| 1 | //! Optimized alpha blending routines based on libwebp |
| 2 | //! |
| 3 | //! <https://github.com/webmproject/libwebp/blob/e4f7a9f0c7c9fbfae1568bc7fa5c94b989b50872/src/demux/anim_decode.c#L215-L267> |
| 4 | |
| 5 | const fn channel_shift(i: u32) -> u32 { |
| 6 | i * 8 |
| 7 | } |
| 8 | |
| 9 | /// Blend a single channel of `src` over `dst`, given their alpha channel values. |
| 10 | /// `src` and `dst` are assumed to be NOT pre-multiplied by alpha. |
| 11 | fn blend_channel_nonpremult( |
| 12 | src: u32, |
| 13 | src_a: u8, |
| 14 | dst: u32, |
| 15 | dst_a: u8, |
| 16 | scale: u32, |
| 17 | shift: u32, |
| 18 | ) -> u8 { |
| 19 | let src_channel: u8 = ((src >> shift) & 0xff) as u8; |
| 20 | let dst_channel: u8 = ((dst >> shift) & 0xff) as u8; |
| 21 | let blend_unscaled: u32 = |
| 22 | (u32::from(src_channel) * u32::from(src_a)) + (u32::from(dst_channel) * u32::from(dst_a)); |
| 23 | debug_assert!(u64::from(blend_unscaled) < (1u64 << 32) / u64::from(scale)); |
| 24 | ((blend_unscaled * scale) >> channel_shift(3)) as u8 |
| 25 | } |
| 26 | |
| 27 | /// Blend `src` over `dst` assuming they are NOT pre-multiplied by alpha. |
| 28 | fn blend_pixel_nonpremult(src: u32, dst: u32) -> u32 { |
| 29 | let src_a = ((src >> channel_shift(3)) & 0xff) as u8; |
| 30 | |
| 31 | if src_a == 0 { |
| 32 | dst |
| 33 | } else { |
| 34 | let dst_a = ((dst >> channel_shift(3)) & 0xff) as u8; |
| 35 | // Approximate integer arithmetic for: dst_factor_a = (dst_a * (255 - src_a)) / 255 |
| 36 | // libwebp used the following formula here: |
| 37 | //let dst_factor_a = (dst_a as u32 * (256 - src_a as u32)) >> 8; |
| 38 | // however, we've found that we can use a more precise approximation without losing performance: |
| 39 | let dst_factor_a = div_by_255(u32::from(dst_a) * (255 - u32::from(src_a))); |
| 40 | let blend_a = u32::from(src_a) + dst_factor_a; |
| 41 | let scale = (1u32 << 24) / blend_a; |
| 42 | |
| 43 | let blend_r = |
| 44 | blend_channel_nonpremult(src, src_a, dst, dst_factor_a as u8, scale, channel_shift(0)); |
| 45 | let blend_g = |
| 46 | blend_channel_nonpremult(src, src_a, dst, dst_factor_a as u8, scale, channel_shift(1)); |
| 47 | let blend_b = |
| 48 | blend_channel_nonpremult(src, src_a, dst, dst_factor_a as u8, scale, channel_shift(2)); |
| 49 | debug_assert!(u32::from(src_a) + dst_factor_a < 256); |
| 50 | |
| 51 | (u32::from(blend_r) << channel_shift(0)) |
| 52 | | (u32::from(blend_g) << channel_shift(1)) |
| 53 | | (u32::from(blend_b) << channel_shift(2)) |
| 54 | | (blend_a << channel_shift(3)) |
| 55 | } |
| 56 | } |
| 57 | |
| 58 | pub(crate) fn do_alpha_blending(buffer: [u8; 4], canvas: [u8; 4]) -> [u8; 4] { |
| 59 | // The original C code contained different shift functions for different endianness, |
| 60 | // but they didn't work when ported to Rust directly (and probably didn't work in C either). |
| 61 | // So instead we reverse the order of bytes on big-endian here, at the interface. |
| 62 | // `from_le_bytes` is a no-op on little endian (most systems) and a cheap shuffle on big endian. |
| 63 | blend_pixel_nonpremult(src:u32::from_le_bytes(buffer), dst:u32::from_le_bytes(canvas)).to_le_bytes() |
| 64 | } |
| 65 | |
| 66 | /// Divides by 255, rounding to nearest (as opposed to down, like regular integer division does). |
| 67 | /// TODO: cannot output 256, so the output is effecitively u8. Plumb that through the code. |
| 68 | // |
| 69 | // Sources: |
| 70 | // https://arxiv.org/pdf/2202.02864 |
| 71 | // https://github.com/image-rs/image-webp/issues/119#issuecomment-2544007820 |
| 72 | #[inline ] |
| 73 | const fn div_by_255(v: u32) -> u32 { |
| 74 | (((v + 0x80) >> 8) + v + 0x80) >> 8 |
| 75 | } |
| 76 | |
| 77 | #[cfg (test)] |
| 78 | mod tests { |
| 79 | use super::*; |
| 80 | |
| 81 | fn do_alpha_blending_reference(buffer: [u8; 4], canvas: [u8; 4]) -> [u8; 4] { |
| 82 | let canvas_alpha = f64::from(canvas[3]); |
| 83 | let buffer_alpha = f64::from(buffer[3]); |
| 84 | let blend_alpha_f64 = buffer_alpha + canvas_alpha * (1.0 - buffer_alpha / 255.0); |
| 85 | //value should be between 0 and 255, this truncates the fractional part |
| 86 | let blend_alpha: u8 = blend_alpha_f64 as u8; |
| 87 | |
| 88 | let blend_rgb: [u8; 3] = if blend_alpha == 0 { |
| 89 | [0, 0, 0] |
| 90 | } else { |
| 91 | let mut rgb = [0u8; 3]; |
| 92 | for i in 0..3 { |
| 93 | let canvas_f64 = f64::from(canvas[i]); |
| 94 | let buffer_f64 = f64::from(buffer[i]); |
| 95 | |
| 96 | let val = (buffer_f64 * buffer_alpha |
| 97 | + canvas_f64 * canvas_alpha * (1.0 - buffer_alpha / 255.0)) |
| 98 | / blend_alpha_f64; |
| 99 | //value should be between 0 and 255, this truncates the fractional part |
| 100 | rgb[i] = val as u8; |
| 101 | } |
| 102 | |
| 103 | rgb |
| 104 | }; |
| 105 | |
| 106 | [blend_rgb[0], blend_rgb[1], blend_rgb[2], blend_alpha] |
| 107 | } |
| 108 | |
| 109 | #[test ] |
| 110 | #[ignore ] // takes too long to run on CI. Run this locally when changing the function. |
| 111 | fn alpha_blending_optimization() { |
| 112 | for r1 in 0..u8::MAX { |
| 113 | for a1 in 11..u8::MAX { |
| 114 | for r2 in 0..u8::MAX { |
| 115 | for a2 in 11..u8::MAX { |
| 116 | let opt = do_alpha_blending([r1, 0, 0, a1], [r2, 0, 0, a2]); |
| 117 | let slow = do_alpha_blending_reference([r1, 0, 0, a1], [r2, 0, 0, a2]); |
| 118 | // libwebp doesn't do exact blending and so we don't either |
| 119 | for (o, s) in opt.iter().zip(slow.iter()) { |
| 120 | assert!( |
| 121 | o.abs_diff(*s) <= 3, |
| 122 | "Mismatch in results! opt: {opt:?}, slow: {slow:?}, blended values: [{r1}, 0, 0, {a1}], [{r2}, 0, 0, {a2}]" |
| 123 | ); |
| 124 | } |
| 125 | } |
| 126 | } |
| 127 | } |
| 128 | } |
| 129 | } |
| 130 | } |
| 131 | |