| 1 | use crate::leading_zeros::leading_zeros_u16;
|
| 2 | use core::mem;
|
| 3 |
|
| 4 | #[inline ]
|
| 5 | pub(crate) const fn f32_to_bf16(value: f32) -> u16 {
|
| 6 | // TODO: Replace mem::transmute with to_bits() once to_bits is const-stabilized
|
| 7 | // Convert to raw bytes
|
| 8 | let x: u32 = unsafe { mem::transmute::<f32, u32>(src:value) };
|
| 9 |
|
| 10 | // check for NaN
|
| 11 | if x & 0x7FFF_FFFFu32 > 0x7F80_0000u32 {
|
| 12 | // Keep high part of current mantissa but also set most significiant mantissa bit
|
| 13 | return ((x >> 16) | 0x0040u32) as u16;
|
| 14 | }
|
| 15 |
|
| 16 | // round and shift
|
| 17 | let round_bit: u32 = 0x0000_8000u32;
|
| 18 | if (x & round_bit) != 0 && (x & (3 * round_bit - 1)) != 0 {
|
| 19 | (x >> 16) as u16 + 1
|
| 20 | } else {
|
| 21 | (x >> 16) as u16
|
| 22 | }
|
| 23 | }
|
| 24 |
|
| 25 | #[inline ]
|
| 26 | pub(crate) const fn f64_to_bf16(value: f64) -> u16 {
|
| 27 | // TODO: Replace mem::transmute with to_bits() once to_bits is const-stabilized
|
| 28 | // Convert to raw bytes, truncating the last 32-bits of mantissa; that precision will always
|
| 29 | // be lost on half-precision.
|
| 30 | let val: u64 = unsafe { mem::transmute::<f64, u64>(value) };
|
| 31 | let x = (val >> 32) as u32;
|
| 32 |
|
| 33 | // Extract IEEE754 components
|
| 34 | let sign = x & 0x8000_0000u32;
|
| 35 | let exp = x & 0x7FF0_0000u32;
|
| 36 | let man = x & 0x000F_FFFFu32;
|
| 37 |
|
| 38 | // Check for all exponent bits being set, which is Infinity or NaN
|
| 39 | if exp == 0x7FF0_0000u32 {
|
| 40 | // Set mantissa MSB for NaN (and also keep shifted mantissa bits).
|
| 41 | // We also have to check the last 32 bits.
|
| 42 | let nan_bit = if man == 0 && (val as u32 == 0) {
|
| 43 | 0
|
| 44 | } else {
|
| 45 | 0x0040u32
|
| 46 | };
|
| 47 | return ((sign >> 16) | 0x7F80u32 | nan_bit | (man >> 13)) as u16;
|
| 48 | }
|
| 49 |
|
| 50 | // The number is normalized, start assembling half precision version
|
| 51 | let half_sign = sign >> 16;
|
| 52 | // Unbias the exponent, then bias for bfloat16 precision
|
| 53 | let unbiased_exp = ((exp >> 20) as i64) - 1023;
|
| 54 | let half_exp = unbiased_exp + 127;
|
| 55 |
|
| 56 | // Check for exponent overflow, return +infinity
|
| 57 | if half_exp >= 0xFF {
|
| 58 | return (half_sign | 0x7F80u32) as u16;
|
| 59 | }
|
| 60 |
|
| 61 | // Check for underflow
|
| 62 | if half_exp <= 0 {
|
| 63 | // Check mantissa for what we can do
|
| 64 | if 7 - half_exp > 21 {
|
| 65 | // No rounding possibility, so this is a full underflow, return signed zero
|
| 66 | return half_sign as u16;
|
| 67 | }
|
| 68 | // Don't forget about hidden leading mantissa bit when assembling mantissa
|
| 69 | let man = man | 0x0010_0000u32;
|
| 70 | let mut half_man = man >> (14 - half_exp);
|
| 71 | // Check for rounding
|
| 72 | let round_bit = 1 << (13 - half_exp);
|
| 73 | if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 {
|
| 74 | half_man += 1;
|
| 75 | }
|
| 76 | // No exponent for subnormals
|
| 77 | return (half_sign | half_man) as u16;
|
| 78 | }
|
| 79 |
|
| 80 | // Rebias the exponent
|
| 81 | let half_exp = (half_exp as u32) << 7;
|
| 82 | let half_man = man >> 13;
|
| 83 | // Check for rounding
|
| 84 | let round_bit = 0x0000_1000u32;
|
| 85 | if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 {
|
| 86 | // Round it
|
| 87 | ((half_sign | half_exp | half_man) + 1) as u16
|
| 88 | } else {
|
| 89 | (half_sign | half_exp | half_man) as u16
|
| 90 | }
|
| 91 | }
|
| 92 |
|
| 93 | #[inline ]
|
| 94 | pub(crate) const fn bf16_to_f32(i: u16) -> f32 {
|
| 95 | // TODO: Replace mem::transmute with from_bits() once from_bits is const-stabilized
|
| 96 | // If NaN, keep current mantissa but also set most significiant mantissa bit
|
| 97 | if i & 0x7FFFu16 > 0x7F80u16 {
|
| 98 | unsafe { mem::transmute::<u32, f32>((i as u32 | 0x0040u32) << 16) }
|
| 99 | } else {
|
| 100 | unsafe { mem::transmute::<u32, f32>((i as u32) << 16) }
|
| 101 | }
|
| 102 | }
|
| 103 |
|
| 104 | #[inline ]
|
| 105 | pub(crate) const fn bf16_to_f64(i: u16) -> f64 {
|
| 106 | // TODO: Replace mem::transmute with from_bits() once from_bits is const-stabilized
|
| 107 | // Check for signed zero
|
| 108 | if i & 0x7FFFu16 == 0 {
|
| 109 | return unsafe { mem::transmute::<u64, f64>((i as u64) << 48) };
|
| 110 | }
|
| 111 |
|
| 112 | let half_sign = (i & 0x8000u16) as u64;
|
| 113 | let half_exp = (i & 0x7F80u16) as u64;
|
| 114 | let half_man = (i & 0x007Fu16) as u64;
|
| 115 |
|
| 116 | // Check for an infinity or NaN when all exponent bits set
|
| 117 | if half_exp == 0x7F80u64 {
|
| 118 | // Check for signed infinity if mantissa is zero
|
| 119 | if half_man == 0 {
|
| 120 | return unsafe {
|
| 121 | mem::transmute::<u64, f64>((half_sign << 48) | 0x7FF0_0000_0000_0000u64)
|
| 122 | };
|
| 123 | } else {
|
| 124 | // NaN, keep current mantissa but also set most significiant mantissa bit
|
| 125 | return unsafe {
|
| 126 | mem::transmute::<u64, f64>(
|
| 127 | (half_sign << 48) | 0x7FF8_0000_0000_0000u64 | (half_man << 45),
|
| 128 | )
|
| 129 | };
|
| 130 | }
|
| 131 | }
|
| 132 |
|
| 133 | // Calculate double-precision components with adjusted exponent
|
| 134 | let sign = half_sign << 48;
|
| 135 | // Unbias exponent
|
| 136 | let unbiased_exp = ((half_exp as i64) >> 7) - 127;
|
| 137 |
|
| 138 | // Check for subnormals, which will be normalized by adjusting exponent
|
| 139 | if half_exp == 0 {
|
| 140 | // Calculate how much to adjust the exponent by
|
| 141 | let e = leading_zeros_u16(half_man as u16) - 9;
|
| 142 |
|
| 143 | // Rebias and adjust exponent
|
| 144 | let exp = ((1023 - 127 - e) as u64) << 52;
|
| 145 | let man = (half_man << (46 + e)) & 0xF_FFFF_FFFF_FFFFu64;
|
| 146 | return unsafe { mem::transmute::<u64, f64>(sign | exp | man) };
|
| 147 | }
|
| 148 | // Rebias exponent for a normalized normal
|
| 149 | let exp = ((unbiased_exp + 1023) as u64) << 52;
|
| 150 | let man = (half_man & 0x007Fu64) << 45;
|
| 151 | unsafe { mem::transmute::<u64, f64>(sign | exp | man) }
|
| 152 | }
|
| 153 | |