluginFlags::on_implementation_load(my_plugin.as_ref()); |
781 | /// } |
782 | /// ... |
783 | /// } |
784 | /// ``` |
785 | /// |
786 | /// [`glib::Value`]: ../glib/value/struct.Value.html |
787 | /// [`TypePlugin`]: ../glib/gobject/type_plugin/struct.TypePlugin.html |
788 | /// [`TypeModule`]: ../glib/gobject/type_module/struct.TypeModule.html |
789 | /// [`TypePluginExt::unuse`]: ../glib/gobject/type_plugin/trait.TypePluginExt. |
790 | #[proc_macro_attribute ] |
791 | pub fn flags (attr: TokenStream, item: TokenStream) -> TokenStream { |
792 | let mut name = NestedMetaItem::<syn::LitStr>::new("name" ) |
793 | .required() |
794 | .value_required(); |
795 | let mut allow_name_conflict_attr = |
796 | NestedMetaItem::<syn::LitBool>::new("allow_name_conflict" ).value_optional(); |
797 | |
798 | if let Err(e) = parse_nested_meta_items_from_stream( |
799 | attr.into(), |
800 | &mut [&mut name, &mut allow_name_conflict_attr], |
801 | ) { |
802 | return e.to_compile_error().into(); |
803 | } |
804 | |
805 | let allow_name_conflict = allow_name_conflict_attr.found |
806 | || allow_name_conflict_attr |
807 | .value |
808 | .map(|b| b.value()) |
809 | .unwrap_or(false); |
810 | |
811 | let attr_meta = AttrInput { |
812 | enum_name: name.value.unwrap(), |
813 | allow_name_conflict, |
814 | }; |
815 | |
816 | syn::parse::<syn::ItemEnum>(item) |
817 | .map_err(|_| syn::Error::new(Span::call_site(), flags_attribute::WRONG_PLACE_MSG)) |
818 | .map(|mut input| flags_attribute::impl_flags(attr_meta, &mut input)) |
819 | .unwrap_or_else(syn::Error::into_compile_error) |
820 | .into() |
821 | } |
822 | |
823 | /// Derive macro for defining a GLib error domain and its associated |
824 | /// [`ErrorDomain`] trait. |
825 | /// |
826 | /// # Example |
827 | /// |
828 | /// ``` |
829 | /// use glib::prelude::*; |
830 | /// use glib::subclass::prelude::*; |
831 | /// |
832 | /// #[derive(Debug, Copy, Clone, glib::ErrorDomain)] |
833 | /// #[error_domain(name = "ex-foo" )] |
834 | /// enum Foo { |
835 | /// Blah, |
836 | /// Baaz, |
837 | /// } |
838 | /// ``` |
839 | /// |
840 | /// [`ErrorDomain`]: ../glib/error/trait.ErrorDomain.html |
841 | #[proc_macro_derive (ErrorDomain, attributes(error_domain))] |
842 | pub fn error_domain_derive(input: TokenStream) -> TokenStream { |
843 | let input: DeriveInput = parse_macro_input!(input as DeriveInput); |
844 | error_domain_deriveTokenStream::impl_error_domain(&input) |
845 | .unwrap_or_else(op:syn::Error::into_compile_error) |
846 | .into() |
847 | } |
848 | |
849 | /// Derive macro for defining a [`BoxedType`]`::type_` function and |
850 | /// the [`glib::Value`] traits. Optionally, the type can be marked as |
851 | /// `nullable` to get an implementation of `glib::value::ToValueOptional`. |
852 | /// |
853 | /// # Example |
854 | /// |
855 | /// ``` |
856 | /// use glib::prelude::*; |
857 | /// use glib::subclass::prelude::*; |
858 | /// |
859 | /// #[derive(Clone, Debug, PartialEq, Eq, glib::Boxed)] |
860 | /// #[boxed_type(name = "MyBoxed" )] |
861 | /// struct MyBoxed(String); |
862 | /// |
863 | /// #[derive(Clone, Debug, PartialEq, Eq, glib::Boxed)] |
864 | /// #[boxed_type(name = "MyNullableBoxed" , nullable)] |
865 | /// struct MyNullableBoxed(String); |
866 | /// ``` |
867 | /// |
868 | /// [`BoxedType`]: ../glib/subclass/boxed/trait.BoxedType.html |
869 | /// [`glib::Value`]: ../glib/value/struct.Value.html |
870 | #[proc_macro_derive (Boxed, attributes(boxed_type))] |
871 | pub fn boxed_derive(input: TokenStream) -> TokenStream { |
872 | let input: DeriveInput = parse_macro_input!(input as DeriveInput); |
873 | boxed_deriveTokenStream::impl_boxed(&input) |
874 | .unwrap_or_else(op:syn::Error::into_compile_error) |
875 | .into() |
876 | } |
877 | |
878 | /// Derive macro for defining a [`SharedType`]`::get_type` function and |
879 | /// the [`glib::Value`] traits. Optionally, the type can be marked as |
880 | /// `nullable` to get an implementation of `glib::value::ToValueOptional`. |
881 | /// |
882 | /// # Example |
883 | /// |
884 | /// ``` |
885 | /// use glib::prelude::*; |
886 | /// use glib::subclass::prelude::*; |
887 | /// |
888 | /// #[derive(Clone, Debug, PartialEq, Eq)] |
889 | /// struct MySharedInner { |
890 | /// foo: String, |
891 | /// } |
892 | /// |
893 | /// #[derive(Clone, Debug, PartialEq, Eq, glib::SharedBoxed)] |
894 | /// #[shared_boxed_type(name = "MySharedBoxed" )] |
895 | /// struct MySharedBoxed(std::sync::Arc<MySharedInner>); |
896 | /// |
897 | /// #[derive(Clone, Debug, PartialEq, Eq, glib::SharedBoxed)] |
898 | /// #[shared_boxed_type(name = "MyNullableSharedBoxed" , nullable)] |
899 | /// struct MyNullableSharedBoxed(std::sync::Arc<MySharedInner>); |
900 | /// ``` |
901 | /// |
902 | /// [`SharedType`]: ../glib/subclass/shared/trait.SharedType.html |
903 | /// [`glib::Value`]: ../glib/value/struct.Value.html |
904 | #[proc_macro_derive (SharedBoxed, attributes(shared_boxed_type))] |
905 | pub fn shared_boxed_derive(input: TokenStream) -> TokenStream { |
906 | let input: DeriveInput = parse_macro_input!(input as DeriveInput); |
907 | shared_boxed_deriveTokenStream::impl_shared_boxed(&input) |
908 | .unwrap_or_else(op:syn::Error::into_compile_error) |
909 | .into() |
910 | } |
911 | |
912 | /// Macro for boilerplate of [`ObjectSubclass`] implementations. |
913 | /// |
914 | /// This adds implementations for the `type_data()` and `type_()` methods, |
915 | /// which should probably never be defined differently. |
916 | /// |
917 | /// It provides default values for the `Instance`, `Class`, and `Interfaces` |
918 | /// type parameters. If these are present, the macro will use the provided value |
919 | /// instead of the default. |
920 | /// |
921 | /// Usually the defaults for `Instance` and `Class` will work. `Interfaces` is |
922 | /// necessary for types that implement interfaces. |
923 | /// |
924 | /// ```ignore |
925 | /// type Instance = glib::subclass::basic::InstanceStruct<Self>; |
926 | /// type Class = glib::subclass::basic::ClassStruct<Self>; |
927 | /// type Interfaces = (); |
928 | /// ``` |
929 | /// |
930 | /// If no `new()` or `with_class()` method is provided, the macro adds a `new()` |
931 | /// implementation calling `Default::default()`. So the type needs to implement |
932 | /// `Default`, or this should be overridden. |
933 | /// |
934 | /// ```ignore |
935 | /// fn new() -> Self { |
936 | /// Default::default() |
937 | /// } |
938 | /// ``` |
939 | /// |
940 | /// An object subclass can be registered as a dynamic type by setting the macro |
941 | /// helper attribute `object_class_dynamic`: |
942 | /// |
943 | /// ```ignore |
944 | /// #[derive(Default)] |
945 | /// pub struct MyType; |
946 | /// |
947 | /// #[glib::object_subclass] |
948 | /// #[object_subclass_dynamic] |
949 | /// impl ObjectSubclass for MyType { ... } |
950 | /// ``` |
951 | /// |
952 | /// As a dynamic type, an object subclass must be explicitly registered when |
953 | /// the system loads the implementation (see [`TypePlugin`] and [`TypeModule`]). |
954 | /// Therefore, whereas an object subclass can be registered only once as a |
955 | /// static type, it can be registered several times as a dynamic type. |
956 | /// |
957 | /// An object subclass registered as a dynamic type is never unregistered. The |
958 | /// system calls [`TypePluginExt::unuse`] to unload the implementation. If the |
959 | /// [`TypePlugin`] subclass is a [`TypeModule`], the object subclass registered |
960 | /// as a dynamic type is marked as unloaded and must be registered again when |
961 | /// the module is reloaded. |
962 | /// |
963 | /// The macro helper attribute `object_class_dynamic` provides two behaviors |
964 | /// when registering an object subclass as a dynamic type: |
965 | /// |
966 | /// - lazy registration: by default an object subclass is registered as a |
967 | /// dynamic type when the system loads the implementation (e.g. when the module |
968 | /// is loaded). Optionally setting `lazy_registration` to `true` postpones |
969 | /// registration on the first use (when `static_type()` is called for the first |
970 | /// time): |
971 | /// |
972 | /// ```ignore |
973 | /// #[derive(Default)] |
974 | /// pub struct MyType; |
975 | /// |
976 | /// #[glib::object_subclass] |
977 | /// #[object_subclass_dynamic(lazy_registration = true)] |
978 | /// impl ObjectSubclass for MyType { ... } |
979 | /// ``` |
980 | /// |
981 | /// - registration within [`TypeModule`] subclass or within [`TypePlugin`] |
982 | /// subclass: an object subclass is usually registered as a dynamic type within |
983 | /// a [`TypeModule`] subclass: |
984 | /// |
985 | /// ```ignore |
986 | /// #[derive(Default)] |
987 | /// pub struct MyModuleType; |
988 | /// |
989 | /// #[glib::object_subclass] |
990 | /// #[object_subclass_dynamic] |
991 | /// impl ObjectSubclass for MyModuleType { ... } |
992 | /// ... |
993 | /// #[derive(Default)] |
994 | /// pub struct MyModule; |
995 | /// ... |
996 | /// impl TypeModuleImpl for MyModule { |
997 | /// fn load(&self) -> bool { |
998 | /// // registers object subclasses as dynamic types. |
999 | /// let my_module = self.obj(); |
1000 | /// let type_module: &glib::TypeModule = my_module.upcast_ref(); |
1001 | /// MyModuleType::on_implementation_load(type_module) |
1002 | /// } |
1003 | /// ... |
1004 | /// } |
1005 | /// ``` |
1006 | /// |
1007 | /// Optionally setting `plugin_type` allows to register an object subclass as a |
1008 | /// dynamic type within a [`TypePlugin`] subclass that is not a [`TypeModule`]: |
1009 | /// |
1010 | /// ```ignore |
1011 | /// #[derive(Default)] |
1012 | /// pub struct MyPluginType; |
1013 | /// |
1014 | /// #[glib::object_subclass] |
1015 | /// #[object_subclass_dynamic(plugin_type = MyPlugin)] |
1016 | /// impl ObjectSubclass for MyPluginType { ... } |
1017 | /// ... |
1018 | /// #[derive(Default)] |
1019 | /// pub struct MyPlugin; |
1020 | /// ... |
1021 | /// impl TypePluginImpl for MyPlugin { |
1022 | /// fn use_plugin(&self) { |
1023 | /// // register object subclasses as dynamic types. |
1024 | /// let my_plugin = self.obj(); |
1025 | /// MyPluginType::on_implementation_load(my_plugin.as_ref()); |
1026 | /// } |
1027 | /// ... |
1028 | /// } |
1029 | /// ``` |
1030 | /// |
1031 | /// [`ObjectSubclass`]: ../glib/subclass/types/trait.ObjectSubclass.html |
1032 | /// [`TypePlugin`]: ../glib/gobject/type_plugin/struct.TypePlugin.html |
1033 | /// [`TypeModule`]: ../glib/gobject/type_module/struct.TypeModule.html |
1034 | /// [`TypePluginExt::unuse`]: ../glib/gobject/type_plugin/trait.TypePluginExt.html#method.unuse |
1035 | #[proc_macro_attribute ] |
1036 | pub fn object_subclass (_attr: TokenStream, item: TokenStream) -> TokenStream { |
1037 | let input: Input = parse_macro_input!(item with object_impl_attributes::Input::parse_subclass); |
1038 | object_impl_attributes::subclass::impl_object_subclass(input).into() |
1039 | } |
1040 | |
1041 | /// Macro for boilerplate of [`ObjectInterface`] implementations. |
1042 | /// |
1043 | /// This adds implementations for the `get_type()` method, which should probably never be defined |
1044 | /// differently. |
1045 | /// |
1046 | /// It provides default values for the `Prerequisites` type parameter. If this is present, the macro |
1047 | /// will use the provided value instead of the default. |
1048 | /// |
1049 | /// `Prerequisites` are interfaces for types that require a specific base class or interfaces. |
1050 | /// |
1051 | /// ```ignore |
1052 | /// type Prerequisites = (); |
1053 | /// ``` |
1054 | /// |
1055 | /// An object interface can be registered as a dynamic type by setting the |
1056 | /// macro helper attribute `object_interface_dynamic`: |
1057 | /// ```ignore |
1058 | /// pub struct MyInterface { |
1059 | /// parent: glib::gobject_ffi::GTypeInterface, |
1060 | /// } |
1061 | /// #[glib::object_interface] |
1062 | /// #[object_interface_dynamic] |
1063 | /// unsafe impl ObjectInterface for MyInterface { ... } |
1064 | /// ``` |
1065 | /// |
1066 | /// As a dynamic type, an object interface must be explicitly registered when |
1067 | /// the system loads the implementation (see [`TypePlugin`] and [`TypeModule`]). |
1068 | /// Therefore, whereas an object interface can be registered only once as a |
1069 | /// static type, it can be registered several times as a dynamic type. |
1070 | /// |
1071 | /// An object interface registered as a dynamic type is never unregistered. The |
1072 | /// system calls [`TypePluginExt::unuse`] to unload the implementation. If the |
1073 | /// [`TypePlugin`] subclass is a [`TypeModule`], the object interface |
1074 | /// registered as a dynamic type is marked as unloaded and must be registered |
1075 | /// again when the module is reloaded. |
1076 | /// |
1077 | /// The macro helper attribute `object_interface_dynamic` provides two |
1078 | /// behaviors when registering an object interface as a dynamic type: |
1079 | /// |
1080 | /// - lazy registration: by default an object interface is registered as a |
1081 | /// dynamic type when the system loads the implementation (e.g. when the module |
1082 | /// is loaded). Optionally setting `lazy_registration` to `true` postpones |
1083 | /// registration on the first use (when `type_()` is called for the first time): |
1084 | /// |
1085 | /// ```ignore |
1086 | /// pub struct MyInterface { |
1087 | /// parent: glib::gobject_ffi::GTypeInterface, |
1088 | /// } |
1089 | /// #[glib::object_interface] |
1090 | /// #[object_interface_dynamic(lazy_registration = true)] |
1091 | /// unsafe impl ObjectInterface for MyInterface { ... } |
1092 | /// ``` |
1093 | /// |
1094 | /// - registration within [`TypeModule`] subclass or within [`TypePlugin`] |
1095 | /// subclass: an object interface is usually registered as a dynamic type |
1096 | /// within a [`TypeModule`] subclass: |
1097 | /// |
1098 | /// ```ignore |
1099 | /// pub struct MyModuleInterface { |
1100 | /// parent: glib::gobject_ffi::GTypeInterface, |
1101 | /// } |
1102 | /// #[glib::object_interface] |
1103 | /// #[object_interface_dynamic] |
1104 | /// unsafe impl ObjectInterface for MyModuleInterface { ... } |
1105 | /// ... |
1106 | /// #[derive(Default)] |
1107 | /// pub struct MyModule; |
1108 | /// ... |
1109 | /// impl TypeModuleImpl for MyModule { |
1110 | /// fn load(&self) -> bool { |
1111 | /// // registers object interfaces as dynamic types. |
1112 | /// let my_module = self.obj(); |
1113 | /// let type_module: &glib::TypeModule = my_module.upcast_ref(); |
1114 | /// MyModuleInterface::on_implementation_load(type_module) |
1115 | /// } |
1116 | /// ... |
1117 | /// } |
1118 | /// ``` |
1119 | /// |
1120 | /// Optionally setting `plugin_type` allows to register an object interface as |
1121 | /// a dynamic type within a [`TypePlugin`] subclass that is not a [`TypeModule`]: |
1122 | /// |
1123 | /// ```ignore |
1124 | /// pub struct MyPluginInterface { |
1125 | /// parent: glib::gobject_ffi::GTypeInterface, |
1126 | /// } |
1127 | /// #[glib::object_interface] |
1128 | /// #[object_interface_dynamic(plugin_type = MyPlugin)] |
1129 | /// unsafe impl ObjectInterface for MyPluginInterface { ... } |
1130 | /// ... |
1131 | /// #[derive(Default)] |
1132 | /// pub struct MyPlugin; |
1133 | /// ... |
1134 | /// impl TypePluginImpl for MyPlugin { |
1135 | /// fn use_plugin(&self) { |
1136 | /// // register object interfaces as dynamic types. |
1137 | /// let my_plugin = self.obj(); |
1138 | /// MyPluginInterface::on_implementation_load(my_plugin.as_ref()); |
1139 | /// } |
1140 | /// ... |
1141 | /// } |
1142 | /// ``` |
1143 | /// |
1144 | /// [`ObjectInterface`]: ../glib/subclass/interface/trait.ObjectInterface.html |
1145 | /// [`TypePlugin`]: ../glib/gobject/type_plugin/struct.TypePlugin.html |
1146 | /// [`TypeModule`]: ../glib/gobject/type_module/struct.TypeModule.html |
1147 | /// [`TypePluginExt::unuse`]: ../glib/gobject/type_plugin/trait.TypePluginExt.html#method.unuse/// |
1148 | #[proc_macro_attribute ] |
1149 | pub fn object_interface (_attr: TokenStream, item: TokenStream) -> TokenStream { |
1150 | let input: Input = parse_macro_input!(item with object_impl_attributes::Input::parse_interface); |
1151 | object_impl_attributes::interface::impl_object_interface(input).into() |
1152 | } |
1153 | |
1154 | /// Macro for deriving implementations of [`glib::clone::Downgrade`] and |
1155 | /// [`glib::clone::Upgrade`] traits and a weak type. |
1156 | /// |
1157 | /// # Examples |
1158 | /// |
1159 | /// ## New Type Idiom |
1160 | /// |
1161 | /// ```rust,ignore |
1162 | /// #[derive(glib::Downgrade)] |
1163 | /// pub struct FancyLabel(gtk::Label); |
1164 | /// |
1165 | /// impl FancyLabel { |
1166 | /// pub fn new(label: &str) -> Self { |
1167 | /// Self(gtk::LabelBuilder::new().label(label).build()) |
1168 | /// } |
1169 | /// |
1170 | /// pub fn flip(&self) { |
1171 | /// self.0.set_angle(180.0 - self.0.angle()); |
1172 | /// } |
1173 | /// } |
1174 | /// |
1175 | /// let fancy_label = FancyLabel::new("Look at me!" ); |
1176 | /// let button = gtk::ButtonBuilder::new().label("Click me!" ).build(); |
1177 | /// button.connect_clicked( |
1178 | /// clone!( |
1179 | /// #[weak] |
1180 | /// fancy_label, |
1181 | /// move || fancy_label.flip(), |
1182 | /// ), |
1183 | /// ); |
1184 | /// ``` |
1185 | /// |
1186 | /// ## Generic New Type |
1187 | /// |
1188 | /// ```rust,ignore |
1189 | /// #[derive(glib::Downgrade)] |
1190 | /// pub struct TypedEntry<T>(gtk::Entry, std::marker::PhantomData<T>); |
1191 | /// |
1192 | /// impl<T: ToString + FromStr> for TypedEntry<T> { |
1193 | /// // ... |
1194 | /// } |
1195 | /// ``` |
1196 | /// |
1197 | /// ## Structures and Enums |
1198 | /// |
1199 | /// ```rust,ignore |
1200 | /// #[derive(Clone, glib::Downgrade)] |
1201 | /// pub struct ControlButtons { |
1202 | /// pub up: gtk::Button, |
1203 | /// pub down: gtk::Button, |
1204 | /// pub left: gtk::Button, |
1205 | /// pub right: gtk::Button, |
1206 | /// } |
1207 | /// |
1208 | /// #[derive(Clone, glib::Downgrade)] |
1209 | /// pub enum DirectionButton { |
1210 | /// Left(gtk::Button), |
1211 | /// Right(gtk::Button), |
1212 | /// Up(gtk::Button), |
1213 | /// Down(gtk::Button), |
1214 | /// } |
1215 | /// ``` |
1216 | /// |
1217 | /// [`glib::clone::Downgrade`]: ../glib/clone/trait.Downgrade.html |
1218 | /// [`glib::clone::Upgrade`]: ../glib/clone/trait.Upgrade.html |
1219 | #[proc_macro_derive (Downgrade)] |
1220 | pub fn downgrade(input: TokenStream) -> TokenStream { |
1221 | let input: DeriveInput = parse_macro_input!(input as DeriveInput); |
1222 | downgrade_derive::impl_downgrade(input) |
1223 | } |
1224 | |
1225 | /// Derive macro for serializing/deserializing custom structs/enums as [`glib::Variant`]s. |
1226 | /// |
1227 | /// # Example |
1228 | /// |
1229 | /// ``` |
1230 | /// use glib::prelude::*; |
1231 | /// |
1232 | /// #[derive(Debug, PartialEq, Eq, glib::Variant)] |
1233 | /// struct Foo { |
1234 | /// some_string: String, |
1235 | /// some_int: i32, |
1236 | /// } |
1237 | /// |
1238 | /// let v = Foo { some_string: String::from("bar" ), some_int: 1 }; |
1239 | /// let var = v.to_variant(); |
1240 | /// assert_eq!(var.get::<Foo>(), Some(v)); |
1241 | /// ``` |
1242 | /// |
1243 | /// When storing `Vec`s of fixed size types it is a good idea to wrap these in |
1244 | /// `glib::FixedSizeVariantArray` as serialization/deserialization will be more efficient. |
1245 | /// |
1246 | /// # Example |
1247 | /// |
1248 | /// ``` |
1249 | /// use glib::prelude::*; |
1250 | /// |
1251 | /// #[derive(Debug, PartialEq, Eq, glib::Variant)] |
1252 | /// struct Foo { |
1253 | /// some_vec: glib::FixedSizeVariantArray<Vec<u32>, u32>, |
1254 | /// some_int: i32, |
1255 | /// } |
1256 | /// |
1257 | /// let v = Foo { some_vec: vec![1u32, 2u32].into(), some_int: 1 }; |
1258 | /// let var = v.to_variant(); |
1259 | /// assert_eq!(var.get::<Foo>(), Some(v)); |
1260 | /// ``` |
1261 | /// |
1262 | /// Enums are serialized as a tuple `(sv)` with the first value as a [kebab case] string for the |
1263 | /// enum variant, or just `s` if this is a C-style enum. Some additional attributes are supported |
1264 | /// for enums: |
1265 | /// - `#[variant_enum(repr)]` to serialize the enum variant as an integer type instead of `s`. The |
1266 | /// `#[repr]` attribute must also be specified on the enum with a sized integer type, and the type |
1267 | /// must implement `Copy`. |
1268 | /// - `#[variant_enum(enum)]` uses [`EnumClass`] to serialize/deserialize as nicks. Meant for use |
1269 | /// with [`glib::Enum`](Enum). |
1270 | /// - `#[variant_enum(flags)]` uses [`FlagsClass`] to serialize/deserialize as nicks. Meant for use |
1271 | /// with [`glib::flags`](macro@flags). |
1272 | /// - `#[variant_enum(enum, repr)]` serializes as `i32`. Meant for use with [`glib::Enum`](Enum). |
1273 | /// The type must also implement `Copy`. |
1274 | /// - `#[variant_enum(flags, repr)]` serializes as `u32`. Meant for use with |
1275 | /// [`glib::flags`](macro@flags). |
1276 | /// |
1277 | /// # Example |
1278 | /// |
1279 | /// ``` |
1280 | /// use glib::prelude::*; |
1281 | /// |
1282 | /// #[derive(Debug, PartialEq, Eq, glib::Variant)] |
1283 | /// enum Foo { |
1284 | /// MyA, |
1285 | /// MyB(i32), |
1286 | /// MyC { some_int: u32, some_string: String } |
1287 | /// } |
1288 | /// |
1289 | /// let v = Foo::MyC { some_int: 1, some_string: String::from("bar" ) }; |
1290 | /// let var = v.to_variant(); |
1291 | /// assert_eq!(var.child_value(0).str(), Some("my-c" )); |
1292 | /// assert_eq!(var.get::<Foo>(), Some(v)); |
1293 | /// |
1294 | /// #[derive(Debug, Copy, Clone, PartialEq, Eq, glib::Variant)] |
1295 | /// #[variant_enum(repr)] |
1296 | /// #[repr(u8)] |
1297 | /// enum Bar { |
1298 | /// A, |
1299 | /// B = 3, |
1300 | /// C = 7 |
1301 | /// } |
1302 | /// |
1303 | /// let v = Bar::B; |
1304 | /// let var = v.to_variant(); |
1305 | /// assert_eq!(var.get::<u8>(), Some(3)); |
1306 | /// assert_eq!(var.get::<Bar>(), Some(v)); |
1307 | /// |
1308 | /// #[derive(Debug, Copy, Clone, PartialEq, Eq, glib::Enum, glib::Variant)] |
1309 | /// #[variant_enum(enum)] |
1310 | /// #[enum_type(name = "MyEnum" )] |
1311 | /// enum MyEnum { |
1312 | /// Val, |
1313 | /// #[enum_value(name = "My Val" )] |
1314 | /// ValWithCustomName, |
1315 | /// #[enum_value(name = "My Other Val" , nick = "other" )] |
1316 | /// ValWithCustomNameAndNick, |
1317 | /// } |
1318 | /// |
1319 | /// let v = MyEnum::ValWithCustomNameAndNick; |
1320 | /// let var = v.to_variant(); |
1321 | /// assert_eq!(var.str(), Some("other" )); |
1322 | /// assert_eq!(var.get::<MyEnum>(), Some(v)); |
1323 | /// ``` |
1324 | /// |
1325 | /// [`glib::Variant`]: ../glib/variant/struct.Variant.html |
1326 | /// [`EnumClass`]: ../glib/struct.EnumClass.html |
1327 | /// [`FlagsClass`]: ../glib/struct.FlagsClass.html |
1328 | /// [kebab case]: https://docs.rs/heck/0.4.0/heck/trait.ToKebabCase.html |
1329 | #[proc_macro_derive (Variant, attributes(variant_enum))] |
1330 | pub fn variant_derive(input: TokenStream) -> TokenStream { |
1331 | let input: DeriveInput = parse_macro_input!(input as DeriveInput); |
1332 | variant_deriveTokenStream::impl_variant(input) |
1333 | .unwrap_or_else(op:syn::Error::into_compile_error) |
1334 | .into() |
1335 | } |
1336 | #[proc_macro ] |
1337 | pub fn cstr_bytes(item: TokenStream) -> TokenStream { |
1338 | syn::parse::Parser::parse2( |
1339 | |stream: syn::parse::ParseStream<'_>| { |
1340 | let literal = stream.parse::<syn::LitStr>()?; |
1341 | stream.parse::<syn::parse::Nothing>()?; |
1342 | let bytes = std::ffi::CString::new(literal.value()) |
1343 | .map_err(|e| syn::Error::new_spanned(&literal, format!(" {e}" )))? |
1344 | .into_bytes_with_nul(); |
1345 | let bytes = proc_macro2::Literal::byte_string(&bytes); |
1346 | Ok(quote::quote! { #bytes }.into()) |
1347 | }, |
1348 | item.into(), |
1349 | ) |
1350 | .unwrap_or_else(|e: Error| e.into_compile_error().into()) |
1351 | } |
1352 | |
1353 | /// This macro enables you to derive object properties in a quick way. |
1354 | /// |
1355 | /// # Supported `#[property]` attributes |
1356 | /// | Attribute | Description | Default | Example | |
1357 | /// | --- | --- | --- | --- | |
1358 | /// | `name = "literal"` | The name of the property | field ident where `_` (leading and trailing `_` are trimmed) is replaced into `-` | `#[property(name = "prop-name")]` | |
1359 | /// | `type = expr` | The type of the property | inferred | `#[property(type = i32)]` | |
1360 | /// | `get [= expr]` | Specify that the property is readable and use [`PropertyGet::get`] [or optionally set a custom internal getter] | | `#[property(get)]`, `#[property(get = get_prop)]`, or `[property(get = \|_\| 2)]` | |
1361 | /// | `set [= expr]` | Specify that the property is writable and use [`PropertySet::set`] [or optionally set a custom internal setter] | | `#[property(set)]`, `#[property(set = set_prop)]`, or `[property(set = \|_, val\| {})]` | |
1362 | /// | `override_class = expr` | The type of class of which to override the property from | | `#[property(override_class = SomeClass)]` | |
1363 | /// | `override_interface = expr` | The type of interface of which to override the property from | | `#[property(override_interface = SomeInterface)]` | |
1364 | /// | `nullable` | Whether to use `Option<T>` in the generated setter method | | `#[property(nullable)]` | |
1365 | /// | `member = ident` | Field of the nested type where property is retrieved and set | | `#[property(member = author)]` | |
1366 | /// | `construct` | Specify that the property is construct property. Ensures that the property is always set during construction (if not explicitly then the default value is used). The use of a custom internal setter is supported. | | `#[property(get, construct)]` or `#[property(get, set = set_prop, construct)]` | |
1367 | /// | `construct_only` | Specify that the property is construct only. This will not generate a public setter and only allow the property to be set during object construction. The use of a custom internal setter is supported. | | `#[property(get, construct_only)]` or `#[property(get, set = set_prop, construct_only)]` | |
1368 | /// | `builder(<required-params>)[.ident]*` | Used to input required params or add optional Param Spec builder fields | | `#[property(builder(SomeEnum::default()))]`, `#[builder().default_value(1).minimum(0).maximum(5)]`, etc. | |
1369 | /// | `default` | Sets the `default_value` field of the Param Spec builder | | `#[property(default = 1)]` | |
1370 | /// | `<optional-pspec-builder-fields> = expr` | Used to add optional Param Spec builder fields | | `#[property(minimum = 0)` , `#[property(minimum = 0, maximum = 1)]`, etc. | |
1371 | /// | `<optional-pspec-builder-fields>` | Used to add optional Param Spec builder fields | | `#[property(explicit_notify)]` , `#[property(construct_only)]`, etc. | |
1372 | /// |
1373 | /// ## Using Rust keywords as property names |
1374 | /// You might hit a roadblock when declaring properties with this macro because you want to use a name that happens to be a Rust keyword. This may happen with names like `loop`, which is a pretty common name when creating things like animation handlers. |
1375 | /// To use those names, you can make use of the raw identifier feature of Rust. Simply prefix the identifier name with `r#` in the struct declaration. Internally, those `r#`s are stripped so you can use its expected name in [`ObjectExt::property`] or within GtkBuilder template files. |
1376 | /// |
1377 | /// # Generated methods |
1378 | /// The following methods are generated on the wrapper type specified on `#[properties(wrapper_type = ...)]`: |
1379 | /// * `$property()`, when the property is readable |
1380 | /// * `set_$property()`, when the property is writable and not construct-only |
1381 | /// * `connect_$property_notify()` |
1382 | /// * `notify_$property()` |
1383 | /// |
1384 | /// ## Extension trait |
1385 | /// You can choose to move the method definitions to a trait by using `#[properties(wrapper_type = super::MyType, ext_trait = MyTypePropertiesExt)]`. |
1386 | /// The trait name is optional, and defaults to `MyTypePropertiesExt`, where `MyType` is extracted from the wrapper type. |
1387 | /// Note: The trait is defined in the same module where the `#[derive(Properties)]` call happens, and is implemented on the wrapper type. |
1388 | /// |
1389 | /// Notice: You can't reimplement the generated methods on the wrapper type, unless you move them to a trait. |
1390 | /// You can change the behavior of the generated getter/setter methods by using a custom internal getter/setter. |
1391 | /// |
1392 | /// # Internal getters and setters |
1393 | /// By default, they are generated for you. However, you can use a custom getter/setter |
1394 | /// by assigning an expression to `get`/`set` `#[property]` attributes: `#[property(get = |_| 2, set)]` or `#[property(get, set = custom_setter_func)]`. |
1395 | /// |
1396 | /// # Supported types |
1397 | /// Every type implementing the trait [`Property`] is supported. |
1398 | /// The type `Option<T>` is supported as a property only if `Option<T>` implements [`ToValueOptional`]. |
1399 | /// Optional types also require the `nullable` attribute: without it, the generated setter on the wrapper type |
1400 | /// will take `T` instead of `Option<T>`, preventing the user from ever calling the setter with a `None` value. |
1401 | /// |
1402 | /// ## Adding support for custom types |
1403 | /// ### Types wrapping an existing <code>T: [ToValue] + [HasParamSpec]</code> |
1404 | /// If you have declared a newtype as |
1405 | /// ```rust |
1406 | /// struct MyInt(i32); |
1407 | /// ``` |
1408 | /// you can use it as a property by deriving [`ValueDelegate`]. |
1409 | /// |
1410 | /// ### Types with inner mutability |
1411 | /// The trait [`Property`] must be implemented. |
1412 | /// The traits [`PropertyGet`] and [`PropertySet`] should be implemented to enable the Properties macro |
1413 | /// to generate a default internal getter/setter. |
1414 | /// If possible, implementing [`PropertySetNested`] is preferred over `PropertySet`, because it |
1415 | /// enables this macro to access the contained type and provide access to its fields, |
1416 | /// using the `member = $structfield` syntax. |
1417 | /// |
1418 | /// ### Types without [`HasParamSpec`][HasParamSpec] |
1419 | /// If you have encountered a type <code>T: [ToValue]</code>, inside the gtk-rs crate, which doesn't implement [`HasParamSpec`][HasParamSpec], |
1420 | /// then it's a bug and you should report it. |
1421 | /// If you need to support a `ToValue` type with a [`ParamSpec`] not provided by gtk-rs, then you need to |
1422 | /// implement `HasParamSpec` on that type. |
1423 | /// |
1424 | /// # Example |
1425 | /// ``` |
1426 | /// use std::cell::RefCell; |
1427 | /// use glib::prelude::*; |
1428 | /// use glib::subclass::prelude::*; |
1429 | /// use glib_macros::Properties; |
1430 | /// |
1431 | /// #[derive(Default, Clone)] |
1432 | /// struct Author { |
1433 | /// name: String, |
1434 | /// nick: String, |
1435 | /// } |
1436 | /// |
1437 | /// pub mod imp { |
1438 | /// use std::rc::Rc; |
1439 | /// |
1440 | /// use super::*; |
1441 | /// |
1442 | /// #[derive(Properties, Default)] |
1443 | /// #[properties(wrapper_type = super::Foo)] |
1444 | /// pub struct Foo { |
1445 | /// #[property(get, set = Self::set_fizz)] |
1446 | /// fizz: RefCell<String>, |
1447 | /// #[property(name = "author-name" , get, set, type = String, member = name)] |
1448 | /// #[property(name = "author-nick" , get, set, type = String, member = nick)] |
1449 | /// author: RefCell<Author>, |
1450 | /// #[property(get, set, explicit_notify, lax_validation)] |
1451 | /// custom_flags: RefCell<String>, |
1452 | /// #[property(get, set, minimum = 0, maximum = 3)] |
1453 | /// numeric_builder: RefCell<u32>, |
1454 | /// #[property(get, set, builder('c' ))] |
1455 | /// builder_with_required_param: RefCell<char>, |
1456 | /// #[property(get, set, nullable)] |
1457 | /// optional: RefCell<Option<String>>, |
1458 | /// #[property(get, set)] |
1459 | /// smart_pointer: Rc<RefCell<String>>, |
1460 | /// } |
1461 | /// |
1462 | /// #[glib::derived_properties] |
1463 | /// impl ObjectImpl for Foo {} |
1464 | /// |
1465 | /// #[glib::object_subclass] |
1466 | /// impl ObjectSubclass for Foo { |
1467 | /// const NAME: &'static str = "MyFoo" ; |
1468 | /// type Type = super::Foo; |
1469 | /// } |
1470 | /// |
1471 | /// impl Foo { |
1472 | /// fn set_fizz(&self, value: String) { |
1473 | /// *self.fizz.borrow_mut() = format!("custom set: {}" , value); |
1474 | /// } |
1475 | /// } |
1476 | /// } |
1477 | /// |
1478 | /// glib::wrapper! { |
1479 | /// pub struct Foo(ObjectSubclass<imp::Foo>); |
1480 | /// } |
1481 | /// |
1482 | /// fn main() { |
1483 | /// let myfoo: Foo = glib::object::Object::new(); |
1484 | /// |
1485 | /// myfoo.set_fizz("test value" ); |
1486 | /// assert_eq!(myfoo.fizz(), "custom set: test value" .to_string()); |
1487 | /// } |
1488 | /// ``` |
1489 | /// |
1490 | /// [`Property`]: ../glib/property/trait.Property.html |
1491 | /// [`PropertyGet`]: ../glib/property/trait.PropertyGet.html |
1492 | /// [`PropertyGet::get`]: ../glib/property/trait.PropertyGet.html#tymethod.get |
1493 | /// [`PropertySet`]: ../glib/property/trait.PropertySet.html |
1494 | /// [`PropertySet::set`]: ../glib/property/trait.PropertySet.html#tymethod.set |
1495 | /// [`PropertySetNested`]: ../glib/property/trait.PropertySetNested.html |
1496 | /// [`ObjectExt::property`]: ../glib/object/trait.ObjectExt.html#tymethod.property |
1497 | /// [HasParamSpec]: ../glib/trait.HasParamSpec.html |
1498 | /// [`ParamSpec`]: ../glib/struct.ParamSpec.html |
1499 | /// [`ToValueOptional`]: ../glib/value/trait.ToValueOptional.html |
1500 | /// [ToValue]: ../glib/value/trait.ToValue.html |
1501 | #[allow (clippy::needless_doctest_main)] |
1502 | #[proc_macro_derive (Properties, attributes(properties, property))] |
1503 | pub fn derive_props(input: TokenStream) -> TokenStream { |
1504 | let input: PropsMacroInput = parse_macro_input!(input as properties::PropsMacroInput); |
1505 | properties::impl_derive_props(input) |
1506 | } |
1507 | |
1508 | /// When applied to `ObjectImpl` |
1509 | /// ```ignore |
1510 | /// #[glib::derived_properties] |
1511 | /// impl ObjectImpl for CustomObject |
1512 | /// ``` |
1513 | /// this macro generates |
1514 | /// ```ignore |
1515 | /// impl ObjectImpl for CustomObject { |
1516 | /// fn properties() -> &'static [glib::ParamSpec] { |
1517 | /// Self::derived_properties() |
1518 | /// } |
1519 | /// fn set_property(&self, id: usize, value: &glib::Value, pspec: &glib::ParamSpec) { |
1520 | /// self.derived_set_property(id, value, pspec) |
1521 | /// } |
1522 | /// fn property(&self, id: usize, pspec: &glib::ParamSpec) -> glib::Value { |
1523 | /// self.derived_property(id, pspec) |
1524 | /// } |
1525 | /// } |
1526 | /// ``` |
1527 | #[proc_macro_attribute ] |
1528 | pub fn derived_properties (_attr: TokenStream, item: TokenStream) -> TokenStream { |
1529 | synTokenStream::parse::<syn::ItemImpl>(item) |
1530 | .map_err(|_| { |
1531 | syn::Error::new( |
1532 | Span::call_site(), |
1533 | derived_properties_attribute::WRONG_PLACE_MSG, |
1534 | ) |
1535 | }) |
1536 | .and_then(|input| derived_properties_attribute::impl_derived_properties(&input)) |
1537 | .unwrap_or_else(op:syn::Error::into_compile_error) |
1538 | .into() |
1539 | } |
1540 | |
1541 | /// # Example |
1542 | /// ``` |
1543 | /// use glib::prelude::*; |
1544 | /// use glib::ValueDelegate; |
1545 | /// |
1546 | /// #[derive(ValueDelegate, Debug, PartialEq)] |
1547 | /// struct MyInt(i32); |
1548 | /// |
1549 | /// let myv = MyInt(2); |
1550 | /// let convertedv = myv.to_value(); |
1551 | /// assert_eq!(convertedv.get::<MyInt>(), Ok(myv)); |
1552 | /// |
1553 | /// |
1554 | /// #[derive(ValueDelegate, Debug, PartialEq)] |
1555 | /// #[value_delegate(from = u32)] |
1556 | /// enum MyEnum { |
1557 | /// Zero, |
1558 | /// NotZero(u32) |
1559 | /// } |
1560 | /// |
1561 | /// impl From<u32> for MyEnum { |
1562 | /// fn from(v: u32) -> Self { |
1563 | /// match v { |
1564 | /// 0 => MyEnum::Zero, |
1565 | /// x => MyEnum::NotZero(x) |
1566 | /// } |
1567 | /// } |
1568 | /// } |
1569 | /// impl<'a> From<&'a MyEnum> for u32 { |
1570 | /// fn from(v: &'a MyEnum) -> Self { |
1571 | /// match v { |
1572 | /// MyEnum::Zero => 0, |
1573 | /// MyEnum::NotZero(x) => *x |
1574 | /// } |
1575 | /// } |
1576 | /// } |
1577 | /// impl From<MyEnum> for u32 { |
1578 | /// fn from(v: MyEnum) -> Self { |
1579 | /// match v { |
1580 | /// MyEnum::Zero => 0, |
1581 | /// MyEnum::NotZero(x) => x |
1582 | /// } |
1583 | /// } |
1584 | /// } |
1585 | /// |
1586 | /// let myv = MyEnum::NotZero(34); |
1587 | /// let convertedv = myv.to_value(); |
1588 | /// assert_eq!(convertedv.get::<MyEnum>(), Ok(myv)); |
1589 | /// |
1590 | /// |
1591 | /// // If you want your type to be usable inside an `Option`, you can derive `ToValueOptional` |
1592 | /// // by adding `nullable` as follows |
1593 | /// #[derive(ValueDelegate, Debug, PartialEq)] |
1594 | /// #[value_delegate(nullable)] |
1595 | /// struct MyString(String); |
1596 | /// |
1597 | /// let myv = Some(MyString("Hello world" .to_string())); |
1598 | /// let convertedv = myv.to_value(); |
1599 | /// assert_eq!(convertedv.get::<Option<MyString>>(), Ok(myv)); |
1600 | /// let convertedv = None::<MyString>.to_value(); |
1601 | /// assert_eq!(convertedv.get::<Option<MyString>>(), Ok(None::<MyString>)); |
1602 | /// ``` |
1603 | #[proc_macro_derive (ValueDelegate, attributes(value_delegate))] |
1604 | pub fn derive_value_delegate(input: TokenStream) -> TokenStream { |
1605 | let input: ValueDelegateInput = parse_macro_input!(input as value_delegate_derive::ValueDelegateInput); |
1606 | value_delegate_derive::impl_value_delegate(input).unwrap() |
1607 | } |
1608 | |
1609 | /// An attribute macro for writing asynchronous test functions. |
1610 | /// |
1611 | /// This macro is designed to wrap an asynchronous test function and ensure that |
1612 | /// it runs within a `glib::MainContext`. It helps in writing async tests that |
1613 | /// require the use of an event loop for the asynchronous execution. |
1614 | /// |
1615 | /// # Example |
1616 | /// |
1617 | /// ``` |
1618 | /// #[glib::async_test] |
1619 | /// async fn my_async_test() { |
1620 | /// // Test code that runs asynchronously |
1621 | /// } |
1622 | /// ``` |
1623 | #[proc_macro_attribute ] |
1624 | pub fn async_test (args: TokenStream, item: TokenStream) -> TokenStream { |
1625 | async_test::async_test(args, item) |
1626 | } |
1627 | |