1 | // Copyright 2018 Developers of the Rand project. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
4 | // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
5 | // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
6 | // option. This file may not be copied, modified, or distributed |
7 | // except according to those terms. |
8 | |
9 | //! The implementations of the `StandardUniform` distribution for other built-in types. |
10 | |
11 | #[cfg (feature = "alloc" )] |
12 | use alloc::string::String; |
13 | use core::char; |
14 | use core::num::Wrapping; |
15 | |
16 | #[cfg (feature = "alloc" )] |
17 | use crate::distr::SampleString; |
18 | use crate::distr::{Distribution, StandardUniform, Uniform}; |
19 | use crate::Rng; |
20 | |
21 | use core::mem::{self, MaybeUninit}; |
22 | #[cfg (feature = "simd_support" )] |
23 | use core::simd::prelude::*; |
24 | #[cfg (feature = "simd_support" )] |
25 | use core::simd::{LaneCount, MaskElement, SupportedLaneCount}; |
26 | #[cfg (feature = "serde" )] |
27 | use serde::{Deserialize, Serialize}; |
28 | |
29 | // ----- Sampling distributions ----- |
30 | |
31 | /// Sample a `u8`, uniformly distributed over ASCII letters and numbers: |
32 | /// a-z, A-Z and 0-9. |
33 | /// |
34 | /// # Example |
35 | /// |
36 | /// ``` |
37 | /// use rand::Rng; |
38 | /// use rand::distr::Alphanumeric; |
39 | /// |
40 | /// let mut rng = rand::rng(); |
41 | /// let chars: String = (0..7).map(|_| rng.sample(Alphanumeric) as char).collect(); |
42 | /// println!("Random chars: {}" , chars); |
43 | /// ``` |
44 | /// |
45 | /// The [`SampleString`] trait provides an easier method of generating |
46 | /// a random [`String`], and offers more efficient allocation: |
47 | /// ``` |
48 | /// use rand::distr::{Alphanumeric, SampleString}; |
49 | /// let string = Alphanumeric.sample_string(&mut rand::rng(), 16); |
50 | /// println!("Random string: {}" , string); |
51 | /// ``` |
52 | /// |
53 | /// # Passwords |
54 | /// |
55 | /// Users sometimes ask whether it is safe to use a string of random characters |
56 | /// as a password. In principle, all RNGs in Rand implementing `CryptoRng` are |
57 | /// suitable as a source of randomness for generating passwords (if they are |
58 | /// properly seeded), but it is more conservative to only use randomness |
59 | /// directly from the operating system via the `getrandom` crate, or the |
60 | /// corresponding bindings of a crypto library. |
61 | /// |
62 | /// When generating passwords or keys, it is important to consider the threat |
63 | /// model and in some cases the memorability of the password. This is out of |
64 | /// scope of the Rand project, and therefore we defer to the following |
65 | /// references: |
66 | /// |
67 | /// - [Wikipedia article on Password Strength](https://en.wikipedia.org/wiki/Password_strength) |
68 | /// - [Diceware for generating memorable passwords](https://en.wikipedia.org/wiki/Diceware) |
69 | #[derive(Debug, Clone, Copy, Default)] |
70 | #[cfg_attr (feature = "serde" , derive(Serialize, Deserialize))] |
71 | pub struct Alphanumeric; |
72 | |
73 | // ----- Implementations of distributions ----- |
74 | |
75 | impl Distribution<char> for StandardUniform { |
76 | #[inline ] |
77 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> char { |
78 | // A valid `char` is either in the interval `[0, 0xD800)` or |
79 | // `(0xDFFF, 0x11_0000)`. All `char`s must therefore be in |
80 | // `[0, 0x11_0000)` but not in the "gap" `[0xD800, 0xDFFF]` which is |
81 | // reserved for surrogates. This is the size of that gap. |
82 | const GAP_SIZE: u32 = 0xDFFF - 0xD800 + 1; |
83 | |
84 | // Uniform::new(0, 0x11_0000 - GAP_SIZE) can also be used, but it |
85 | // seemed slower. |
86 | let range = Uniform::new(GAP_SIZE, high:0x11_0000).unwrap(); |
87 | |
88 | let mut n = range.sample(rng); |
89 | if n <= 0xDFFF { |
90 | n -= GAP_SIZE; |
91 | } |
92 | unsafe { char::from_u32_unchecked(n) } |
93 | } |
94 | } |
95 | |
96 | #[cfg (feature = "alloc" )] |
97 | impl SampleString for StandardUniform { |
98 | fn append_string<R: Rng + ?Sized>(&self, rng: &mut R, s: &mut String, len: usize) { |
99 | // A char is encoded with at most four bytes, thus this reservation is |
100 | // guaranteed to be sufficient. We do not shrink_to_fit afterwards so |
101 | // that repeated usage on the same `String` buffer does not reallocate. |
102 | s.reserve(4 * len); |
103 | s.extend(Distribution::<char>::sample_iter(self, rng).take(len)); |
104 | } |
105 | } |
106 | |
107 | impl Distribution<u8> for Alphanumeric { |
108 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u8 { |
109 | const RANGE: u32 = 26 + 26 + 10; |
110 | const GEN_ASCII_STR_CHARSET: &[u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZ\ |
111 | abcdefghijklmnopqrstuvwxyz\ |
112 | 0123456789" ; |
113 | // We can pick from 62 characters. This is so close to a power of 2, 64, |
114 | // that we can do better than `Uniform`. Use a simple bitshift and |
115 | // rejection sampling. We do not use a bitmask, because for small RNGs |
116 | // the most significant bits are usually of higher quality. |
117 | loop { |
118 | let var: u32 = rng.next_u32() >> (32 - 6); |
119 | if var < RANGE { |
120 | return GEN_ASCII_STR_CHARSET[var as usize]; |
121 | } |
122 | } |
123 | } |
124 | } |
125 | |
126 | #[cfg (feature = "alloc" )] |
127 | impl SampleString for Alphanumeric { |
128 | fn append_string<R: Rng + ?Sized>(&self, rng: &mut R, string: &mut String, len: usize) { |
129 | unsafe { |
130 | let v = string.as_mut_vec(); |
131 | v.extend(self.sample_iter(rng).take(len)); |
132 | } |
133 | } |
134 | } |
135 | |
136 | impl Distribution<bool> for StandardUniform { |
137 | #[inline ] |
138 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool { |
139 | // We can compare against an arbitrary bit of an u32 to get a bool. |
140 | // Because the least significant bits of a lower quality RNG can have |
141 | // simple patterns, we compare against the most significant bit. This is |
142 | // easiest done using a sign test. |
143 | (rng.next_u32() as i32) < 0 |
144 | } |
145 | } |
146 | |
147 | /// Note that on some hardware like x86/64 mask operations like [`_mm_blendv_epi8`] |
148 | /// only care about a single bit. This means that you could use uniform random bits |
149 | /// directly: |
150 | /// |
151 | /// ```ignore |
152 | /// // this may be faster... |
153 | /// let x = unsafe { _mm_blendv_epi8(a.into(), b.into(), rng.random::<__m128i>()) }; |
154 | /// |
155 | /// // ...than this |
156 | /// let x = rng.random::<mask8x16>().select(b, a); |
157 | /// ``` |
158 | /// |
159 | /// Since most bits are unused you could also generate only as many bits as you need, i.e.: |
160 | /// ``` |
161 | /// #![feature(portable_simd)] |
162 | /// use std::simd::prelude::*; |
163 | /// use rand::prelude::*; |
164 | /// let mut rng = rand::rng(); |
165 | /// |
166 | /// let x = u16x8::splat(rng.random::<u8>() as u16); |
167 | /// let mask = u16x8::splat(1) << u16x8::from([0, 1, 2, 3, 4, 5, 6, 7]); |
168 | /// let rand_mask = (x & mask).simd_eq(mask); |
169 | /// ``` |
170 | /// |
171 | /// [`_mm_blendv_epi8`]: https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_epi8&ig_expand=514/ |
172 | /// [`simd_support`]: https://github.com/rust-random/rand#crate-features |
173 | #[cfg (feature = "simd_support" )] |
174 | impl<T, const LANES: usize> Distribution<Mask<T, LANES>> for StandardUniform |
175 | where |
176 | T: MaskElement + Default, |
177 | LaneCount<LANES>: SupportedLaneCount, |
178 | StandardUniform: Distribution<Simd<T, LANES>>, |
179 | Simd<T, LANES>: SimdPartialOrd<Mask = Mask<T, LANES>>, |
180 | { |
181 | #[inline ] |
182 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Mask<T, LANES> { |
183 | // `MaskElement` must be a signed integer, so this is equivalent |
184 | // to the scalar `i32 < 0` method |
185 | let var = rng.random::<Simd<T, LANES>>(); |
186 | var.simd_lt(Simd::default()) |
187 | } |
188 | } |
189 | |
190 | /// Implement `Distribution<(A, B, C, ...)> for StandardUniform`, using the list of |
191 | /// identifiers |
192 | macro_rules! tuple_impl { |
193 | ($($tyvar:ident)*) => { |
194 | impl< $($tyvar,)* > Distribution<($($tyvar,)*)> for StandardUniform |
195 | where $( |
196 | StandardUniform: Distribution< $tyvar >, |
197 | )* |
198 | { |
199 | #[inline] |
200 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> ( $($tyvar,)* ) { |
201 | let out = ($( |
202 | // use the $tyvar's to get the appropriate number of |
203 | // repeats (they're not actually needed) |
204 | rng.random::<$tyvar>() |
205 | ,)*); |
206 | |
207 | // Suppress the unused variable warning for empty tuple |
208 | let _rng = rng; |
209 | |
210 | out |
211 | } |
212 | } |
213 | } |
214 | } |
215 | |
216 | /// Looping wrapper for `tuple_impl`. Given (A, B, C), it also generates |
217 | /// implementations for (A, B) and (A,) |
218 | macro_rules! tuple_impls { |
219 | ($($tyvar:ident)*) => {tuple_impls!{[] $($tyvar)*}}; |
220 | |
221 | ([$($prefix:ident)*] $head:ident $($tail:ident)*) => { |
222 | tuple_impl!{$($prefix)*} |
223 | tuple_impls!{[$($prefix)* $head] $($tail)*} |
224 | }; |
225 | |
226 | |
227 | ([$($prefix:ident)*]) => { |
228 | tuple_impl!{$($prefix)*} |
229 | }; |
230 | |
231 | } |
232 | |
233 | tuple_impls! {A B C D E F G H I J K L} |
234 | |
235 | impl<T, const N: usize> Distribution<[T; N]> for StandardUniform |
236 | where |
237 | StandardUniform: Distribution<T>, |
238 | { |
239 | #[inline ] |
240 | fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> [T; N] { |
241 | let mut buff: [MaybeUninit<T>; N] = unsafe { MaybeUninit::uninit().assume_init() }; |
242 | |
243 | for elem in &mut buff { |
244 | *elem = MaybeUninit::new(_rng.random()); |
245 | } |
246 | |
247 | unsafe { mem::transmute_copy::<_, _>(&buff) } |
248 | } |
249 | } |
250 | |
251 | impl<T> Distribution<Wrapping<T>> for StandardUniform |
252 | where |
253 | StandardUniform: Distribution<T>, |
254 | { |
255 | #[inline ] |
256 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Wrapping<T> { |
257 | Wrapping(rng.random()) |
258 | } |
259 | } |
260 | |
261 | #[cfg (test)] |
262 | mod tests { |
263 | use super::*; |
264 | use crate::RngCore; |
265 | |
266 | #[test] |
267 | fn test_misc() { |
268 | let rng: &mut dyn RngCore = &mut crate::test::rng(820); |
269 | |
270 | rng.sample::<char, _>(StandardUniform); |
271 | rng.sample::<bool, _>(StandardUniform); |
272 | } |
273 | |
274 | #[cfg (feature = "alloc" )] |
275 | #[test] |
276 | fn test_chars() { |
277 | use core::iter; |
278 | let mut rng = crate::test::rng(805); |
279 | |
280 | // Test by generating a relatively large number of chars, so we also |
281 | // take the rejection sampling path. |
282 | let word: String = iter::repeat(()) |
283 | .map(|()| rng.random::<char>()) |
284 | .take(1000) |
285 | .collect(); |
286 | assert!(!word.is_empty()); |
287 | } |
288 | |
289 | #[test] |
290 | fn test_alphanumeric() { |
291 | let mut rng = crate::test::rng(806); |
292 | |
293 | // Test by generating a relatively large number of chars, so we also |
294 | // take the rejection sampling path. |
295 | let mut incorrect = false; |
296 | for _ in 0..100 { |
297 | let c: char = rng.sample(Alphanumeric).into(); |
298 | incorrect |= !c.is_ascii_alphanumeric(); |
299 | } |
300 | assert!(!incorrect); |
301 | } |
302 | |
303 | #[test] |
304 | fn value_stability() { |
305 | fn test_samples<T: Copy + core::fmt::Debug + PartialEq, D: Distribution<T>>( |
306 | distr: &D, |
307 | zero: T, |
308 | expected: &[T], |
309 | ) { |
310 | let mut rng = crate::test::rng(807); |
311 | let mut buf = [zero; 5]; |
312 | for x in &mut buf { |
313 | *x = rng.sample(distr); |
314 | } |
315 | assert_eq!(&buf, expected); |
316 | } |
317 | |
318 | test_samples( |
319 | &StandardUniform, |
320 | 'a' , |
321 | &[ |
322 | ' \u{8cdac}' , |
323 | ' \u{a346a}' , |
324 | ' \u{80120}' , |
325 | ' \u{ed692}' , |
326 | ' \u{35888}' , |
327 | ], |
328 | ); |
329 | test_samples(&Alphanumeric, 0, &[104, 109, 101, 51, 77]); |
330 | test_samples(&StandardUniform, false, &[true, true, false, true, false]); |
331 | test_samples( |
332 | &StandardUniform, |
333 | Wrapping(0i32), |
334 | &[ |
335 | Wrapping(-2074640887), |
336 | Wrapping(-1719949321), |
337 | Wrapping(2018088303), |
338 | Wrapping(-547181756), |
339 | Wrapping(838957336), |
340 | ], |
341 | ); |
342 | |
343 | // We test only sub-sets of tuple and array impls |
344 | test_samples(&StandardUniform, (), &[(), (), (), (), ()]); |
345 | test_samples( |
346 | &StandardUniform, |
347 | (false,), |
348 | &[(true,), (true,), (false,), (true,), (false,)], |
349 | ); |
350 | test_samples( |
351 | &StandardUniform, |
352 | (false, false), |
353 | &[ |
354 | (true, true), |
355 | (false, true), |
356 | (false, false), |
357 | (true, false), |
358 | (false, false), |
359 | ], |
360 | ); |
361 | |
362 | test_samples(&StandardUniform, [0u8; 0], &[[], [], [], [], []]); |
363 | test_samples( |
364 | &StandardUniform, |
365 | [0u8; 3], |
366 | &[ |
367 | [9, 247, 111], |
368 | [68, 24, 13], |
369 | [174, 19, 194], |
370 | [172, 69, 213], |
371 | [149, 207, 29], |
372 | ], |
373 | ); |
374 | } |
375 | } |
376 | |