| 1 | // Copyright (C) 2016,2017 Sebastian Dröge <sebastian@centricular.com> |
| 2 | // |
| 3 | // Licensed under the MIT license, see the LICENSE file or <http://opensource.org/licenses/MIT> |
| 4 | |
| 5 | #![no_std ] |
| 6 | |
| 7 | //! Provides a trait for numeric types to perform combined multiplication and division with |
| 8 | //! overflow protection. |
| 9 | //! |
| 10 | //! The [`MulDiv`] trait provides functions for performing combined multiplication and division for |
| 11 | //! numeric types and comes with implementations for all the primitive integer types. Three |
| 12 | //! variants with different rounding characteristics are provided: [`mul_div_floor()`], |
| 13 | //! [`mul_div_round()`] and [`mul_div_ceil()`]. |
| 14 | //! |
| 15 | //! ## Example |
| 16 | //! |
| 17 | //! ```rust |
| 18 | //! extern crate muldiv; |
| 19 | //! use muldiv::MulDiv; |
| 20 | //! # fn main() { |
| 21 | //! // Calculates 127 * 23 / 42 rounded down |
| 22 | //! let x = 127u8.mul_div_floor(23, 42); |
| 23 | //! assert_eq!(x, Some(69)); |
| 24 | //! # } |
| 25 | //! ``` |
| 26 | //! [`MulDiv`]: trait.MulDiv.html |
| 27 | //! [`mul_div_floor()`]: trait.MulDiv.html#tymethod.mul_div_floor |
| 28 | //! [`mul_div_round()`]: trait.MulDiv.html#tymethod.mul_div_round |
| 29 | //! [`mul_div_ceil()`]: trait.MulDiv.html#tymethod.mul_div_ceil |
| 30 | |
| 31 | use core::u16; |
| 32 | use core::u32; |
| 33 | use core::u64; |
| 34 | use core::u8; |
| 35 | |
| 36 | use core::i16; |
| 37 | use core::i32; |
| 38 | use core::i64; |
| 39 | use core::i8; |
| 40 | |
| 41 | /// Trait for calculating `val * num / denom` with different rounding modes and overflow |
| 42 | /// protection. |
| 43 | /// |
| 44 | /// Implementations of this trait have to ensure that even if the result of the multiplication does |
| 45 | /// not fit into the type, as long as it would fit after the division the correct result has to be |
| 46 | /// returned instead of `None`. `None` only should be returned if the overall result does not fit |
| 47 | /// into the type. |
| 48 | /// |
| 49 | /// This specifically means that e.g. the `u64` implementation must, depending on the arguments, be |
| 50 | /// able to do 128 bit integer multiplication. |
| 51 | pub trait MulDiv<RHS = Self> { |
| 52 | /// Output type for the methods of this trait. |
| 53 | type Output; |
| 54 | |
| 55 | /// Calculates `floor(val * num / denom)`, i.e. the largest integer less than or equal to the |
| 56 | /// result of the division. |
| 57 | /// |
| 58 | /// ## Example |
| 59 | /// |
| 60 | /// ```rust |
| 61 | /// extern crate muldiv; |
| 62 | /// use muldiv::MulDiv; |
| 63 | /// |
| 64 | /// # fn main() { |
| 65 | /// let x = 3i8.mul_div_floor(4, 2); |
| 66 | /// assert_eq!(x, Some(6)); |
| 67 | /// |
| 68 | /// let x = 5i8.mul_div_floor(2, 3); |
| 69 | /// assert_eq!(x, Some(3)); |
| 70 | /// |
| 71 | /// let x = (-5i8).mul_div_floor(2, 3); |
| 72 | /// assert_eq!(x, Some(-4)); |
| 73 | /// |
| 74 | /// let x = 3i8.mul_div_floor(3, 2); |
| 75 | /// assert_eq!(x, Some(4)); |
| 76 | /// |
| 77 | /// let x = (-3i8).mul_div_floor(3, 2); |
| 78 | /// assert_eq!(x, Some(-5)); |
| 79 | /// |
| 80 | /// let x = 127i8.mul_div_floor(4, 3); |
| 81 | /// assert_eq!(x, None); |
| 82 | /// # } |
| 83 | /// ``` |
| 84 | fn mul_div_floor(self, num: RHS, denom: RHS) -> Option<Self::Output>; |
| 85 | |
| 86 | /// Calculates `round(val * num / denom)`, i.e. the closest integer to the result of the |
| 87 | /// division. If both surrounding integers are the same distance (`x.5`), the one with the bigger |
| 88 | /// absolute value is returned (round away from 0.0). |
| 89 | /// |
| 90 | /// ## Example |
| 91 | /// |
| 92 | /// ```rust |
| 93 | /// extern crate muldiv; |
| 94 | /// use muldiv::MulDiv; |
| 95 | /// |
| 96 | /// # fn main() { |
| 97 | /// let x = 3i8.mul_div_round(4, 2); |
| 98 | /// assert_eq!(x, Some(6)); |
| 99 | /// |
| 100 | /// let x = 5i8.mul_div_round(2, 3); |
| 101 | /// assert_eq!(x, Some(3)); |
| 102 | /// |
| 103 | /// let x = (-5i8).mul_div_round(2, 3); |
| 104 | /// assert_eq!(x, Some(-3)); |
| 105 | /// |
| 106 | /// let x = 3i8.mul_div_round(3, 2); |
| 107 | /// assert_eq!(x, Some(5)); |
| 108 | /// |
| 109 | /// let x = (-3i8).mul_div_round(3, 2); |
| 110 | /// assert_eq!(x, Some(-5)); |
| 111 | /// |
| 112 | /// let x = 127i8.mul_div_round(4, 3); |
| 113 | /// assert_eq!(x, None); |
| 114 | /// # } |
| 115 | /// ``` |
| 116 | fn mul_div_round(self, num: RHS, denom: RHS) -> Option<Self::Output>; |
| 117 | |
| 118 | /// Calculates `ceil(val * num / denom)`, i.e. the the smallest integer greater than or equal to |
| 119 | /// the result of the division. |
| 120 | /// |
| 121 | /// ## Example |
| 122 | /// |
| 123 | /// ```rust |
| 124 | /// extern crate muldiv; |
| 125 | /// use muldiv::MulDiv; |
| 126 | /// |
| 127 | /// # fn main() { |
| 128 | /// let x = 3i8.mul_div_ceil(4, 2); |
| 129 | /// assert_eq!(x, Some(6)); |
| 130 | /// |
| 131 | /// let x = 5i8.mul_div_ceil(2, 3); |
| 132 | /// assert_eq!(x, Some(4)); |
| 133 | /// |
| 134 | /// let x = (-5i8).mul_div_ceil(2, 3); |
| 135 | /// assert_eq!(x, Some(-3)); |
| 136 | /// |
| 137 | /// let x = 3i8.mul_div_ceil(3, 2); |
| 138 | /// assert_eq!(x, Some(5)); |
| 139 | /// |
| 140 | /// let x = (-3i8).mul_div_ceil(3, 2); |
| 141 | /// assert_eq!(x, Some(-4)); |
| 142 | /// |
| 143 | /// let x = (127i8).mul_div_ceil(4, 3); |
| 144 | /// assert_eq!(x, None); |
| 145 | /// # } |
| 146 | /// ``` |
| 147 | fn mul_div_ceil(self, num: RHS, denom: RHS) -> Option<Self::Output>; |
| 148 | } |
| 149 | |
| 150 | macro_rules! mul_div_impl_unsigned { |
| 151 | ($t:ident, $u:ident) => { |
| 152 | impl MulDiv for $t { |
| 153 | type Output = $t; |
| 154 | |
| 155 | fn mul_div_floor(self, num: $t, denom: $t) -> Option<$t> { |
| 156 | assert_ne!(denom, 0); |
| 157 | let r = ((self as $u) * (num as $u)) / (denom as $u); |
| 158 | if r > $t::MAX as $u { |
| 159 | None |
| 160 | } else { |
| 161 | Some(r as $t) |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | fn mul_div_round(self, num: $t, denom: $t) -> Option<$t> { |
| 166 | assert_ne!(denom, 0); |
| 167 | let r = ((self as $u) * (num as $u) + ((denom >> 1) as $u)) / (denom as $u); |
| 168 | if r > $t::MAX as $u { |
| 169 | None |
| 170 | } else { |
| 171 | Some(r as $t) |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | fn mul_div_ceil(self, num: $t, denom: $t) -> Option<$t> { |
| 176 | assert_ne!(denom, 0); |
| 177 | let r = ((self as $u) * (num as $u) + ((denom - 1) as $u)) / (denom as $u); |
| 178 | if r > $t::MAX as $u { |
| 179 | None |
| 180 | } else { |
| 181 | Some(r as $t) |
| 182 | } |
| 183 | } |
| 184 | } |
| 185 | }; |
| 186 | } |
| 187 | |
| 188 | #[cfg (test)] |
| 189 | macro_rules! mul_div_impl_unsigned_tests { |
| 190 | ($t:ident, $u:ident) => { |
| 191 | use super::*; |
| 192 | |
| 193 | use quickcheck::{quickcheck, Arbitrary, Gen}; |
| 194 | |
| 195 | #[derive(Debug, Clone, Copy, PartialEq, Eq)] |
| 196 | struct NonZero($t); |
| 197 | |
| 198 | impl Arbitrary for NonZero { |
| 199 | fn arbitrary(g: &mut Gen) -> Self { |
| 200 | loop { |
| 201 | let v = $t::arbitrary(g); |
| 202 | if v != 0 { |
| 203 | return NonZero(v); |
| 204 | } |
| 205 | } |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | quickcheck! { |
| 210 | fn scale_floor(val: $t, num: $t, den: NonZero) -> bool { |
| 211 | let res = val.mul_div_floor(num, den.0); |
| 212 | |
| 213 | let expected = ((val as $u) * (num as $u)) / (den.0 as $u); |
| 214 | |
| 215 | if expected > $t::MAX as $u { |
| 216 | res.is_none() |
| 217 | } else { |
| 218 | res == Some(expected as $t) |
| 219 | } |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | quickcheck! { |
| 224 | fn scale_round(val: $t, num: $t, den: NonZero) -> bool { |
| 225 | let res = val.mul_div_round(num, den.0); |
| 226 | |
| 227 | let mut expected = ((val as $u) * (num as $u)) / (den.0 as $u); |
| 228 | let expected_rem = ((val as $u) * (num as $u)) % (den.0 as $u); |
| 229 | |
| 230 | if expected_rem >= ((den.0 as $u) + 1) >> 1 { |
| 231 | expected += 1 |
| 232 | } |
| 233 | |
| 234 | if expected > $t::MAX as $u { |
| 235 | res.is_none() |
| 236 | } else { |
| 237 | res == Some(expected as $t) |
| 238 | } |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | quickcheck! { |
| 243 | fn scale_ceil(val: $t, num: $t, den: NonZero) -> bool { |
| 244 | let res = val.mul_div_ceil(num, den.0); |
| 245 | |
| 246 | let mut expected = ((val as $u) * (num as $u)) / (den.0 as $u); |
| 247 | let expected_rem = ((val as $u) * (num as $u)) % (den.0 as $u); |
| 248 | |
| 249 | if expected_rem != 0 { |
| 250 | expected += 1 |
| 251 | } |
| 252 | |
| 253 | if expected > $t::MAX as $u { |
| 254 | res.is_none() |
| 255 | } else { |
| 256 | res == Some(expected as $t) |
| 257 | } |
| 258 | } |
| 259 | } |
| 260 | }; |
| 261 | } |
| 262 | |
| 263 | mul_div_impl_unsigned!(u64, u128); |
| 264 | mul_div_impl_unsigned!(u32, u64); |
| 265 | mul_div_impl_unsigned!(u16, u32); |
| 266 | mul_div_impl_unsigned!(u8, u16); |
| 267 | |
| 268 | // FIXME: https://github.com/rust-lang/rust/issues/12249 |
| 269 | #[cfg (test)] |
| 270 | mod muldiv_u64_tests { |
| 271 | mul_div_impl_unsigned_tests!(u64, u128); |
| 272 | } |
| 273 | |
| 274 | #[cfg (test)] |
| 275 | mod muldiv_u32_tests { |
| 276 | mul_div_impl_unsigned_tests!(u32, u64); |
| 277 | } |
| 278 | |
| 279 | #[cfg (test)] |
| 280 | mod muldiv_u16_tests { |
| 281 | mul_div_impl_unsigned_tests!(u16, u32); |
| 282 | } |
| 283 | |
| 284 | #[cfg (test)] |
| 285 | mod muldiv_u8_tests { |
| 286 | mul_div_impl_unsigned_tests!(u8, u16); |
| 287 | } |
| 288 | |
| 289 | macro_rules! mul_div_impl_signed { |
| 290 | ($t:ident, $u:ident, $v:ident, $b:expr) => { |
| 291 | impl MulDiv for $t { |
| 292 | type Output = $t; |
| 293 | |
| 294 | fn mul_div_floor(self, num: $t, denom: $t) -> Option<$t> { |
| 295 | assert_ne!(denom, 0); |
| 296 | |
| 297 | let sgn = self.signum() * num.signum() * denom.signum(); |
| 298 | |
| 299 | let min_val: $u = 1 << ($b - 1); |
| 300 | let abs = |x: $t| if x != $t::MIN { x.abs() as $u } else { min_val }; |
| 301 | |
| 302 | let self_u = abs(self); |
| 303 | let num_u = abs(num); |
| 304 | let denom_u = abs(denom); |
| 305 | |
| 306 | if sgn < 0 { |
| 307 | self_u.mul_div_ceil(num_u, denom_u) |
| 308 | } else { |
| 309 | self_u.mul_div_floor(num_u, denom_u) |
| 310 | } |
| 311 | .and_then(|r| { |
| 312 | if r <= $t::MAX as $u { |
| 313 | Some(sgn * (r as $t)) |
| 314 | } else if sgn < 0 && r == min_val { |
| 315 | Some($t::MIN) |
| 316 | } else { |
| 317 | None |
| 318 | } |
| 319 | }) |
| 320 | } |
| 321 | |
| 322 | fn mul_div_round(self, num: $t, denom: $t) -> Option<$t> { |
| 323 | assert_ne!(denom, 0); |
| 324 | |
| 325 | let sgn = self.signum() * num.signum() * denom.signum(); |
| 326 | |
| 327 | let min_val: $u = 1 << ($b - 1); |
| 328 | let abs = |x: $t| if x != $t::MIN { x.abs() as $u } else { min_val }; |
| 329 | |
| 330 | let self_u = abs(self); |
| 331 | let num_u = abs(num); |
| 332 | let denom_u = abs(denom); |
| 333 | |
| 334 | if sgn < 0 { |
| 335 | let r = |
| 336 | ((self_u as $v) * (num_u as $v) + ((denom_u >> 1) as $v)) / (denom_u as $v); |
| 337 | if r > $u::MAX as $v { |
| 338 | None |
| 339 | } else { |
| 340 | Some(r as $u) |
| 341 | } |
| 342 | } else { |
| 343 | self_u.mul_div_round(num_u, denom_u) |
| 344 | } |
| 345 | .and_then(|r| { |
| 346 | if r <= $t::MAX as $u { |
| 347 | Some(sgn * (r as $t)) |
| 348 | } else if sgn < 0 && r == min_val { |
| 349 | Some($t::MIN) |
| 350 | } else { |
| 351 | None |
| 352 | } |
| 353 | }) |
| 354 | } |
| 355 | |
| 356 | fn mul_div_ceil(self, num: $t, denom: $t) -> Option<$t> { |
| 357 | assert_ne!(denom, 0); |
| 358 | |
| 359 | let sgn = self.signum() * num.signum() * denom.signum(); |
| 360 | |
| 361 | let min_val: $u = 1 << ($b - 1); |
| 362 | let abs = |x: $t| if x != $t::MIN { x.abs() as $u } else { min_val }; |
| 363 | |
| 364 | let self_u = abs(self); |
| 365 | let num_u = abs(num); |
| 366 | let denom_u = abs(denom); |
| 367 | |
| 368 | if sgn < 0 { |
| 369 | self_u.mul_div_floor(num_u, denom_u) |
| 370 | } else { |
| 371 | self_u.mul_div_ceil(num_u, denom_u) |
| 372 | } |
| 373 | .and_then(|r| { |
| 374 | if r <= $t::MAX as $u { |
| 375 | Some(sgn * (r as $t)) |
| 376 | } else if sgn < 0 && r == min_val { |
| 377 | Some($t::MIN) |
| 378 | } else { |
| 379 | None |
| 380 | } |
| 381 | }) |
| 382 | } |
| 383 | } |
| 384 | }; |
| 385 | } |
| 386 | |
| 387 | mul_div_impl_signed!(i64, u64, u128, 64); |
| 388 | mul_div_impl_signed!(i32, u32, u64, 32); |
| 389 | mul_div_impl_signed!(i16, u16, u32, 16); |
| 390 | mul_div_impl_signed!(i8, u8, u16, 8); |
| 391 | |
| 392 | #[cfg (test)] |
| 393 | macro_rules! mul_div_impl_signed_tests { |
| 394 | ($t:ident, $u:ident) => { |
| 395 | use super::*; |
| 396 | |
| 397 | use quickcheck::{quickcheck, Arbitrary, Gen}; |
| 398 | |
| 399 | #[derive(Debug, Clone, Copy, PartialEq, Eq)] |
| 400 | struct NonZero($t); |
| 401 | |
| 402 | impl Arbitrary for NonZero { |
| 403 | fn arbitrary(g: &mut Gen) -> Self { |
| 404 | loop { |
| 405 | let v = $t::arbitrary(g); |
| 406 | if v != 0 { |
| 407 | return NonZero(v); |
| 408 | } |
| 409 | } |
| 410 | } |
| 411 | } |
| 412 | |
| 413 | quickcheck! { |
| 414 | fn scale_floor(val: $t, num: $t, den: NonZero) -> bool { |
| 415 | let res = val.mul_div_floor(num, den.0); |
| 416 | |
| 417 | let sgn = val.signum() * num.signum() * den.0.signum(); |
| 418 | let mut expected = ((val as $u) * (num as $u)) / (den.0 as $u); |
| 419 | let expected_rem = ((val as $u) * (num as $u)) % (den.0 as $u); |
| 420 | |
| 421 | if sgn < 0 && expected_rem.abs() != 0 { |
| 422 | expected -= 1 |
| 423 | } |
| 424 | |
| 425 | if expected > $t::MAX as $u || expected < $t::MIN as $u { |
| 426 | res.is_none() |
| 427 | } else { |
| 428 | res == Some(expected as $t) |
| 429 | } |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | quickcheck! { |
| 434 | fn scale_round(val: $t, num: $t, den: NonZero) -> bool { |
| 435 | let res = val.mul_div_round(num, den.0); |
| 436 | |
| 437 | let sgn = val.signum() * num.signum() * den.0.signum(); |
| 438 | let mut expected = ((val as $u) * (num as $u)) / (den.0 as $u); |
| 439 | let expected_rem = ((val as $u) * (num as $u)) % (den.0 as $u); |
| 440 | |
| 441 | if sgn < 0 && expected_rem.abs() >= ((den.0 as $u).abs() + 1) >> 1 { |
| 442 | expected -= 1 |
| 443 | } else if sgn > 0 && expected_rem.abs() >= ((den.0 as $u).abs() + 1) >> 1 { |
| 444 | expected += 1 |
| 445 | } |
| 446 | |
| 447 | if expected > $t::MAX as $u || expected < $t::MIN as $u { |
| 448 | res.is_none() |
| 449 | } else { |
| 450 | res == Some(expected as $t) |
| 451 | } |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | quickcheck! { |
| 456 | fn scale_ceil(val: $t, num: $t, den: NonZero) -> bool { |
| 457 | let res = val.mul_div_ceil(num, den.0); |
| 458 | |
| 459 | let sgn = val.signum() * num.signum() * den.0.signum(); |
| 460 | let mut expected = ((val as $u) * (num as $u)) / (den.0 as $u); |
| 461 | let expected_rem = ((val as $u) * (num as $u)) % (den.0 as $u); |
| 462 | |
| 463 | if sgn > 0 && expected_rem.abs() != 0 { |
| 464 | expected += 1 |
| 465 | } |
| 466 | |
| 467 | if expected > $t::MAX as $u || expected < $t::MIN as $u { |
| 468 | res.is_none() |
| 469 | } else { |
| 470 | res == Some(expected as $t) |
| 471 | } |
| 472 | } |
| 473 | } |
| 474 | }; |
| 475 | } |
| 476 | |
| 477 | // FIXME: https://github.com/rust-lang/rust/issues/12249 |
| 478 | #[cfg (test)] |
| 479 | mod muldiv_i64_tests { |
| 480 | mul_div_impl_signed_tests!(i64, i128); |
| 481 | } |
| 482 | |
| 483 | #[cfg (test)] |
| 484 | mod muldiv_i32_tests { |
| 485 | mul_div_impl_signed_tests!(i32, i64); |
| 486 | } |
| 487 | |
| 488 | #[cfg (test)] |
| 489 | mod muldiv_i16_tests { |
| 490 | mul_div_impl_signed_tests!(i16, i32); |
| 491 | } |
| 492 | |
| 493 | #[cfg (test)] |
| 494 | mod muldiv_i8_tests { |
| 495 | mul_div_impl_signed_tests!(i8, i16); |
| 496 | } |
| 497 | |