| 1 | /// `MinMaxResult` is an enum returned by `minmax`. |
| 2 | /// |
| 3 | /// See [`.minmax()`](crate::Itertools::minmax) for more detail. |
| 4 | #[derive (Copy, Clone, PartialEq, Eq, Debug)] |
| 5 | pub enum MinMaxResult<T> { |
| 6 | /// Empty iterator |
| 7 | NoElements, |
| 8 | |
| 9 | /// Iterator with one element, so the minimum and maximum are the same |
| 10 | OneElement(T), |
| 11 | |
| 12 | /// More than one element in the iterator, the first element is not larger |
| 13 | /// than the second |
| 14 | MinMax(T, T), |
| 15 | } |
| 16 | |
| 17 | impl<T: Clone> MinMaxResult<T> { |
| 18 | /// `into_option` creates an `Option` of type `(T, T)`. The returned `Option` |
| 19 | /// has variant `None` if and only if the `MinMaxResult` has variant |
| 20 | /// `NoElements`. Otherwise `Some((x, y))` is returned where `x <= y`. |
| 21 | /// If the `MinMaxResult` has variant `OneElement(x)`, performing this |
| 22 | /// operation will make one clone of `x`. |
| 23 | /// |
| 24 | /// # Examples |
| 25 | /// |
| 26 | /// ``` |
| 27 | /// use itertools::MinMaxResult::{self, NoElements, OneElement, MinMax}; |
| 28 | /// |
| 29 | /// let r: MinMaxResult<i32> = NoElements; |
| 30 | /// assert_eq!(r.into_option(), None); |
| 31 | /// |
| 32 | /// let r = OneElement(1); |
| 33 | /// assert_eq!(r.into_option(), Some((1, 1))); |
| 34 | /// |
| 35 | /// let r = MinMax(1, 2); |
| 36 | /// assert_eq!(r.into_option(), Some((1, 2))); |
| 37 | /// ``` |
| 38 | pub fn into_option(self) -> Option<(T, T)> { |
| 39 | match self { |
| 40 | Self::NoElements => None, |
| 41 | Self::OneElement(x) => Some((x.clone(), x)), |
| 42 | Self::MinMax(x, y) => Some((x, y)), |
| 43 | } |
| 44 | } |
| 45 | } |
| 46 | |
| 47 | /// Implementation guts for `minmax` and `minmax_by_key`. |
| 48 | pub fn minmax_impl<I, K, F, L>(mut it: I, mut key_for: F, mut lt: L) -> MinMaxResult<I::Item> |
| 49 | where |
| 50 | I: Iterator, |
| 51 | F: FnMut(&I::Item) -> K, |
| 52 | L: FnMut(&I::Item, &I::Item, &K, &K) -> bool, |
| 53 | { |
| 54 | let (mut min, mut max, mut min_key, mut max_key) = match it.next() { |
| 55 | None => return MinMaxResult::NoElements, |
| 56 | Some(x) => match it.next() { |
| 57 | None => return MinMaxResult::OneElement(x), |
| 58 | Some(y) => { |
| 59 | let xk = key_for(&x); |
| 60 | let yk = key_for(&y); |
| 61 | if !lt(&y, &x, &yk, &xk) { |
| 62 | (x, y, xk, yk) |
| 63 | } else { |
| 64 | (y, x, yk, xk) |
| 65 | } |
| 66 | } |
| 67 | }, |
| 68 | }; |
| 69 | |
| 70 | loop { |
| 71 | // `first` and `second` are the two next elements we want to look |
| 72 | // at. We first compare `first` and `second` (#1). The smaller one |
| 73 | // is then compared to current minimum (#2). The larger one is |
| 74 | // compared to current maximum (#3). This way we do 3 comparisons |
| 75 | // for 2 elements. |
| 76 | let first = match it.next() { |
| 77 | None => break, |
| 78 | Some(x) => x, |
| 79 | }; |
| 80 | let second = match it.next() { |
| 81 | None => { |
| 82 | let first_key = key_for(&first); |
| 83 | if lt(&first, &min, &first_key, &min_key) { |
| 84 | min = first; |
| 85 | } else if !lt(&first, &max, &first_key, &max_key) { |
| 86 | max = first; |
| 87 | } |
| 88 | break; |
| 89 | } |
| 90 | Some(x) => x, |
| 91 | }; |
| 92 | let first_key = key_for(&first); |
| 93 | let second_key = key_for(&second); |
| 94 | if !lt(&second, &first, &second_key, &first_key) { |
| 95 | if lt(&first, &min, &first_key, &min_key) { |
| 96 | min = first; |
| 97 | min_key = first_key; |
| 98 | } |
| 99 | if !lt(&second, &max, &second_key, &max_key) { |
| 100 | max = second; |
| 101 | max_key = second_key; |
| 102 | } |
| 103 | } else { |
| 104 | if lt(&second, &min, &second_key, &min_key) { |
| 105 | min = second; |
| 106 | min_key = second_key; |
| 107 | } |
| 108 | if !lt(&first, &max, &first_key, &max_key) { |
| 109 | max = first; |
| 110 | max_key = first_key; |
| 111 | } |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | MinMaxResult::MinMax(min, max) |
| 116 | } |
| 117 | |