1use crate::Integer;
2use core::mem;
3use num_traits::{checked_pow, PrimInt};
4
5/// Provides methods to compute an integer's square root, cube root,
6/// and arbitrary `n`th root.
7pub trait Roots: Integer {
8 /// Returns the truncated principal `n`th root of an integer
9 /// -- `if x >= 0 { ⌊ⁿ√x⌋ } else { ⌈ⁿ√x⌉ }`
10 ///
11 /// This is solving for `r` in `rⁿ = x`, rounding toward zero.
12 /// If `x` is positive, the result will satisfy `rⁿ ≤ x < (r+1)ⁿ`.
13 /// If `x` is negative and `n` is odd, then `(r-1)ⁿ < x ≤ rⁿ`.
14 ///
15 /// # Panics
16 ///
17 /// Panics if `n` is zero:
18 ///
19 /// ```should_panic
20 /// # use num_integer::Roots;
21 /// println!("can't compute ⁰√x : {}", 123.nth_root(0));
22 /// ```
23 ///
24 /// or if `n` is even and `self` is negative:
25 ///
26 /// ```should_panic
27 /// # use num_integer::Roots;
28 /// println!("no imaginary numbers... {}", (-1).nth_root(10));
29 /// ```
30 ///
31 /// # Examples
32 ///
33 /// ```
34 /// use num_integer::Roots;
35 ///
36 /// let x: i32 = 12345;
37 /// assert_eq!(x.nth_root(1), x);
38 /// assert_eq!(x.nth_root(2), x.sqrt());
39 /// assert_eq!(x.nth_root(3), x.cbrt());
40 /// assert_eq!(x.nth_root(4), 10);
41 /// assert_eq!(x.nth_root(13), 2);
42 /// assert_eq!(x.nth_root(14), 1);
43 /// assert_eq!(x.nth_root(std::u32::MAX), 1);
44 ///
45 /// assert_eq!(std::i32::MAX.nth_root(30), 2);
46 /// assert_eq!(std::i32::MAX.nth_root(31), 1);
47 /// assert_eq!(std::i32::MIN.nth_root(31), -2);
48 /// assert_eq!((std::i32::MIN + 1).nth_root(31), -1);
49 ///
50 /// assert_eq!(std::u32::MAX.nth_root(31), 2);
51 /// assert_eq!(std::u32::MAX.nth_root(32), 1);
52 /// ```
53 fn nth_root(&self, n: u32) -> Self;
54
55 /// Returns the truncated principal square root of an integer -- `⌊√x⌋`
56 ///
57 /// This is solving for `r` in `r² = x`, rounding toward zero.
58 /// The result will satisfy `r² ≤ x < (r+1)²`.
59 ///
60 /// # Panics
61 ///
62 /// Panics if `self` is less than zero:
63 ///
64 /// ```should_panic
65 /// # use num_integer::Roots;
66 /// println!("no imaginary numbers... {}", (-1).sqrt());
67 /// ```
68 ///
69 /// # Examples
70 ///
71 /// ```
72 /// use num_integer::Roots;
73 ///
74 /// let x: i32 = 12345;
75 /// assert_eq!((x * x).sqrt(), x);
76 /// assert_eq!((x * x + 1).sqrt(), x);
77 /// assert_eq!((x * x - 1).sqrt(), x - 1);
78 /// ```
79 #[inline]
80 fn sqrt(&self) -> Self {
81 self.nth_root(2)
82 }
83
84 /// Returns the truncated principal cube root of an integer --
85 /// `if x >= 0 { ⌊∛x⌋ } else { ⌈∛x⌉ }`
86 ///
87 /// This is solving for `r` in `r³ = x`, rounding toward zero.
88 /// If `x` is positive, the result will satisfy `r³ ≤ x < (r+1)³`.
89 /// If `x` is negative, then `(r-1)³ < x ≤ r³`.
90 ///
91 /// # Examples
92 ///
93 /// ```
94 /// use num_integer::Roots;
95 ///
96 /// let x: i32 = 1234;
97 /// assert_eq!((x * x * x).cbrt(), x);
98 /// assert_eq!((x * x * x + 1).cbrt(), x);
99 /// assert_eq!((x * x * x - 1).cbrt(), x - 1);
100 ///
101 /// assert_eq!((-(x * x * x)).cbrt(), -x);
102 /// assert_eq!((-(x * x * x + 1)).cbrt(), -x);
103 /// assert_eq!((-(x * x * x - 1)).cbrt(), -(x - 1));
104 /// ```
105 #[inline]
106 fn cbrt(&self) -> Self {
107 self.nth_root(3)
108 }
109}
110
111/// Returns the truncated principal square root of an integer --
112/// see [Roots::sqrt](trait.Roots.html#method.sqrt).
113#[inline]
114pub fn sqrt<T: Roots>(x: T) -> T {
115 x.sqrt()
116}
117
118/// Returns the truncated principal cube root of an integer --
119/// see [Roots::cbrt](trait.Roots.html#method.cbrt).
120#[inline]
121pub fn cbrt<T: Roots>(x: T) -> T {
122 x.cbrt()
123}
124
125/// Returns the truncated principal `n`th root of an integer --
126/// see [Roots::nth_root](trait.Roots.html#tymethod.nth_root).
127#[inline]
128pub fn nth_root<T: Roots>(x: T, n: u32) -> T {
129 x.nth_root(n)
130}
131
132macro_rules! signed_roots {
133 ($T:ty, $U:ty) => {
134 impl Roots for $T {
135 #[inline]
136 fn nth_root(&self, n: u32) -> Self {
137 if *self >= 0 {
138 (*self as $U).nth_root(n) as Self
139 } else {
140 assert!(n.is_odd(), "even roots of a negative are imaginary");
141 -((self.wrapping_neg() as $U).nth_root(n) as Self)
142 }
143 }
144
145 #[inline]
146 fn sqrt(&self) -> Self {
147 assert!(*self >= 0, "the square root of a negative is imaginary");
148 (*self as $U).sqrt() as Self
149 }
150
151 #[inline]
152 fn cbrt(&self) -> Self {
153 if *self >= 0 {
154 (*self as $U).cbrt() as Self
155 } else {
156 -((self.wrapping_neg() as $U).cbrt() as Self)
157 }
158 }
159 }
160 };
161}
162
163signed_roots!(i8, u8);
164signed_roots!(i16, u16);
165signed_roots!(i32, u32);
166signed_roots!(i64, u64);
167signed_roots!(i128, u128);
168signed_roots!(isize, usize);
169
170#[inline]
171fn fixpoint<T, F>(mut x: T, f: F) -> T
172where
173 T: Integer + Copy,
174 F: Fn(T) -> T,
175{
176 let mut xn: T = f(x);
177 while x < xn {
178 x = xn;
179 xn = f(x);
180 }
181 while x > xn {
182 x = xn;
183 xn = f(x);
184 }
185 x
186}
187
188#[inline]
189fn bits<T>() -> u32 {
190 8 * mem::size_of::<T>() as u32
191}
192
193#[inline]
194fn log2<T: PrimInt>(x: T) -> u32 {
195 debug_assert!(x > T::zero());
196 bits::<T>() - 1 - x.leading_zeros()
197}
198
199macro_rules! unsigned_roots {
200 ($T:ident) => {
201 impl Roots for $T {
202 #[inline]
203 fn nth_root(&self, n: u32) -> Self {
204 fn go(a: $T, n: u32) -> $T {
205 // Specialize small roots
206 match n {
207 0 => panic!("can't find a root of degree 0!"),
208 1 => return a,
209 2 => return a.sqrt(),
210 3 => return a.cbrt(),
211 _ => (),
212 }
213
214 // The root of values less than 2ⁿ can only be 0 or 1.
215 if bits::<$T>() <= n || a < (1 << n) {
216 return (a > 0) as $T;
217 }
218
219 if bits::<$T>() > 64 {
220 // 128-bit division is slow, so do a bitwise `nth_root` until it's small enough.
221 return if a <= core::u64::MAX as $T {
222 (a as u64).nth_root(n) as $T
223 } else {
224 let lo = (a >> n).nth_root(n) << 1;
225 let hi = lo + 1;
226 // 128-bit `checked_mul` also involves division, but we can't always
227 // compute `hiⁿ` without risking overflow. Try to avoid it though...
228 if hi.next_power_of_two().trailing_zeros() * n >= bits::<$T>() {
229 match checked_pow(hi, n as usize) {
230 Some(x) if x <= a => hi,
231 _ => lo,
232 }
233 } else {
234 if hi.pow(n) <= a {
235 hi
236 } else {
237 lo
238 }
239 }
240 };
241 }
242
243 #[cfg(feature = "std")]
244 #[inline]
245 fn guess(x: $T, n: u32) -> $T {
246 // for smaller inputs, `f64` doesn't justify its cost.
247 if bits::<$T>() <= 32 || x <= core::u32::MAX as $T {
248 1 << ((log2(x) + n - 1) / n)
249 } else {
250 ((x as f64).ln() / f64::from(n)).exp() as $T
251 }
252 }
253
254 #[cfg(not(feature = "std"))]
255 #[inline]
256 fn guess(x: $T, n: u32) -> $T {
257 1 << ((log2(x) + n - 1) / n)
258 }
259
260 // https://en.wikipedia.org/wiki/Nth_root_algorithm
261 let n1 = n - 1;
262 let next = |x: $T| {
263 let y = match checked_pow(x, n1 as usize) {
264 Some(ax) => a / ax,
265 None => 0,
266 };
267 (y + x * n1 as $T) / n as $T
268 };
269 fixpoint(guess(a, n), next)
270 }
271 go(*self, n)
272 }
273
274 #[inline]
275 fn sqrt(&self) -> Self {
276 fn go(a: $T) -> $T {
277 if bits::<$T>() > 64 {
278 // 128-bit division is slow, so do a bitwise `sqrt` until it's small enough.
279 return if a <= core::u64::MAX as $T {
280 (a as u64).sqrt() as $T
281 } else {
282 let lo = (a >> 2u32).sqrt() << 1;
283 let hi = lo + 1;
284 if hi * hi <= a {
285 hi
286 } else {
287 lo
288 }
289 };
290 }
291
292 if a < 4 {
293 return (a > 0) as $T;
294 }
295
296 #[cfg(feature = "std")]
297 #[inline]
298 fn guess(x: $T) -> $T {
299 (x as f64).sqrt() as $T
300 }
301
302 #[cfg(not(feature = "std"))]
303 #[inline]
304 fn guess(x: $T) -> $T {
305 1 << ((log2(x) + 1) / 2)
306 }
307
308 // https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method
309 let next = |x: $T| (a / x + x) >> 1;
310 fixpoint(guess(a), next)
311 }
312 go(*self)
313 }
314
315 #[inline]
316 fn cbrt(&self) -> Self {
317 fn go(a: $T) -> $T {
318 if bits::<$T>() > 64 {
319 // 128-bit division is slow, so do a bitwise `cbrt` until it's small enough.
320 return if a <= core::u64::MAX as $T {
321 (a as u64).cbrt() as $T
322 } else {
323 let lo = (a >> 3u32).cbrt() << 1;
324 let hi = lo + 1;
325 if hi * hi * hi <= a {
326 hi
327 } else {
328 lo
329 }
330 };
331 }
332
333 if bits::<$T>() <= 32 {
334 // Implementation based on Hacker's Delight `icbrt2`
335 let mut x = a;
336 let mut y2 = 0;
337 let mut y = 0;
338 let smax = bits::<$T>() / 3;
339 for s in (0..smax + 1).rev() {
340 let s = s * 3;
341 y2 *= 4;
342 y *= 2;
343 let b = 3 * (y2 + y) + 1;
344 if x >> s >= b {
345 x -= b << s;
346 y2 += 2 * y + 1;
347 y += 1;
348 }
349 }
350 return y;
351 }
352
353 if a < 8 {
354 return (a > 0) as $T;
355 }
356 if a <= core::u32::MAX as $T {
357 return (a as u32).cbrt() as $T;
358 }
359
360 #[cfg(feature = "std")]
361 #[inline]
362 fn guess(x: $T) -> $T {
363 (x as f64).cbrt() as $T
364 }
365
366 #[cfg(not(feature = "std"))]
367 #[inline]
368 fn guess(x: $T) -> $T {
369 1 << ((log2(x) + 2) / 3)
370 }
371
372 // https://en.wikipedia.org/wiki/Cube_root#Numerical_methods
373 let next = |x: $T| (a / (x * x) + x * 2) / 3;
374 fixpoint(guess(a), next)
375 }
376 go(*self)
377 }
378 }
379 };
380}
381
382unsigned_roots!(u8);
383unsigned_roots!(u16);
384unsigned_roots!(u32);
385unsigned_roots!(u64);
386unsigned_roots!(u128);
387unsigned_roots!(usize);
388