| 1 | //! Minimal and reusable non-blocking I/O layer |
| 2 | //! |
| 3 | //! The ultimate goal of this crate is *code reuse*. With this crate you can |
| 4 | //! write *core* I/O APIs that can then be adapted to operate in either blocking |
| 5 | //! or non-blocking manner. Furthermore those APIs are not tied to a particular |
| 6 | //! asynchronous model and can be adapted to work with the `futures` model or |
| 7 | //! with the `async` / `await` model. |
| 8 | //! |
| 9 | //! # Core idea |
| 10 | //! |
| 11 | //! The [`WouldBlock`](enum.Error.html) error variant signals that the operation |
| 12 | //! can't be completed *right now* and would need to block to complete. |
| 13 | //! [`WouldBlock`](enum.Error.html) is a special error in the sense that's not |
| 14 | //! *fatal*; the operation can still be completed by retrying again later. |
| 15 | //! |
| 16 | //! [`nb::Result`](type.Result.html) is based on the API of |
| 17 | //! [`std::io::Result`](https://doc.rust-lang.org/std/io/type.Result.html), |
| 18 | //! which has a `WouldBlock` variant in its |
| 19 | //! [`ErrorKind`](https://doc.rust-lang.org/std/io/enum.ErrorKind.html). |
| 20 | //! |
| 21 | //! We can map [`WouldBlock`](enum.Error.html) to different blocking and |
| 22 | //! non-blocking models: |
| 23 | //! |
| 24 | //! - In blocking mode: [`WouldBlock`](enum.Error.html) means try again right |
| 25 | //! now (i.e. busy wait) |
| 26 | //! - In `futures` mode: [`WouldBlock`](enum.Error.html) means |
| 27 | //! [`Async::NotReady`](https://docs.rs/futures) |
| 28 | //! - In `await` mode: [`WouldBlock`](enum.Error.html) means `yield` |
| 29 | //! (suspend the generator) |
| 30 | //! |
| 31 | //! # How to use this crate |
| 32 | //! |
| 33 | //! Application specific errors can be put inside the `Other` variant in the |
| 34 | //! [`nb::Error`](enum.Error.html) enum. |
| 35 | //! |
| 36 | //! So in your API instead of returning `Result<T, MyError>` return |
| 37 | //! `nb::Result<T, MyError>` |
| 38 | //! |
| 39 | //! ``` |
| 40 | //! enum MyError { |
| 41 | //! ThisError, |
| 42 | //! ThatError, |
| 43 | //! // .. |
| 44 | //! } |
| 45 | //! |
| 46 | //! // This is a blocking function, so it returns a normal `Result` |
| 47 | //! fn before() -> Result<(), MyError> { |
| 48 | //! // .. |
| 49 | //! # Ok(()) |
| 50 | //! } |
| 51 | //! |
| 52 | //! // This is now a potentially (read: *non*) blocking function so it returns `nb::Result` |
| 53 | //! // instead of blocking |
| 54 | //! fn after() -> nb::Result<(), MyError> { |
| 55 | //! // .. |
| 56 | //! # Ok(()) |
| 57 | //! } |
| 58 | //! ``` |
| 59 | //! |
| 60 | //! You can use the *never type* (`!`) to signal that some API has no fatal |
| 61 | //! errors but may block: |
| 62 | //! |
| 63 | //! ``` |
| 64 | //! #![feature(never_type)] |
| 65 | //! |
| 66 | //! // This returns `Ok(())` or `Err(nb::Error::WouldBlock)` |
| 67 | //! fn maybe_blocking_api() -> nb::Result<(), !> { |
| 68 | //! // .. |
| 69 | //! # Ok(()) |
| 70 | //! } |
| 71 | //! ``` |
| 72 | //! |
| 73 | //! Once your API uses [`nb::Result`](type.Result.html) you can leverage the |
| 74 | //! [`block!`], [`try_nb!`] and [`await!`] macros to adapt it for blocking |
| 75 | //! operation, or for non-blocking operation with `futures` or `await`. |
| 76 | //! |
| 77 | //! **NOTE** Currently, both `try_nb!` and `await!` are feature gated behind the `unstable` Cargo |
| 78 | //! feature. |
| 79 | //! |
| 80 | //! [`block!`]: macro.block.html |
| 81 | //! [`try_nb!`]: macro.try_nb.html |
| 82 | //! [`await!`]: macro.await.html |
| 83 | //! |
| 84 | //! # Examples |
| 85 | //! |
| 86 | //! ## A Core I/O API |
| 87 | //! |
| 88 | //! Imagine the code (crate) below represents a Hardware Abstraction Layer for some microcontroller |
| 89 | //! (or microcontroller family). |
| 90 | //! |
| 91 | //! *In this and the following examples let's assume for simplicity that peripherals are treated |
| 92 | //! as global singletons and that no preemption is possible (i.e. interrupts are disabled).* |
| 93 | //! |
| 94 | //! ``` |
| 95 | //! #![feature(never_type)] |
| 96 | //! |
| 97 | //! // This is the `hal` crate |
| 98 | //! // Note that it doesn't depend on the `futures` crate |
| 99 | //! |
| 100 | //! extern crate nb; |
| 101 | //! |
| 102 | //! /// An LED |
| 103 | //! pub struct Led; |
| 104 | //! |
| 105 | //! impl Led { |
| 106 | //! pub fn off(&self) { |
| 107 | //! // .. |
| 108 | //! } |
| 109 | //! pub fn on(&self) { |
| 110 | //! // .. |
| 111 | //! } |
| 112 | //! } |
| 113 | //! |
| 114 | //! /// Serial interface |
| 115 | //! pub struct Serial; |
| 116 | //! pub enum Error { |
| 117 | //! Overrun, |
| 118 | //! // .. |
| 119 | //! } |
| 120 | //! |
| 121 | //! impl Serial { |
| 122 | //! /// Reads a single byte from the serial interface |
| 123 | //! pub fn read(&self) -> nb::Result<u8, Error> { |
| 124 | //! // .. |
| 125 | //! # Ok(0) |
| 126 | //! } |
| 127 | //! |
| 128 | //! /// Writes a single byte to the serial interface |
| 129 | //! pub fn write(&self, byte: u8) -> nb::Result<(), Error> { |
| 130 | //! // .. |
| 131 | //! # Ok(()) |
| 132 | //! } |
| 133 | //! } |
| 134 | //! |
| 135 | //! /// A timer used for timeouts |
| 136 | //! pub struct Timer; |
| 137 | //! |
| 138 | //! impl Timer { |
| 139 | //! /// Waits until the timer times out |
| 140 | //! pub fn wait(&self) -> nb::Result<(), !> { |
| 141 | //! //^ NOTE the `!` indicates that this operation can block but has no |
| 142 | //! // other form of error |
| 143 | //! |
| 144 | //! // .. |
| 145 | //! # Ok(()) |
| 146 | //! } |
| 147 | //! } |
| 148 | //! ``` |
| 149 | //! |
| 150 | //! ## Blocking mode |
| 151 | //! |
| 152 | //! Turn on an LED for one second and *then* loops back serial data. |
| 153 | //! |
| 154 | //! ``` |
| 155 | //! # #![feature(never_type)] |
| 156 | //! #[macro_use(block)] |
| 157 | //! extern crate nb; |
| 158 | //! |
| 159 | //! use hal::{Led, Serial, Timer}; |
| 160 | //! |
| 161 | //! fn main() { |
| 162 | //! // Turn the LED on for one second |
| 163 | //! Led.on(); |
| 164 | //! block!(Timer.wait()).unwrap(); // NOTE(unwrap) E = ! |
| 165 | //! Led.off(); |
| 166 | //! |
| 167 | //! // Serial interface loopback |
| 168 | //! # return; |
| 169 | //! loop { |
| 170 | //! let byte = block!(Serial.read()).unwrap(); |
| 171 | //! block!(Serial.write(byte)).unwrap(); |
| 172 | //! } |
| 173 | //! } |
| 174 | //! |
| 175 | //! # mod hal { |
| 176 | //! # use nb; |
| 177 | //! # pub struct Led; |
| 178 | //! # impl Led { |
| 179 | //! # pub fn off(&self) {} |
| 180 | //! # pub fn on(&self) {} |
| 181 | //! # } |
| 182 | //! # pub struct Serial; |
| 183 | //! # impl Serial { |
| 184 | //! # pub fn read(&self) -> nb::Result<u8, ()> { Ok(0) } |
| 185 | //! # pub fn write(&self, _: u8) -> nb::Result<(), ()> { Ok(()) } |
| 186 | //! # } |
| 187 | //! # pub struct Timer; |
| 188 | //! # impl Timer { |
| 189 | //! # pub fn wait(&self) -> nb::Result<(), !> { Ok(()) } |
| 190 | //! # } |
| 191 | //! # } |
| 192 | //! ``` |
| 193 | //! |
| 194 | //! ## `futures` |
| 195 | //! |
| 196 | //! Blinks an LED every second *and* loops back serial data. Both tasks run |
| 197 | //! concurrently. |
| 198 | //! |
| 199 | //! ``` |
| 200 | //! #![feature(conservative_impl_trait)] |
| 201 | //! #![feature(never_type)] |
| 202 | //! |
| 203 | //! extern crate futures; |
| 204 | //! #[macro_use(try_nb)] |
| 205 | //! extern crate nb; |
| 206 | //! |
| 207 | //! use futures::{Async, Future}; |
| 208 | //! use futures::future::{self, Loop}; |
| 209 | //! use hal::{Error, Led, Serial, Timer}; |
| 210 | //! |
| 211 | //! /// `futures` version of `Timer.wait` |
| 212 | //! /// |
| 213 | //! /// This returns a future that must be polled to completion |
| 214 | //! fn wait() -> impl Future<Item = (), Error = !> { |
| 215 | //! future::poll_fn(|| { |
| 216 | //! Ok(Async::Ready(try_nb!(Timer.wait()))) |
| 217 | //! }) |
| 218 | //! } |
| 219 | //! |
| 220 | //! /// `futures` version of `Serial.read` |
| 221 | //! /// |
| 222 | //! /// This returns a future that must be polled to completion |
| 223 | //! fn read() -> impl Future<Item = u8, Error = Error> { |
| 224 | //! future::poll_fn(|| { |
| 225 | //! Ok(Async::Ready(try_nb!(Serial.read()))) |
| 226 | //! }) |
| 227 | //! } |
| 228 | //! |
| 229 | //! /// `futures` version of `Serial.write` |
| 230 | //! /// |
| 231 | //! /// This returns a future that must be polled to completion |
| 232 | //! fn write(byte: u8) -> impl Future<Item = (), Error = Error> { |
| 233 | //! future::poll_fn(move || { |
| 234 | //! Ok(Async::Ready(try_nb!(Serial.write(byte)))) |
| 235 | //! }) |
| 236 | //! } |
| 237 | //! |
| 238 | //! fn main() { |
| 239 | //! // Tasks |
| 240 | //! let mut blinky = future::loop_fn::<_, (), _, _>(true, |state| { |
| 241 | //! wait().map(move |_| { |
| 242 | //! if state { |
| 243 | //! Led.on(); |
| 244 | //! } else { |
| 245 | //! Led.off(); |
| 246 | //! } |
| 247 | //! |
| 248 | //! Loop::Continue(!state) |
| 249 | //! }) |
| 250 | //! }); |
| 251 | //! |
| 252 | //! let mut loopback = future::loop_fn::<_, (), _, _>((), |_| { |
| 253 | //! read().and_then(|byte| { |
| 254 | //! write(byte) |
| 255 | //! }).map(|_| { |
| 256 | //! Loop::Continue(()) |
| 257 | //! }) |
| 258 | //! }); |
| 259 | //! |
| 260 | //! // Event loop |
| 261 | //! loop { |
| 262 | //! blinky.poll().unwrap(); // NOTE(unwrap) E = ! |
| 263 | //! loopback.poll().unwrap(); |
| 264 | //! # break |
| 265 | //! } |
| 266 | //! } |
| 267 | //! |
| 268 | //! # mod hal { |
| 269 | //! # use nb; |
| 270 | //! # pub struct Led; |
| 271 | //! # impl Led { |
| 272 | //! # pub fn off(&self) {panic!()} |
| 273 | //! # pub fn on(&self) {} |
| 274 | //! # } |
| 275 | //! # #[derive(Debug)] |
| 276 | //! # pub enum Error {} |
| 277 | //! # pub struct Serial; |
| 278 | //! # impl Serial { |
| 279 | //! # pub fn read(&self) -> nb::Result<u8, Error> { Err(nb::Error::WouldBlock) } |
| 280 | //! # pub fn write(&self, _: u8) -> nb::Result<(), Error> { Err(nb::Error::WouldBlock) } |
| 281 | //! # } |
| 282 | //! # pub struct Timer; |
| 283 | //! # impl Timer { |
| 284 | //! # pub fn wait(&self) -> nb::Result<(), !> { Err(nb::Error::WouldBlock) } |
| 285 | //! # } |
| 286 | //! # } |
| 287 | //! ``` |
| 288 | //! |
| 289 | //! ## `await!` |
| 290 | //! |
| 291 | //! This is equivalent to the `futures` example but with much less boilerplate. |
| 292 | //! |
| 293 | //! ``` |
| 294 | //! #![feature(generator_trait)] |
| 295 | //! #![feature(generators)] |
| 296 | //! #![feature(never_type)] |
| 297 | //! |
| 298 | //! #[macro_use(await)] |
| 299 | //! extern crate nb; |
| 300 | //! |
| 301 | //! use std::ops::Generator; |
| 302 | //! |
| 303 | //! use hal::{Led, Serial, Timer}; |
| 304 | //! |
| 305 | //! fn main() { |
| 306 | //! // Tasks |
| 307 | //! let mut blinky = || { |
| 308 | //! let mut state = false; |
| 309 | //! loop { |
| 310 | //! // `await!` means suspend / yield instead of blocking |
| 311 | //! await!(Timer.wait()).unwrap(); // NOTE(unwrap) E = ! |
| 312 | //! |
| 313 | //! state = !state; |
| 314 | //! |
| 315 | //! if state { |
| 316 | //! Led.on(); |
| 317 | //! } else { |
| 318 | //! Led.off(); |
| 319 | //! } |
| 320 | //! } |
| 321 | //! }; |
| 322 | //! |
| 323 | //! let mut loopback = || { |
| 324 | //! loop { |
| 325 | //! let byte = await!(Serial.read()).unwrap(); |
| 326 | //! await!(Serial.write(byte)).unwrap(); |
| 327 | //! } |
| 328 | //! }; |
| 329 | //! |
| 330 | //! // Event loop |
| 331 | //! loop { |
| 332 | //! blinky.resume(); |
| 333 | //! loopback.resume(); |
| 334 | //! # break |
| 335 | //! } |
| 336 | //! } |
| 337 | //! |
| 338 | //! # mod hal { |
| 339 | //! # use nb; |
| 340 | //! # pub struct Led; |
| 341 | //! # impl Led { |
| 342 | //! # pub fn off(&self) {} |
| 343 | //! # pub fn on(&self) {} |
| 344 | //! # } |
| 345 | //! # pub struct Serial; |
| 346 | //! # impl Serial { |
| 347 | //! # pub fn read(&self) -> nb::Result<u8, ()> { Err(nb::Error::WouldBlock) } |
| 348 | //! # pub fn write(&self, _: u8) -> nb::Result<(), ()> { Err(nb::Error::WouldBlock) } |
| 349 | //! # } |
| 350 | //! # pub struct Timer; |
| 351 | //! # impl Timer { |
| 352 | //! # pub fn wait(&self) -> nb::Result<(), !> { Err(nb::Error::WouldBlock) } |
| 353 | //! # } |
| 354 | //! # } |
| 355 | //! ``` |
| 356 | |
| 357 | #![no_std ] |
| 358 | #![doc (html_root_url = "https://docs.rs/nb/0.1.3" )] |
| 359 | |
| 360 | extern crate nb; |
| 361 | pub use nb::{block, Error, Result}; |
| 362 | |
| 363 | /// Await operation (*won't work until the language gains support for |
| 364 | /// generators*) |
| 365 | /// |
| 366 | /// This macro evaluates the expression `$e` *cooperatively* yielding control |
| 367 | /// back to the (generator) caller whenever `$e` evaluates to |
| 368 | /// `Error::WouldBlock`. |
| 369 | /// |
| 370 | /// # Requirements |
| 371 | /// |
| 372 | /// This macro must be called within a generator body. |
| 373 | /// |
| 374 | /// # Input |
| 375 | /// |
| 376 | /// An expression `$e` that evaluates to `nb::Result<T, E>` |
| 377 | /// |
| 378 | /// # Output |
| 379 | /// |
| 380 | /// - `Ok(t)` if `$e` evaluates to `Ok(t)` |
| 381 | /// - `Err(e)` if `$e` evaluates to `Err(nb::Error::Other(e))` |
| 382 | #[cfg (feature = "unstable" )] |
| 383 | #[macro_export ] |
| 384 | macro_rules! await { |
| 385 | ($e:expr) => { |
| 386 | loop { |
| 387 | #[allow(unreachable_patterns)] |
| 388 | match $e { |
| 389 | Err($crate::Error::Other(e)) => |
| 390 | { |
| 391 | #[allow(unreachable_code)] |
| 392 | break Err(e) |
| 393 | } |
| 394 | Err($crate::Error::WouldBlock) => {} // yield (see below) |
| 395 | Ok(x) => break Ok(x), |
| 396 | } |
| 397 | |
| 398 | yield |
| 399 | } |
| 400 | }; |
| 401 | } |
| 402 | |
| 403 | /// Future adapter |
| 404 | /// |
| 405 | /// This is a *try* operation from a `nb::Result` to a `futures::Poll` |
| 406 | /// |
| 407 | /// # Requirements |
| 408 | /// |
| 409 | /// This macro must be called within a function / closure that has signature |
| 410 | /// `fn(..) -> futures::Poll<T, E>`. |
| 411 | /// |
| 412 | /// This macro requires that the [`futures`] crate is in the root of the crate. |
| 413 | /// |
| 414 | /// [`futures`]: https://crates.io/crates/futures |
| 415 | /// |
| 416 | /// # Input |
| 417 | /// |
| 418 | /// An expression `$e` that evaluates to `nb::Result<T, E>` |
| 419 | /// |
| 420 | /// # Early return |
| 421 | /// |
| 422 | /// - `Ok(Async::NotReady)` if `$e` evaluates to `Err(nb::Error::WouldBlock)` |
| 423 | /// - `Err(e)` if `$e` evaluates to `Err(nb::Error::Other(e))` |
| 424 | /// |
| 425 | /// # Output |
| 426 | /// |
| 427 | /// `t` if `$e` evaluates to `Ok(t)` |
| 428 | #[cfg (feature = "unstable" )] |
| 429 | #[macro_export ] |
| 430 | macro_rules! try_nb { |
| 431 | ($e:expr) => { |
| 432 | match $e { |
| 433 | Err($crate::Error::Other(e)) => return Err(e), |
| 434 | Err($crate::Error::WouldBlock) => return Ok(::futures::Async::NotReady), |
| 435 | Ok(x) => x, |
| 436 | } |
| 437 | }; |
| 438 | } |
| 439 | |