1 | // Copyright (C) 2016,2017 Sebastian Dröge <sebastian@centricular.com> |
2 | // |
3 | // Licensed under the MIT license, see the LICENSE file or <http://opensource.org/licenses/MIT> |
4 | |
5 | #![no_std ] |
6 | |
7 | //! Provides a trait for numeric types to perform combined multiplication and division with |
8 | //! overflow protection. |
9 | //! |
10 | //! The [`MulDiv`] trait provides functions for performing combined multiplication and division for |
11 | //! numeric types and comes with implementations for all the primitive integer types. Three |
12 | //! variants with different rounding characteristics are provided: [`mul_div_floor()`], |
13 | //! [`mul_div_round()`] and [`mul_div_ceil()`]. |
14 | //! |
15 | //! ## Example |
16 | //! |
17 | //! ```rust |
18 | //! extern crate muldiv; |
19 | //! use muldiv::MulDiv; |
20 | //! # fn main() { |
21 | //! // Calculates 127 * 23 / 42 rounded down |
22 | //! let x = 127u8.mul_div_floor(23, 42); |
23 | //! assert_eq!(x, Some(69)); |
24 | //! # } |
25 | //! ``` |
26 | //! [`MulDiv`]: trait.MulDiv.html |
27 | //! [`mul_div_floor()`]: trait.MulDiv.html#tymethod.mul_div_floor |
28 | //! [`mul_div_round()`]: trait.MulDiv.html#tymethod.mul_div_round |
29 | //! [`mul_div_ceil()`]: trait.MulDiv.html#tymethod.mul_div_ceil |
30 | |
31 | use core::u16; |
32 | use core::u32; |
33 | use core::u64; |
34 | use core::u8; |
35 | |
36 | use core::i16; |
37 | use core::i32; |
38 | use core::i64; |
39 | use core::i8; |
40 | |
41 | /// Trait for calculating `val * num / denom` with different rounding modes and overflow |
42 | /// protection. |
43 | /// |
44 | /// Implementations of this trait have to ensure that even if the result of the multiplication does |
45 | /// not fit into the type, as long as it would fit after the division the correct result has to be |
46 | /// returned instead of `None`. `None` only should be returned if the overall result does not fit |
47 | /// into the type. |
48 | /// |
49 | /// This specifically means that e.g. the `u64` implementation must, depending on the arguments, be |
50 | /// able to do 128 bit integer multiplication. |
51 | pub trait MulDiv<RHS = Self> { |
52 | /// Output type for the methods of this trait. |
53 | type Output; |
54 | |
55 | /// Calculates `floor(val * num / denom)`, i.e. the largest integer less than or equal to the |
56 | /// result of the division. |
57 | /// |
58 | /// ## Example |
59 | /// |
60 | /// ```rust |
61 | /// extern crate muldiv; |
62 | /// use muldiv::MulDiv; |
63 | /// |
64 | /// # fn main() { |
65 | /// let x = 3i8.mul_div_floor(4, 2); |
66 | /// assert_eq!(x, Some(6)); |
67 | /// |
68 | /// let x = 5i8.mul_div_floor(2, 3); |
69 | /// assert_eq!(x, Some(3)); |
70 | /// |
71 | /// let x = (-5i8).mul_div_floor(2, 3); |
72 | /// assert_eq!(x, Some(-4)); |
73 | /// |
74 | /// let x = 3i8.mul_div_floor(3, 2); |
75 | /// assert_eq!(x, Some(4)); |
76 | /// |
77 | /// let x = (-3i8).mul_div_floor(3, 2); |
78 | /// assert_eq!(x, Some(-5)); |
79 | /// |
80 | /// let x = 127i8.mul_div_floor(4, 3); |
81 | /// assert_eq!(x, None); |
82 | /// # } |
83 | /// ``` |
84 | fn mul_div_floor(self, num: RHS, denom: RHS) -> Option<Self::Output>; |
85 | |
86 | /// Calculates `round(val * num / denom)`, i.e. the closest integer to the result of the |
87 | /// division. If both surrounding integers are the same distance (`x.5`), the one with the bigger |
88 | /// absolute value is returned (round away from 0.0). |
89 | /// |
90 | /// ## Example |
91 | /// |
92 | /// ```rust |
93 | /// extern crate muldiv; |
94 | /// use muldiv::MulDiv; |
95 | /// |
96 | /// # fn main() { |
97 | /// let x = 3i8.mul_div_round(4, 2); |
98 | /// assert_eq!(x, Some(6)); |
99 | /// |
100 | /// let x = 5i8.mul_div_round(2, 3); |
101 | /// assert_eq!(x, Some(3)); |
102 | /// |
103 | /// let x = (-5i8).mul_div_round(2, 3); |
104 | /// assert_eq!(x, Some(-3)); |
105 | /// |
106 | /// let x = 3i8.mul_div_round(3, 2); |
107 | /// assert_eq!(x, Some(5)); |
108 | /// |
109 | /// let x = (-3i8).mul_div_round(3, 2); |
110 | /// assert_eq!(x, Some(-5)); |
111 | /// |
112 | /// let x = 127i8.mul_div_round(4, 3); |
113 | /// assert_eq!(x, None); |
114 | /// # } |
115 | /// ``` |
116 | fn mul_div_round(self, num: RHS, denom: RHS) -> Option<Self::Output>; |
117 | |
118 | /// Calculates `ceil(val * num / denom)`, i.e. the the smallest integer greater than or equal to |
119 | /// the result of the division. |
120 | /// |
121 | /// ## Example |
122 | /// |
123 | /// ```rust |
124 | /// extern crate muldiv; |
125 | /// use muldiv::MulDiv; |
126 | /// |
127 | /// # fn main() { |
128 | /// let x = 3i8.mul_div_ceil(4, 2); |
129 | /// assert_eq!(x, Some(6)); |
130 | /// |
131 | /// let x = 5i8.mul_div_ceil(2, 3); |
132 | /// assert_eq!(x, Some(4)); |
133 | /// |
134 | /// let x = (-5i8).mul_div_ceil(2, 3); |
135 | /// assert_eq!(x, Some(-3)); |
136 | /// |
137 | /// let x = 3i8.mul_div_ceil(3, 2); |
138 | /// assert_eq!(x, Some(5)); |
139 | /// |
140 | /// let x = (-3i8).mul_div_ceil(3, 2); |
141 | /// assert_eq!(x, Some(-4)); |
142 | /// |
143 | /// let x = (127i8).mul_div_ceil(4, 3); |
144 | /// assert_eq!(x, None); |
145 | /// # } |
146 | /// ``` |
147 | fn mul_div_ceil(self, num: RHS, denom: RHS) -> Option<Self::Output>; |
148 | } |
149 | |
150 | macro_rules! mul_div_impl_unsigned { |
151 | ($t:ident, $u:ident) => { |
152 | impl MulDiv for $t { |
153 | type Output = $t; |
154 | |
155 | fn mul_div_floor(self, num: $t, denom: $t) -> Option<$t> { |
156 | assert_ne!(denom, 0); |
157 | let r = ((self as $u) * (num as $u)) / (denom as $u); |
158 | if r > $t::MAX as $u { |
159 | None |
160 | } else { |
161 | Some(r as $t) |
162 | } |
163 | } |
164 | |
165 | fn mul_div_round(self, num: $t, denom: $t) -> Option<$t> { |
166 | assert_ne!(denom, 0); |
167 | let r = ((self as $u) * (num as $u) + ((denom >> 1) as $u)) / (denom as $u); |
168 | if r > $t::MAX as $u { |
169 | None |
170 | } else { |
171 | Some(r as $t) |
172 | } |
173 | } |
174 | |
175 | fn mul_div_ceil(self, num: $t, denom: $t) -> Option<$t> { |
176 | assert_ne!(denom, 0); |
177 | let r = ((self as $u) * (num as $u) + ((denom - 1) as $u)) / (denom as $u); |
178 | if r > $t::MAX as $u { |
179 | None |
180 | } else { |
181 | Some(r as $t) |
182 | } |
183 | } |
184 | } |
185 | }; |
186 | } |
187 | |
188 | #[cfg (test)] |
189 | macro_rules! mul_div_impl_unsigned_tests { |
190 | ($t:ident, $u:ident) => { |
191 | use super::*; |
192 | |
193 | use quickcheck::{quickcheck, Arbitrary, Gen}; |
194 | |
195 | #[derive(Debug, Clone, Copy, PartialEq, Eq)] |
196 | struct NonZero($t); |
197 | |
198 | impl Arbitrary for NonZero { |
199 | fn arbitrary(g: &mut Gen) -> Self { |
200 | loop { |
201 | let v = $t::arbitrary(g); |
202 | if v != 0 { |
203 | return NonZero(v); |
204 | } |
205 | } |
206 | } |
207 | } |
208 | |
209 | quickcheck! { |
210 | fn scale_floor(val: $t, num: $t, den: NonZero) -> bool { |
211 | let res = val.mul_div_floor(num, den.0); |
212 | |
213 | let expected = ((val as $u) * (num as $u)) / (den.0 as $u); |
214 | |
215 | if expected > $t::MAX as $u { |
216 | res.is_none() |
217 | } else { |
218 | res == Some(expected as $t) |
219 | } |
220 | } |
221 | } |
222 | |
223 | quickcheck! { |
224 | fn scale_round(val: $t, num: $t, den: NonZero) -> bool { |
225 | let res = val.mul_div_round(num, den.0); |
226 | |
227 | let mut expected = ((val as $u) * (num as $u)) / (den.0 as $u); |
228 | let expected_rem = ((val as $u) * (num as $u)) % (den.0 as $u); |
229 | |
230 | if expected_rem >= ((den.0 as $u) + 1) >> 1 { |
231 | expected += 1 |
232 | } |
233 | |
234 | if expected > $t::MAX as $u { |
235 | res.is_none() |
236 | } else { |
237 | res == Some(expected as $t) |
238 | } |
239 | } |
240 | } |
241 | |
242 | quickcheck! { |
243 | fn scale_ceil(val: $t, num: $t, den: NonZero) -> bool { |
244 | let res = val.mul_div_ceil(num, den.0); |
245 | |
246 | let mut expected = ((val as $u) * (num as $u)) / (den.0 as $u); |
247 | let expected_rem = ((val as $u) * (num as $u)) % (den.0 as $u); |
248 | |
249 | if expected_rem != 0 { |
250 | expected += 1 |
251 | } |
252 | |
253 | if expected > $t::MAX as $u { |
254 | res.is_none() |
255 | } else { |
256 | res == Some(expected as $t) |
257 | } |
258 | } |
259 | } |
260 | }; |
261 | } |
262 | |
263 | mul_div_impl_unsigned!(u64, u128); |
264 | mul_div_impl_unsigned!(u32, u64); |
265 | mul_div_impl_unsigned!(u16, u32); |
266 | mul_div_impl_unsigned!(u8, u16); |
267 | |
268 | // FIXME: https://github.com/rust-lang/rust/issues/12249 |
269 | #[cfg (test)] |
270 | mod muldiv_u64_tests { |
271 | mul_div_impl_unsigned_tests!(u64, u128); |
272 | } |
273 | |
274 | #[cfg (test)] |
275 | mod muldiv_u32_tests { |
276 | mul_div_impl_unsigned_tests!(u32, u64); |
277 | } |
278 | |
279 | #[cfg (test)] |
280 | mod muldiv_u16_tests { |
281 | mul_div_impl_unsigned_tests!(u16, u32); |
282 | } |
283 | |
284 | #[cfg (test)] |
285 | mod muldiv_u8_tests { |
286 | mul_div_impl_unsigned_tests!(u8, u16); |
287 | } |
288 | |
289 | macro_rules! mul_div_impl_signed { |
290 | ($t:ident, $u:ident, $v:ident, $b:expr) => { |
291 | impl MulDiv for $t { |
292 | type Output = $t; |
293 | |
294 | fn mul_div_floor(self, num: $t, denom: $t) -> Option<$t> { |
295 | assert_ne!(denom, 0); |
296 | |
297 | let sgn = self.signum() * num.signum() * denom.signum(); |
298 | |
299 | let min_val: $u = 1 << ($b - 1); |
300 | let abs = |x: $t| if x != $t::MIN { x.abs() as $u } else { min_val }; |
301 | |
302 | let self_u = abs(self); |
303 | let num_u = abs(num); |
304 | let denom_u = abs(denom); |
305 | |
306 | if sgn < 0 { |
307 | self_u.mul_div_ceil(num_u, denom_u) |
308 | } else { |
309 | self_u.mul_div_floor(num_u, denom_u) |
310 | } |
311 | .and_then(|r| { |
312 | if r <= $t::MAX as $u { |
313 | Some(sgn * (r as $t)) |
314 | } else if sgn < 0 && r == min_val { |
315 | Some($t::MIN) |
316 | } else { |
317 | None |
318 | } |
319 | }) |
320 | } |
321 | |
322 | fn mul_div_round(self, num: $t, denom: $t) -> Option<$t> { |
323 | assert_ne!(denom, 0); |
324 | |
325 | let sgn = self.signum() * num.signum() * denom.signum(); |
326 | |
327 | let min_val: $u = 1 << ($b - 1); |
328 | let abs = |x: $t| if x != $t::MIN { x.abs() as $u } else { min_val }; |
329 | |
330 | let self_u = abs(self); |
331 | let num_u = abs(num); |
332 | let denom_u = abs(denom); |
333 | |
334 | if sgn < 0 { |
335 | let r = |
336 | ((self_u as $v) * (num_u as $v) + ((denom_u >> 1) as $v)) / (denom_u as $v); |
337 | if r > $u::MAX as $v { |
338 | None |
339 | } else { |
340 | Some(r as $u) |
341 | } |
342 | } else { |
343 | self_u.mul_div_round(num_u, denom_u) |
344 | } |
345 | .and_then(|r| { |
346 | if r <= $t::MAX as $u { |
347 | Some(sgn * (r as $t)) |
348 | } else if sgn < 0 && r == min_val { |
349 | Some($t::MIN) |
350 | } else { |
351 | None |
352 | } |
353 | }) |
354 | } |
355 | |
356 | fn mul_div_ceil(self, num: $t, denom: $t) -> Option<$t> { |
357 | assert_ne!(denom, 0); |
358 | |
359 | let sgn = self.signum() * num.signum() * denom.signum(); |
360 | |
361 | let min_val: $u = 1 << ($b - 1); |
362 | let abs = |x: $t| if x != $t::MIN { x.abs() as $u } else { min_val }; |
363 | |
364 | let self_u = abs(self); |
365 | let num_u = abs(num); |
366 | let denom_u = abs(denom); |
367 | |
368 | if sgn < 0 { |
369 | self_u.mul_div_floor(num_u, denom_u) |
370 | } else { |
371 | self_u.mul_div_ceil(num_u, denom_u) |
372 | } |
373 | .and_then(|r| { |
374 | if r <= $t::MAX as $u { |
375 | Some(sgn * (r as $t)) |
376 | } else if sgn < 0 && r == min_val { |
377 | Some($t::MIN) |
378 | } else { |
379 | None |
380 | } |
381 | }) |
382 | } |
383 | } |
384 | }; |
385 | } |
386 | |
387 | mul_div_impl_signed!(i64, u64, u128, 64); |
388 | mul_div_impl_signed!(i32, u32, u64, 32); |
389 | mul_div_impl_signed!(i16, u16, u32, 16); |
390 | mul_div_impl_signed!(i8, u8, u16, 8); |
391 | |
392 | #[cfg (test)] |
393 | macro_rules! mul_div_impl_signed_tests { |
394 | ($t:ident, $u:ident) => { |
395 | use super::*; |
396 | |
397 | use quickcheck::{quickcheck, Arbitrary, Gen}; |
398 | |
399 | #[derive(Debug, Clone, Copy, PartialEq, Eq)] |
400 | struct NonZero($t); |
401 | |
402 | impl Arbitrary for NonZero { |
403 | fn arbitrary(g: &mut Gen) -> Self { |
404 | loop { |
405 | let v = $t::arbitrary(g); |
406 | if v != 0 { |
407 | return NonZero(v); |
408 | } |
409 | } |
410 | } |
411 | } |
412 | |
413 | quickcheck! { |
414 | fn scale_floor(val: $t, num: $t, den: NonZero) -> bool { |
415 | let res = val.mul_div_floor(num, den.0); |
416 | |
417 | let sgn = val.signum() * num.signum() * den.0.signum(); |
418 | let mut expected = ((val as $u) * (num as $u)) / (den.0 as $u); |
419 | let expected_rem = ((val as $u) * (num as $u)) % (den.0 as $u); |
420 | |
421 | if sgn < 0 && expected_rem.abs() != 0 { |
422 | expected -= 1 |
423 | } |
424 | |
425 | if expected > $t::MAX as $u || expected < $t::MIN as $u { |
426 | res.is_none() |
427 | } else { |
428 | res == Some(expected as $t) |
429 | } |
430 | } |
431 | } |
432 | |
433 | quickcheck! { |
434 | fn scale_round(val: $t, num: $t, den: NonZero) -> bool { |
435 | let res = val.mul_div_round(num, den.0); |
436 | |
437 | let sgn = val.signum() * num.signum() * den.0.signum(); |
438 | let mut expected = ((val as $u) * (num as $u)) / (den.0 as $u); |
439 | let expected_rem = ((val as $u) * (num as $u)) % (den.0 as $u); |
440 | |
441 | if sgn < 0 && expected_rem.abs() >= ((den.0 as $u).abs() + 1) >> 1 { |
442 | expected -= 1 |
443 | } else if sgn > 0 && expected_rem.abs() >= ((den.0 as $u).abs() + 1) >> 1 { |
444 | expected += 1 |
445 | } |
446 | |
447 | if expected > $t::MAX as $u || expected < $t::MIN as $u { |
448 | res.is_none() |
449 | } else { |
450 | res == Some(expected as $t) |
451 | } |
452 | } |
453 | } |
454 | |
455 | quickcheck! { |
456 | fn scale_ceil(val: $t, num: $t, den: NonZero) -> bool { |
457 | let res = val.mul_div_ceil(num, den.0); |
458 | |
459 | let sgn = val.signum() * num.signum() * den.0.signum(); |
460 | let mut expected = ((val as $u) * (num as $u)) / (den.0 as $u); |
461 | let expected_rem = ((val as $u) * (num as $u)) % (den.0 as $u); |
462 | |
463 | if sgn > 0 && expected_rem.abs() != 0 { |
464 | expected += 1 |
465 | } |
466 | |
467 | if expected > $t::MAX as $u || expected < $t::MIN as $u { |
468 | res.is_none() |
469 | } else { |
470 | res == Some(expected as $t) |
471 | } |
472 | } |
473 | } |
474 | }; |
475 | } |
476 | |
477 | // FIXME: https://github.com/rust-lang/rust/issues/12249 |
478 | #[cfg (test)] |
479 | mod muldiv_i64_tests { |
480 | mul_div_impl_signed_tests!(i64, i128); |
481 | } |
482 | |
483 | #[cfg (test)] |
484 | mod muldiv_i32_tests { |
485 | mul_div_impl_signed_tests!(i32, i64); |
486 | } |
487 | |
488 | #[cfg (test)] |
489 | mod muldiv_i16_tests { |
490 | mul_div_impl_signed_tests!(i16, i32); |
491 | } |
492 | |
493 | #[cfg (test)] |
494 | mod muldiv_i8_tests { |
495 | mul_div_impl_signed_tests!(i8, i16); |
496 | } |
497 | |