1 | use crate::leading_zeros::leading_zeros_u16;
|
2 | use core::mem;
|
3 |
|
4 | #[inline ]
|
5 | pub(crate) const fn f32_to_bf16(value: f32) -> u16 {
|
6 | // TODO: Replace mem::transmute with to_bits() once to_bits is const-stabilized
|
7 | // Convert to raw bytes
|
8 | let x: u32 = unsafe { mem::transmute::<f32, u32>(src:value) };
|
9 |
|
10 | // check for NaN
|
11 | if x & 0x7FFF_FFFFu32 > 0x7F80_0000u32 {
|
12 | // Keep high part of current mantissa but also set most significiant mantissa bit
|
13 | return ((x >> 16) | 0x0040u32) as u16;
|
14 | }
|
15 |
|
16 | // round and shift
|
17 | let round_bit: u32 = 0x0000_8000u32;
|
18 | if (x & round_bit) != 0 && (x & (3 * round_bit - 1)) != 0 {
|
19 | (x >> 16) as u16 + 1
|
20 | } else {
|
21 | (x >> 16) as u16
|
22 | }
|
23 | }
|
24 |
|
25 | #[inline ]
|
26 | pub(crate) const fn f64_to_bf16(value: f64) -> u16 {
|
27 | // TODO: Replace mem::transmute with to_bits() once to_bits is const-stabilized
|
28 | // Convert to raw bytes, truncating the last 32-bits of mantissa; that precision will always
|
29 | // be lost on half-precision.
|
30 | let val: u64 = unsafe { mem::transmute::<f64, u64>(value) };
|
31 | let x = (val >> 32) as u32;
|
32 |
|
33 | // Extract IEEE754 components
|
34 | let sign = x & 0x8000_0000u32;
|
35 | let exp = x & 0x7FF0_0000u32;
|
36 | let man = x & 0x000F_FFFFu32;
|
37 |
|
38 | // Check for all exponent bits being set, which is Infinity or NaN
|
39 | if exp == 0x7FF0_0000u32 {
|
40 | // Set mantissa MSB for NaN (and also keep shifted mantissa bits).
|
41 | // We also have to check the last 32 bits.
|
42 | let nan_bit = if man == 0 && (val as u32 == 0) {
|
43 | 0
|
44 | } else {
|
45 | 0x0040u32
|
46 | };
|
47 | return ((sign >> 16) | 0x7F80u32 | nan_bit | (man >> 13)) as u16;
|
48 | }
|
49 |
|
50 | // The number is normalized, start assembling half precision version
|
51 | let half_sign = sign >> 16;
|
52 | // Unbias the exponent, then bias for bfloat16 precision
|
53 | let unbiased_exp = ((exp >> 20) as i64) - 1023;
|
54 | let half_exp = unbiased_exp + 127;
|
55 |
|
56 | // Check for exponent overflow, return +infinity
|
57 | if half_exp >= 0xFF {
|
58 | return (half_sign | 0x7F80u32) as u16;
|
59 | }
|
60 |
|
61 | // Check for underflow
|
62 | if half_exp <= 0 {
|
63 | // Check mantissa for what we can do
|
64 | if 7 - half_exp > 21 {
|
65 | // No rounding possibility, so this is a full underflow, return signed zero
|
66 | return half_sign as u16;
|
67 | }
|
68 | // Don't forget about hidden leading mantissa bit when assembling mantissa
|
69 | let man = man | 0x0010_0000u32;
|
70 | let mut half_man = man >> (14 - half_exp);
|
71 | // Check for rounding
|
72 | let round_bit = 1 << (13 - half_exp);
|
73 | if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 {
|
74 | half_man += 1;
|
75 | }
|
76 | // No exponent for subnormals
|
77 | return (half_sign | half_man) as u16;
|
78 | }
|
79 |
|
80 | // Rebias the exponent
|
81 | let half_exp = (half_exp as u32) << 7;
|
82 | let half_man = man >> 13;
|
83 | // Check for rounding
|
84 | let round_bit = 0x0000_1000u32;
|
85 | if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 {
|
86 | // Round it
|
87 | ((half_sign | half_exp | half_man) + 1) as u16
|
88 | } else {
|
89 | (half_sign | half_exp | half_man) as u16
|
90 | }
|
91 | }
|
92 |
|
93 | #[inline ]
|
94 | pub(crate) const fn bf16_to_f32(i: u16) -> f32 {
|
95 | // TODO: Replace mem::transmute with from_bits() once from_bits is const-stabilized
|
96 | // If NaN, keep current mantissa but also set most significiant mantissa bit
|
97 | if i & 0x7FFFu16 > 0x7F80u16 {
|
98 | unsafe { mem::transmute::<u32, f32>((i as u32 | 0x0040u32) << 16) }
|
99 | } else {
|
100 | unsafe { mem::transmute::<u32, f32>((i as u32) << 16) }
|
101 | }
|
102 | }
|
103 |
|
104 | #[inline ]
|
105 | pub(crate) const fn bf16_to_f64(i: u16) -> f64 {
|
106 | // TODO: Replace mem::transmute with from_bits() once from_bits is const-stabilized
|
107 | // Check for signed zero
|
108 | if i & 0x7FFFu16 == 0 {
|
109 | return unsafe { mem::transmute::<u64, f64>((i as u64) << 48) };
|
110 | }
|
111 |
|
112 | let half_sign = (i & 0x8000u16) as u64;
|
113 | let half_exp = (i & 0x7F80u16) as u64;
|
114 | let half_man = (i & 0x007Fu16) as u64;
|
115 |
|
116 | // Check for an infinity or NaN when all exponent bits set
|
117 | if half_exp == 0x7F80u64 {
|
118 | // Check for signed infinity if mantissa is zero
|
119 | if half_man == 0 {
|
120 | return unsafe {
|
121 | mem::transmute::<u64, f64>((half_sign << 48) | 0x7FF0_0000_0000_0000u64)
|
122 | };
|
123 | } else {
|
124 | // NaN, keep current mantissa but also set most significiant mantissa bit
|
125 | return unsafe {
|
126 | mem::transmute::<u64, f64>(
|
127 | (half_sign << 48) | 0x7FF8_0000_0000_0000u64 | (half_man << 45),
|
128 | )
|
129 | };
|
130 | }
|
131 | }
|
132 |
|
133 | // Calculate double-precision components with adjusted exponent
|
134 | let sign = half_sign << 48;
|
135 | // Unbias exponent
|
136 | let unbiased_exp = ((half_exp as i64) >> 7) - 127;
|
137 |
|
138 | // Check for subnormals, which will be normalized by adjusting exponent
|
139 | if half_exp == 0 {
|
140 | // Calculate how much to adjust the exponent by
|
141 | let e = leading_zeros_u16(half_man as u16) - 9;
|
142 |
|
143 | // Rebias and adjust exponent
|
144 | let exp = ((1023 - 127 - e) as u64) << 52;
|
145 | let man = (half_man << (46 + e)) & 0xF_FFFF_FFFF_FFFFu64;
|
146 | return unsafe { mem::transmute::<u64, f64>(sign | exp | man) };
|
147 | }
|
148 | // Rebias exponent for a normalized normal
|
149 | let exp = ((unbiased_exp + 1023) as u64) << 52;
|
150 | let man = (half_man & 0x007Fu64) << 45;
|
151 | unsafe { mem::transmute::<u64, f64>(sign | exp | man) }
|
152 | }
|
153 | |