1 | // Copyright 2018 Developers of the Rand project. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
4 | // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
5 | // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
6 | // option. This file may not be copied, modified, or distributed |
7 | // except according to those terms. |
8 | |
9 | use super::{Error, Weight}; |
10 | use crate::distr::uniform::{SampleBorrow, SampleUniform, UniformSampler}; |
11 | use crate::distr::Distribution; |
12 | use crate::Rng; |
13 | |
14 | // Note that this whole module is only imported if feature="alloc" is enabled. |
15 | use alloc::vec::Vec; |
16 | use core::fmt::{self, Debug}; |
17 | |
18 | #[cfg (feature = "serde" )] |
19 | use serde::{Deserialize, Serialize}; |
20 | |
21 | /// A distribution using weighted sampling of discrete items. |
22 | /// |
23 | /// Sampling a `WeightedIndex` distribution returns the index of a randomly |
24 | /// selected element from the iterator used when the `WeightedIndex` was |
25 | /// created. The chance of a given element being picked is proportional to the |
26 | /// weight of the element. The weights can use any type `X` for which an |
27 | /// implementation of [`Uniform<X>`] exists. The implementation guarantees that |
28 | /// elements with zero weight are never picked, even when the weights are |
29 | /// floating point numbers. |
30 | /// |
31 | /// # Performance |
32 | /// |
33 | /// Time complexity of sampling from `WeightedIndex` is `O(log N)` where |
34 | /// `N` is the number of weights. |
35 | /// See also [`rand_distr::weighted`] for alternative implementations supporting |
36 | /// potentially-faster sampling or a more easily modifiable tree structure. |
37 | /// |
38 | /// A `WeightedIndex<X>` contains a `Vec<X>` and a [`Uniform<X>`] and so its |
39 | /// size is the sum of the size of those objects, possibly plus some alignment. |
40 | /// |
41 | /// Creating a `WeightedIndex<X>` will allocate enough space to hold `N - 1` |
42 | /// weights of type `X`, where `N` is the number of weights. However, since |
43 | /// `Vec` doesn't guarantee a particular growth strategy, additional memory |
44 | /// might be allocated but not used. Since the `WeightedIndex` object also |
45 | /// contains an instance of `X::Sampler`, this might cause additional allocations, |
46 | /// though for primitive types, [`Uniform<X>`] doesn't allocate any memory. |
47 | /// |
48 | /// Sampling from `WeightedIndex` will result in a single call to |
49 | /// `Uniform<X>::sample` (method of the [`Distribution`] trait), which typically |
50 | /// will request a single value from the underlying [`RngCore`], though the |
51 | /// exact number depends on the implementation of `Uniform<X>::sample`. |
52 | /// |
53 | /// # Example |
54 | /// |
55 | /// ``` |
56 | /// use rand::prelude::*; |
57 | /// use rand::distr::weighted::WeightedIndex; |
58 | /// |
59 | /// let choices = ['a' , 'b' , 'c' ]; |
60 | /// let weights = [2, 1, 1]; |
61 | /// let dist = WeightedIndex::new(&weights).unwrap(); |
62 | /// let mut rng = rand::rng(); |
63 | /// for _ in 0..100 { |
64 | /// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c' |
65 | /// println!("{}" , choices[dist.sample(&mut rng)]); |
66 | /// } |
67 | /// |
68 | /// let items = [('a' , 0.0), ('b' , 3.0), ('c' , 7.0)]; |
69 | /// let dist2 = WeightedIndex::new(items.iter().map(|item| item.1)).unwrap(); |
70 | /// for _ in 0..100 { |
71 | /// // 0% chance to print 'a', 30% chance to print 'b', 70% chance to print 'c' |
72 | /// println!("{}" , items[dist2.sample(&mut rng)].0); |
73 | /// } |
74 | /// ``` |
75 | /// |
76 | /// [`Uniform<X>`]: crate::distr::Uniform |
77 | /// [`RngCore`]: crate::RngCore |
78 | /// [`rand_distr::weighted`]: https://docs.rs/rand_distr/latest/rand_distr/weighted/index.html |
79 | #[derive(Debug, Clone, PartialEq)] |
80 | #[cfg_attr (feature = "serde" , derive(Serialize, Deserialize))] |
81 | pub struct WeightedIndex<X: SampleUniform + PartialOrd> { |
82 | cumulative_weights: Vec<X>, |
83 | total_weight: X, |
84 | weight_distribution: X::Sampler, |
85 | } |
86 | |
87 | impl<X: SampleUniform + PartialOrd> WeightedIndex<X> { |
88 | /// Creates a new a `WeightedIndex` [`Distribution`] using the values |
89 | /// in `weights`. The weights can use any type `X` for which an |
90 | /// implementation of [`Uniform<X>`] exists. |
91 | /// |
92 | /// Error cases: |
93 | /// - [`Error::InvalidInput`] when the iterator `weights` is empty. |
94 | /// - [`Error::InvalidWeight`] when a weight is not-a-number or negative. |
95 | /// - [`Error::InsufficientNonZero`] when the sum of all weights is zero. |
96 | /// - [`Error::Overflow`] when the sum of all weights overflows. |
97 | /// |
98 | /// [`Uniform<X>`]: crate::distr::uniform::Uniform |
99 | pub fn new<I>(weights: I) -> Result<WeightedIndex<X>, Error> |
100 | where |
101 | I: IntoIterator, |
102 | I::Item: SampleBorrow<X>, |
103 | X: Weight, |
104 | { |
105 | let mut iter = weights.into_iter(); |
106 | let mut total_weight: X = iter.next().ok_or(Error::InvalidInput)?.borrow().clone(); |
107 | |
108 | let zero = X::ZERO; |
109 | if !(total_weight >= zero) { |
110 | return Err(Error::InvalidWeight); |
111 | } |
112 | |
113 | let mut weights = Vec::<X>::with_capacity(iter.size_hint().0); |
114 | for w in iter { |
115 | // Note that `!(w >= x)` is not equivalent to `w < x` for partially |
116 | // ordered types due to NaNs which are equal to nothing. |
117 | if !(w.borrow() >= &zero) { |
118 | return Err(Error::InvalidWeight); |
119 | } |
120 | weights.push(total_weight.clone()); |
121 | |
122 | if let Err(()) = total_weight.checked_add_assign(w.borrow()) { |
123 | return Err(Error::Overflow); |
124 | } |
125 | } |
126 | |
127 | if total_weight == zero { |
128 | return Err(Error::InsufficientNonZero); |
129 | } |
130 | let distr = X::Sampler::new(zero, total_weight.clone()).unwrap(); |
131 | |
132 | Ok(WeightedIndex { |
133 | cumulative_weights: weights, |
134 | total_weight, |
135 | weight_distribution: distr, |
136 | }) |
137 | } |
138 | |
139 | /// Update a subset of weights, without changing the number of weights. |
140 | /// |
141 | /// `new_weights` must be sorted by the index. |
142 | /// |
143 | /// Using this method instead of `new` might be more efficient if only a small number of |
144 | /// weights is modified. No allocations are performed, unless the weight type `X` uses |
145 | /// allocation internally. |
146 | /// |
147 | /// In case of error, `self` is not modified. Error cases: |
148 | /// - [`Error::InvalidInput`] when `new_weights` are not ordered by |
149 | /// index or an index is too large. |
150 | /// - [`Error::InvalidWeight`] when a weight is not-a-number or negative. |
151 | /// - [`Error::InsufficientNonZero`] when the sum of all weights is zero. |
152 | /// Note that due to floating-point loss of precision, this case is not |
153 | /// always correctly detected; usage of a fixed-point weight type may be |
154 | /// preferred. |
155 | /// |
156 | /// Updates take `O(N)` time. If you need to frequently update weights, consider |
157 | /// [`rand_distr::weighted_tree`](https://docs.rs/rand_distr/*/rand_distr/weighted_tree/index.html) |
158 | /// as an alternative where an update is `O(log N)`. |
159 | pub fn update_weights(&mut self, new_weights: &[(usize, &X)]) -> Result<(), Error> |
160 | where |
161 | X: for<'a> core::ops::AddAssign<&'a X> |
162 | + for<'a> core::ops::SubAssign<&'a X> |
163 | + Clone |
164 | + Default, |
165 | { |
166 | if new_weights.is_empty() { |
167 | return Ok(()); |
168 | } |
169 | |
170 | let zero = <X as Default>::default(); |
171 | |
172 | let mut total_weight = self.total_weight.clone(); |
173 | |
174 | // Check for errors first, so we don't modify `self` in case something |
175 | // goes wrong. |
176 | let mut prev_i = None; |
177 | for &(i, w) in new_weights { |
178 | if let Some(old_i) = prev_i { |
179 | if old_i >= i { |
180 | return Err(Error::InvalidInput); |
181 | } |
182 | } |
183 | if !(*w >= zero) { |
184 | return Err(Error::InvalidWeight); |
185 | } |
186 | if i > self.cumulative_weights.len() { |
187 | return Err(Error::InvalidInput); |
188 | } |
189 | |
190 | let mut old_w = if i < self.cumulative_weights.len() { |
191 | self.cumulative_weights[i].clone() |
192 | } else { |
193 | self.total_weight.clone() |
194 | }; |
195 | if i > 0 { |
196 | old_w -= &self.cumulative_weights[i - 1]; |
197 | } |
198 | |
199 | total_weight -= &old_w; |
200 | total_weight += w; |
201 | prev_i = Some(i); |
202 | } |
203 | if total_weight <= zero { |
204 | return Err(Error::InsufficientNonZero); |
205 | } |
206 | |
207 | // Update the weights. Because we checked all the preconditions in the |
208 | // previous loop, this should never panic. |
209 | let mut iter = new_weights.iter(); |
210 | |
211 | let mut prev_weight = zero.clone(); |
212 | let mut next_new_weight = iter.next(); |
213 | let &(first_new_index, _) = next_new_weight.unwrap(); |
214 | let mut cumulative_weight = if first_new_index > 0 { |
215 | self.cumulative_weights[first_new_index - 1].clone() |
216 | } else { |
217 | zero.clone() |
218 | }; |
219 | for i in first_new_index..self.cumulative_weights.len() { |
220 | match next_new_weight { |
221 | Some(&(j, w)) if i == j => { |
222 | cumulative_weight += w; |
223 | next_new_weight = iter.next(); |
224 | } |
225 | _ => { |
226 | let mut tmp = self.cumulative_weights[i].clone(); |
227 | tmp -= &prev_weight; // We know this is positive. |
228 | cumulative_weight += &tmp; |
229 | } |
230 | } |
231 | prev_weight = cumulative_weight.clone(); |
232 | core::mem::swap(&mut prev_weight, &mut self.cumulative_weights[i]); |
233 | } |
234 | |
235 | self.total_weight = total_weight; |
236 | self.weight_distribution = X::Sampler::new(zero, self.total_weight.clone()).unwrap(); |
237 | |
238 | Ok(()) |
239 | } |
240 | } |
241 | |
242 | /// A lazy-loading iterator over the weights of a `WeightedIndex` distribution. |
243 | /// This is returned by [`WeightedIndex::weights`]. |
244 | pub struct WeightedIndexIter<'a, X: SampleUniform + PartialOrd> { |
245 | weighted_index: &'a WeightedIndex<X>, |
246 | index: usize, |
247 | } |
248 | |
249 | impl<X> Debug for WeightedIndexIter<'_, X> |
250 | where |
251 | X: SampleUniform + PartialOrd + Debug, |
252 | X::Sampler: Debug, |
253 | { |
254 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
255 | f.debug_struct("WeightedIndexIter" ) |
256 | .field("weighted_index" , &self.weighted_index) |
257 | .field("index" , &self.index) |
258 | .finish() |
259 | } |
260 | } |
261 | |
262 | impl<X> Clone for WeightedIndexIter<'_, X> |
263 | where |
264 | X: SampleUniform + PartialOrd, |
265 | { |
266 | fn clone(&self) -> Self { |
267 | WeightedIndexIter { |
268 | weighted_index: self.weighted_index, |
269 | index: self.index, |
270 | } |
271 | } |
272 | } |
273 | |
274 | impl<X> Iterator for WeightedIndexIter<'_, X> |
275 | where |
276 | X: for<'b> core::ops::SubAssign<&'b X> + SampleUniform + PartialOrd + Clone, |
277 | { |
278 | type Item = X; |
279 | |
280 | fn next(&mut self) -> Option<Self::Item> { |
281 | match self.weighted_index.weight(self.index) { |
282 | None => None, |
283 | Some(weight) => { |
284 | self.index += 1; |
285 | Some(weight) |
286 | } |
287 | } |
288 | } |
289 | } |
290 | |
291 | impl<X: SampleUniform + PartialOrd + Clone> WeightedIndex<X> { |
292 | /// Returns the weight at the given index, if it exists. |
293 | /// |
294 | /// If the index is out of bounds, this will return `None`. |
295 | /// |
296 | /// # Example |
297 | /// |
298 | /// ``` |
299 | /// use rand::distr::weighted::WeightedIndex; |
300 | /// |
301 | /// let weights = [0, 1, 2]; |
302 | /// let dist = WeightedIndex::new(&weights).unwrap(); |
303 | /// assert_eq!(dist.weight(0), Some(0)); |
304 | /// assert_eq!(dist.weight(1), Some(1)); |
305 | /// assert_eq!(dist.weight(2), Some(2)); |
306 | /// assert_eq!(dist.weight(3), None); |
307 | /// ``` |
308 | pub fn weight(&self, index: usize) -> Option<X> |
309 | where |
310 | X: for<'a> core::ops::SubAssign<&'a X>, |
311 | { |
312 | use core::cmp::Ordering::*; |
313 | |
314 | let mut weight = match index.cmp(&self.cumulative_weights.len()) { |
315 | Less => self.cumulative_weights[index].clone(), |
316 | Equal => self.total_weight.clone(), |
317 | Greater => return None, |
318 | }; |
319 | |
320 | if index > 0 { |
321 | weight -= &self.cumulative_weights[index - 1]; |
322 | } |
323 | Some(weight) |
324 | } |
325 | |
326 | /// Returns a lazy-loading iterator containing the current weights of this distribution. |
327 | /// |
328 | /// If this distribution has not been updated since its creation, this will return the |
329 | /// same weights as were passed to `new`. |
330 | /// |
331 | /// # Example |
332 | /// |
333 | /// ``` |
334 | /// use rand::distr::weighted::WeightedIndex; |
335 | /// |
336 | /// let weights = [1, 2, 3]; |
337 | /// let mut dist = WeightedIndex::new(&weights).unwrap(); |
338 | /// assert_eq!(dist.weights().collect::<Vec<_>>(), vec![1, 2, 3]); |
339 | /// dist.update_weights(&[(0, &2)]).unwrap(); |
340 | /// assert_eq!(dist.weights().collect::<Vec<_>>(), vec![2, 2, 3]); |
341 | /// ``` |
342 | pub fn weights(&self) -> WeightedIndexIter<'_, X> |
343 | where |
344 | X: for<'a> core::ops::SubAssign<&'a X>, |
345 | { |
346 | WeightedIndexIter { |
347 | weighted_index: self, |
348 | index: 0, |
349 | } |
350 | } |
351 | |
352 | /// Returns the sum of all weights in this distribution. |
353 | pub fn total_weight(&self) -> X { |
354 | self.total_weight.clone() |
355 | } |
356 | } |
357 | |
358 | impl<X> Distribution<usize> for WeightedIndex<X> |
359 | where |
360 | X: SampleUniform + PartialOrd, |
361 | { |
362 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize { |
363 | let chosen_weight: X = self.weight_distribution.sample(rng); |
364 | // Find the first item which has a weight *higher* than the chosen weight. |
365 | self.cumulative_weights |
366 | .partition_point(|w| w <= &chosen_weight) |
367 | } |
368 | } |
369 | |
370 | #[cfg (test)] |
371 | mod test { |
372 | use super::*; |
373 | |
374 | #[cfg (feature = "serde" )] |
375 | #[test] |
376 | fn test_weightedindex_serde() { |
377 | let weighted_index = WeightedIndex::new([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).unwrap(); |
378 | |
379 | let ser_weighted_index = bincode::serialize(&weighted_index).unwrap(); |
380 | let de_weighted_index: WeightedIndex<i32> = |
381 | bincode::deserialize(&ser_weighted_index).unwrap(); |
382 | |
383 | assert_eq!( |
384 | de_weighted_index.cumulative_weights, |
385 | weighted_index.cumulative_weights |
386 | ); |
387 | assert_eq!(de_weighted_index.total_weight, weighted_index.total_weight); |
388 | } |
389 | |
390 | #[test] |
391 | fn test_accepting_nan() { |
392 | assert_eq!( |
393 | WeightedIndex::new([f32::NAN, 0.5]).unwrap_err(), |
394 | Error::InvalidWeight, |
395 | ); |
396 | assert_eq!( |
397 | WeightedIndex::new([f32::NAN]).unwrap_err(), |
398 | Error::InvalidWeight, |
399 | ); |
400 | assert_eq!( |
401 | WeightedIndex::new([0.5, f32::NAN]).unwrap_err(), |
402 | Error::InvalidWeight, |
403 | ); |
404 | |
405 | assert_eq!( |
406 | WeightedIndex::new([0.5, 7.0]) |
407 | .unwrap() |
408 | .update_weights(&[(0, &f32::NAN)]) |
409 | .unwrap_err(), |
410 | Error::InvalidWeight, |
411 | ) |
412 | } |
413 | |
414 | #[test] |
415 | #[cfg_attr (miri, ignore)] // Miri is too slow |
416 | fn test_weightedindex() { |
417 | let mut r = crate::test::rng(700); |
418 | const N_REPS: u32 = 5000; |
419 | let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7]; |
420 | let total_weight = weights.iter().sum::<u32>() as f32; |
421 | |
422 | let verify = |result: [i32; 14]| { |
423 | for (i, count) in result.iter().enumerate() { |
424 | let exp = (weights[i] * N_REPS) as f32 / total_weight; |
425 | let mut err = (*count as f32 - exp).abs(); |
426 | if err != 0.0 { |
427 | err /= exp; |
428 | } |
429 | assert!(err <= 0.25); |
430 | } |
431 | }; |
432 | |
433 | // WeightedIndex from vec |
434 | let mut chosen = [0i32; 14]; |
435 | let distr = WeightedIndex::new(weights.to_vec()).unwrap(); |
436 | for _ in 0..N_REPS { |
437 | chosen[distr.sample(&mut r)] += 1; |
438 | } |
439 | verify(chosen); |
440 | |
441 | // WeightedIndex from slice |
442 | chosen = [0i32; 14]; |
443 | let distr = WeightedIndex::new(&weights[..]).unwrap(); |
444 | for _ in 0..N_REPS { |
445 | chosen[distr.sample(&mut r)] += 1; |
446 | } |
447 | verify(chosen); |
448 | |
449 | // WeightedIndex from iterator |
450 | chosen = [0i32; 14]; |
451 | let distr = WeightedIndex::new(weights.iter()).unwrap(); |
452 | for _ in 0..N_REPS { |
453 | chosen[distr.sample(&mut r)] += 1; |
454 | } |
455 | verify(chosen); |
456 | |
457 | for _ in 0..5 { |
458 | assert_eq!(WeightedIndex::new([0, 1]).unwrap().sample(&mut r), 1); |
459 | assert_eq!(WeightedIndex::new([1, 0]).unwrap().sample(&mut r), 0); |
460 | assert_eq!( |
461 | WeightedIndex::new([0, 0, 0, 0, 10, 0]) |
462 | .unwrap() |
463 | .sample(&mut r), |
464 | 4 |
465 | ); |
466 | } |
467 | |
468 | assert_eq!( |
469 | WeightedIndex::new(&[10][0..0]).unwrap_err(), |
470 | Error::InvalidInput |
471 | ); |
472 | assert_eq!( |
473 | WeightedIndex::new([0]).unwrap_err(), |
474 | Error::InsufficientNonZero |
475 | ); |
476 | assert_eq!( |
477 | WeightedIndex::new([10, 20, -1, 30]).unwrap_err(), |
478 | Error::InvalidWeight |
479 | ); |
480 | assert_eq!( |
481 | WeightedIndex::new([-10, 20, 1, 30]).unwrap_err(), |
482 | Error::InvalidWeight |
483 | ); |
484 | assert_eq!(WeightedIndex::new([-10]).unwrap_err(), Error::InvalidWeight); |
485 | } |
486 | |
487 | #[test] |
488 | fn test_update_weights() { |
489 | let data = [ |
490 | ( |
491 | &[10u32, 2, 3, 4][..], |
492 | &[(1, &100), (2, &4)][..], // positive change |
493 | &[10, 100, 4, 4][..], |
494 | ), |
495 | ( |
496 | &[1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7][..], |
497 | &[(2, &1), (5, &1), (13, &100)][..], // negative change and last element |
498 | &[1u32, 2, 1, 0, 5, 1, 7, 1, 2, 3, 4, 5, 6, 100][..], |
499 | ), |
500 | ]; |
501 | |
502 | for (weights, update, expected_weights) in data.iter() { |
503 | let total_weight = weights.iter().sum::<u32>(); |
504 | let mut distr = WeightedIndex::new(weights.to_vec()).unwrap(); |
505 | assert_eq!(distr.total_weight, total_weight); |
506 | |
507 | distr.update_weights(update).unwrap(); |
508 | let expected_total_weight = expected_weights.iter().sum::<u32>(); |
509 | let expected_distr = WeightedIndex::new(expected_weights.to_vec()).unwrap(); |
510 | assert_eq!(distr.total_weight, expected_total_weight); |
511 | assert_eq!(distr.total_weight, expected_distr.total_weight); |
512 | assert_eq!(distr.cumulative_weights, expected_distr.cumulative_weights); |
513 | } |
514 | } |
515 | |
516 | #[test] |
517 | fn test_update_weights_errors() { |
518 | let data = [ |
519 | ( |
520 | &[1i32, 0, 0][..], |
521 | &[(0, &0)][..], |
522 | Error::InsufficientNonZero, |
523 | ), |
524 | ( |
525 | &[10, 10, 10, 10][..], |
526 | &[(1, &-11)][..], |
527 | Error::InvalidWeight, // A weight is negative |
528 | ), |
529 | ( |
530 | &[1, 2, 3, 4, 5][..], |
531 | &[(1, &5), (0, &5)][..], // Wrong order |
532 | Error::InvalidInput, |
533 | ), |
534 | ( |
535 | &[1][..], |
536 | &[(1, &1)][..], // Index too large |
537 | Error::InvalidInput, |
538 | ), |
539 | ]; |
540 | |
541 | for (weights, update, err) in data.iter() { |
542 | let total_weight = weights.iter().sum::<i32>(); |
543 | let mut distr = WeightedIndex::new(weights.to_vec()).unwrap(); |
544 | assert_eq!(distr.total_weight, total_weight); |
545 | match distr.update_weights(update) { |
546 | Ok(_) => panic!("Expected update_weights to fail, but it succeeded" ), |
547 | Err(e) => assert_eq!(e, *err), |
548 | } |
549 | } |
550 | } |
551 | |
552 | #[test] |
553 | fn test_weight_at() { |
554 | let data = [ |
555 | &[1][..], |
556 | &[10, 2, 3, 4][..], |
557 | &[1, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7][..], |
558 | &[u32::MAX][..], |
559 | ]; |
560 | |
561 | for weights in data.iter() { |
562 | let distr = WeightedIndex::new(weights.to_vec()).unwrap(); |
563 | for (i, weight) in weights.iter().enumerate() { |
564 | assert_eq!(distr.weight(i), Some(*weight)); |
565 | } |
566 | assert_eq!(distr.weight(weights.len()), None); |
567 | } |
568 | } |
569 | |
570 | #[test] |
571 | fn test_weights() { |
572 | let data = [ |
573 | &[1][..], |
574 | &[10, 2, 3, 4][..], |
575 | &[1, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7][..], |
576 | &[u32::MAX][..], |
577 | ]; |
578 | |
579 | for weights in data.iter() { |
580 | let distr = WeightedIndex::new(weights.to_vec()).unwrap(); |
581 | assert_eq!(distr.weights().collect::<Vec<_>>(), weights.to_vec()); |
582 | } |
583 | } |
584 | |
585 | #[test] |
586 | fn value_stability() { |
587 | fn test_samples<X: Weight + SampleUniform + PartialOrd, I>( |
588 | weights: I, |
589 | buf: &mut [usize], |
590 | expected: &[usize], |
591 | ) where |
592 | I: IntoIterator, |
593 | I::Item: SampleBorrow<X>, |
594 | { |
595 | assert_eq!(buf.len(), expected.len()); |
596 | let distr = WeightedIndex::new(weights).unwrap(); |
597 | let mut rng = crate::test::rng(701); |
598 | for r in buf.iter_mut() { |
599 | *r = rng.sample(&distr); |
600 | } |
601 | assert_eq!(buf, expected); |
602 | } |
603 | |
604 | let mut buf = [0; 10]; |
605 | test_samples( |
606 | [1i32, 1, 1, 1, 1, 1, 1, 1, 1], |
607 | &mut buf, |
608 | &[0, 6, 2, 6, 3, 4, 7, 8, 2, 5], |
609 | ); |
610 | test_samples( |
611 | [0.7f32, 0.1, 0.1, 0.1], |
612 | &mut buf, |
613 | &[0, 0, 0, 1, 0, 0, 2, 3, 0, 0], |
614 | ); |
615 | test_samples( |
616 | [1.0f64, 0.999, 0.998, 0.997], |
617 | &mut buf, |
618 | &[2, 2, 1, 3, 2, 1, 3, 3, 2, 1], |
619 | ); |
620 | } |
621 | |
622 | #[test] |
623 | fn weighted_index_distributions_can_be_compared() { |
624 | assert_eq!(WeightedIndex::new([1, 2]), WeightedIndex::new([1, 2])); |
625 | } |
626 | |
627 | #[test] |
628 | fn overflow() { |
629 | assert_eq!(WeightedIndex::new([2, usize::MAX]), Err(Error::Overflow)); |
630 | } |
631 | } |
632 | |