| 1 | #[cfg (all(feature = "nightly_aarch64_neon" , target_arch = "aarch64" ))] |
| 2 | use core::arch::aarch64::*; |
| 3 | |
| 4 | #[cfg (all(feature = "nightly_aarch64_neon" , target_arch = "aarch64" ))] |
| 5 | #[target_feature (enable = "neon" )] |
| 6 | unsafe fn idct8(data: &mut [int16x8_t; 8]) { |
| 7 | // The fixed-point constants here are obtained by taking the fractional part of the constants |
| 8 | // from the non-SIMD implementation and scaling them up by 1<<15. This is because |
| 9 | // vqrdmulhq_n_s16(a, b) is effectively equivalent to (a*b)>>15 (except for possibly some |
| 10 | // slight differences in rounding). |
| 11 | |
| 12 | // The code here is effectively equivalent to the calls to "kernel" in idct.rs, except that it |
| 13 | // doesn't apply any further scaling and fixed point constants have a different precision. |
| 14 | |
| 15 | let p2 = data[2]; |
| 16 | let p3 = data[6]; |
| 17 | let p1 = vqrdmulhq_n_s16(vqaddq_s16(p2, p3), 17734); // 0.5411961 |
| 18 | let t2 = vqsubq_s16( |
| 19 | vqsubq_s16(p1, p3), |
| 20 | vqrdmulhq_n_s16(p3, 27779), // 0.847759065 |
| 21 | ); |
| 22 | let t3 = vqaddq_s16(p1, vqrdmulhq_n_s16(p2, 25079)); // 0.765366865 |
| 23 | |
| 24 | let p2 = data[0]; |
| 25 | let p3 = data[4]; |
| 26 | let t0 = vqaddq_s16(p2, p3); |
| 27 | let t1 = vqsubq_s16(p2, p3); |
| 28 | |
| 29 | let x0 = vqaddq_s16(t0, t3); |
| 30 | let x3 = vqsubq_s16(t0, t3); |
| 31 | let x1 = vqaddq_s16(t1, t2); |
| 32 | let x2 = vqsubq_s16(t1, t2); |
| 33 | |
| 34 | let t0 = data[7]; |
| 35 | let t1 = data[5]; |
| 36 | let t2 = data[3]; |
| 37 | let t3 = data[1]; |
| 38 | |
| 39 | let p3 = vqaddq_s16(t0, t2); |
| 40 | let p4 = vqaddq_s16(t1, t3); |
| 41 | let p1 = vqaddq_s16(t0, t3); |
| 42 | let p2 = vqaddq_s16(t1, t2); |
| 43 | let p5 = vqaddq_s16(p3, p4); |
| 44 | let p5 = vqaddq_s16(p5, vqrdmulhq_n_s16(p5, 5763)); // 0.175875602 |
| 45 | |
| 46 | let t0 = vqrdmulhq_n_s16(t0, 9786); // 0.298631336 |
| 47 | let t1 = vqaddq_s16( |
| 48 | vqaddq_s16(t1, t1), |
| 49 | vqrdmulhq_n_s16(t1, 1741), // 0.053119869 |
| 50 | ); |
| 51 | let t2 = vqaddq_s16( |
| 52 | vqaddq_s16(t2, vqaddq_s16(t2, t2)), |
| 53 | vqrdmulhq_n_s16(t2, 2383), // 0.072711026 |
| 54 | ); |
| 55 | let t3 = vqaddq_s16(t3, vqrdmulhq_n_s16(t3, 16427)); // 0.501321110 |
| 56 | |
| 57 | let p1 = vqsubq_s16(p5, vqrdmulhq_n_s16(p1, 29490)); // 0.899976223 |
| 58 | let p2 = vqsubq_s16( |
| 59 | vqsubq_s16(vqsubq_s16(p5, p2), p2), |
| 60 | vqrdmulhq_n_s16(p2, 18446), // 0.562915447 |
| 61 | ); |
| 62 | |
| 63 | let p3 = vqsubq_s16( |
| 64 | vqrdmulhq_n_s16(p3, -31509), // -0.961570560 |
| 65 | p3, |
| 66 | ); |
| 67 | let p4 = vqrdmulhq_n_s16(p4, -12785); // -0.390180644 |
| 68 | |
| 69 | let t3 = vqaddq_s16(vqaddq_s16(p1, p4), t3); |
| 70 | let t2 = vqaddq_s16(vqaddq_s16(p2, p3), t2); |
| 71 | let t1 = vqaddq_s16(vqaddq_s16(p2, p4), t1); |
| 72 | let t0 = vqaddq_s16(vqaddq_s16(p1, p3), t0); |
| 73 | |
| 74 | data[0] = vqaddq_s16(x0, t3); |
| 75 | data[7] = vqsubq_s16(x0, t3); |
| 76 | data[1] = vqaddq_s16(x1, t2); |
| 77 | data[6] = vqsubq_s16(x1, t2); |
| 78 | data[2] = vqaddq_s16(x2, t1); |
| 79 | data[5] = vqsubq_s16(x2, t1); |
| 80 | data[3] = vqaddq_s16(x3, t0); |
| 81 | data[4] = vqsubq_s16(x3, t0); |
| 82 | } |
| 83 | |
| 84 | #[cfg (all(feature = "nightly_aarch64_neon" , target_arch = "aarch64" ))] |
| 85 | #[target_feature (enable = "neon" )] |
| 86 | unsafe fn transpose8(data: &mut [int16x8_t; 8]) { |
| 87 | // Use NEON's 2x2 matrix transposes (vtrn) to do the transposition in each 4x4 block, then |
| 88 | // combine the 4x4 blocks. |
| 89 | let a01 = vtrnq_s16(data[0], data[1]); |
| 90 | let a23 = vtrnq_s16(data[2], data[3]); |
| 91 | |
| 92 | let four0 = vtrnq_s32(vreinterpretq_s32_s16(a01.0), vreinterpretq_s32_s16(a23.0)); |
| 93 | let four1 = vtrnq_s32(vreinterpretq_s32_s16(a01.1), vreinterpretq_s32_s16(a23.1)); |
| 94 | |
| 95 | let a45 = vtrnq_s16(data[4], data[5]); |
| 96 | let a67 = vtrnq_s16(data[6], data[7]); |
| 97 | |
| 98 | let four2 = vtrnq_s32(vreinterpretq_s32_s16(a45.0), vreinterpretq_s32_s16(a67.0)); |
| 99 | let four3 = vtrnq_s32(vreinterpretq_s32_s16(a45.1), vreinterpretq_s32_s16(a67.1)); |
| 100 | |
| 101 | data[0] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four0.0), vget_low_s32(four2.0))); |
| 102 | data[1] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four1.0), vget_low_s32(four3.0))); |
| 103 | data[2] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four0.1), vget_low_s32(four2.1))); |
| 104 | data[3] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four1.1), vget_low_s32(four3.1))); |
| 105 | data[4] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four0.0), vget_high_s32(four2.0))); |
| 106 | data[5] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four1.0), vget_high_s32(four3.0))); |
| 107 | data[6] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four0.1), vget_high_s32(four2.1))); |
| 108 | data[7] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four1.1), vget_high_s32(four3.1))); |
| 109 | } |
| 110 | |
| 111 | #[cfg (all(feature = "nightly_aarch64_neon" , target_arch = "aarch64" ))] |
| 112 | #[target_feature (enable = "neon" )] |
| 113 | pub unsafe fn dequantize_and_idct_block_8x8( |
| 114 | coefficients: &[i16; 64], |
| 115 | quantization_table: &[u16; 64], |
| 116 | output_linestride: usize, |
| 117 | output: &mut [u8], |
| 118 | ) { |
| 119 | // The loop below will write to positions [output_linestride * i, output_linestride * i + 8) |
| 120 | // for 0<=i<8. Thus, the last accessed position is at an offset of output_linestrade * 7 + 7, |
| 121 | // and if that position is in-bounds, so are all other accesses. |
| 122 | assert!( |
| 123 | output.len() |
| 124 | > output_linestride |
| 125 | .checked_mul(7) |
| 126 | .unwrap() |
| 127 | .checked_add(7) |
| 128 | .unwrap() |
| 129 | ); |
| 130 | |
| 131 | const SHIFT: i32 = 3; |
| 132 | |
| 133 | // Read the DCT coefficients, scale them up and dequantize them. |
| 134 | let mut data = [vdupq_n_s16(0); 8]; |
| 135 | for i in 0..8 { |
| 136 | data[i] = vshlq_n_s16( |
| 137 | vmulq_s16( |
| 138 | vld1q_s16(coefficients.as_ptr().wrapping_add(i * 8)), |
| 139 | vreinterpretq_s16_u16(vld1q_u16(quantization_table.as_ptr().wrapping_add(i * 8))), |
| 140 | ), |
| 141 | SHIFT, |
| 142 | ); |
| 143 | } |
| 144 | |
| 145 | // Usual column IDCT - transpose - column IDCT - transpose approach. |
| 146 | idct8(&mut data); |
| 147 | transpose8(&mut data); |
| 148 | idct8(&mut data); |
| 149 | transpose8(&mut data); |
| 150 | |
| 151 | for i in 0..8 { |
| 152 | // The two passes of the IDCT algorithm give us a factor of 8, so the shift here is |
| 153 | // increased by 3. |
| 154 | // As values will be stored in a u8, they need to be 128-centered and not 0-centered. |
| 155 | // We add 128 with the appropriate shift for that purpose. |
| 156 | const OFFSET: i16 = 128 << (SHIFT + 3); |
| 157 | // We want rounding right shift, so we should add (1/2) << (SHIFT+3) before shifting. |
| 158 | const ROUNDING_BIAS: i16 = (1 << (SHIFT + 3)) >> 1; |
| 159 | |
| 160 | let data_with_offset = vqaddq_s16(data[i], vdupq_n_s16(OFFSET + ROUNDING_BIAS)); |
| 161 | |
| 162 | vst1_u8( |
| 163 | output.as_mut_ptr().wrapping_add(output_linestride * i), |
| 164 | vqshrun_n_s16(data_with_offset, SHIFT + 3), |
| 165 | ); |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | #[cfg (all(feature = "nightly_aarch64_neon" , target_arch = "aarch64" ))] |
| 170 | #[target_feature (enable = "neon" )] |
| 171 | pub unsafe fn color_convert_line_ycbcr(y: &[u8], cb: &[u8], cr: &[u8], output: &mut [u8]) -> usize { |
| 172 | assert!(output.len() % 3 == 0); |
| 173 | let num = output.len() / 3; |
| 174 | assert!(num <= y.len()); |
| 175 | assert!(num <= cb.len()); |
| 176 | assert!(num <= cr.len()); |
| 177 | let num_vecs = num / 8; |
| 178 | |
| 179 | for i in 0..num_vecs { |
| 180 | const SHIFT: i32 = 6; |
| 181 | // Load. |
| 182 | let y = vld1_u8(y.as_ptr().wrapping_add(i * 8)); |
| 183 | let cb = vld1_u8(cb.as_ptr().wrapping_add(i * 8)); |
| 184 | let cr = vld1_u8(cr.as_ptr().wrapping_add(i * 8)); |
| 185 | |
| 186 | // Convert to 16 bit and shift. |
| 187 | let y = vreinterpretq_s16_u16(vshll_n_u8(y, SHIFT)); |
| 188 | let cb = vreinterpretq_s16_u16(vshll_n_u8(cb, SHIFT)); |
| 189 | let cr = vreinterpretq_s16_u16(vshll_n_u8(cr, SHIFT)); |
| 190 | |
| 191 | // Add offsets |
| 192 | let y = vqaddq_s16(y, vdupq_n_s16((1 << SHIFT) >> 1)); |
| 193 | let c128 = vdupq_n_s16(128 << SHIFT); |
| 194 | let cb = vqsubq_s16(cb, c128); |
| 195 | let cr = vqsubq_s16(cr, c128); |
| 196 | |
| 197 | // Compute cr * 1.402, cb * 0.34414, cr * 0.71414, cb * 1.772 |
| 198 | let cr_140200 = vqaddq_s16(vqrdmulhq_n_s16(cr, 13173), cr); |
| 199 | let cb_034414 = vqrdmulhq_n_s16(cb, 11276); |
| 200 | let cr_071414 = vqrdmulhq_n_s16(cr, 23401); |
| 201 | let cb_177200 = vqaddq_s16(vqrdmulhq_n_s16(cb, 25297), cb); |
| 202 | |
| 203 | // Last conversion step. |
| 204 | let r = vqaddq_s16(y, cr_140200); |
| 205 | let g = vqsubq_s16(y, vqaddq_s16(cb_034414, cr_071414)); |
| 206 | let b = vqaddq_s16(y, cb_177200); |
| 207 | |
| 208 | // Shift back and convert to u8. |
| 209 | let r = vqshrun_n_s16(r, SHIFT); |
| 210 | let g = vqshrun_n_s16(g, SHIFT); |
| 211 | let b = vqshrun_n_s16(b, SHIFT); |
| 212 | |
| 213 | // Shuffle + store. |
| 214 | vst3_u8( |
| 215 | output.as_mut_ptr().wrapping_add(24 * i), |
| 216 | uint8x8x3_t(r, g, b), |
| 217 | ); |
| 218 | } |
| 219 | |
| 220 | num_vecs * 8 |
| 221 | } |
| 222 | |