1 | // Copyright (c) 2018-2022, The rav1e contributors. All rights reserved |
2 | // |
3 | // This source code is subject to the terms of the BSD 2 Clause License and |
4 | // the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
5 | // was not distributed with this source code in the LICENSE file, you can |
6 | // obtain it at www.aomedia.org/license/software. If the Alliance for Open |
7 | // Media Patent License 1.0 was not distributed with this source code in the |
8 | // PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
9 | |
10 | use super::TxSize; |
11 | use super::TxType; |
12 | |
13 | use super::HTX_TAB; |
14 | use super::VTX_TAB; |
15 | |
16 | pub type TxfmShift = [i8; 3]; |
17 | pub type TxfmShifts = [TxfmShift; 3]; |
18 | |
19 | // Shift so that the first shift is 4 - (bd - 8) to align with the initial |
20 | // design of daala_tx |
21 | // 8 bit 4x4 is an exception and only shifts by 3 in the first stage |
22 | const FWD_SHIFT_4X4: TxfmShifts = [[3, 0, 0], [2, 0, 1], [0, 0, 3]]; |
23 | const FWD_SHIFT_8X8: TxfmShifts = [[4, -1, 0], [2, 0, 1], [0, 0, 3]]; |
24 | const FWD_SHIFT_16X16: TxfmShifts = [[4, -1, 0], [2, 0, 1], [0, 0, 3]]; |
25 | const FWD_SHIFT_32X32: TxfmShifts = [[4, -2, 0], [2, 0, 0], [0, 0, 2]]; |
26 | const FWD_SHIFT_64X64: TxfmShifts = [[4, -1, -2], [2, 0, -1], [0, 0, 1]]; |
27 | const FWD_SHIFT_4X8: TxfmShifts = [[4, -1, 0], [2, 0, 1], [0, 0, 3]]; |
28 | const FWD_SHIFT_8X4: TxfmShifts = [[4, -1, 0], [2, 0, 1], [0, 0, 3]]; |
29 | const FWD_SHIFT_8X16: TxfmShifts = [[4, -1, 0], [2, 0, 1], [0, 0, 3]]; |
30 | const FWD_SHIFT_16X8: TxfmShifts = [[4, -1, 0], [2, 0, 1], [0, 0, 3]]; |
31 | const FWD_SHIFT_16X32: TxfmShifts = [[4, -2, 0], [2, 0, 0], [0, 0, 2]]; |
32 | const FWD_SHIFT_32X16: TxfmShifts = [[4, -2, 0], [2, 0, 0], [0, 0, 2]]; |
33 | const FWD_SHIFT_32X64: TxfmShifts = [[4, -1, -2], [2, 0, -1], [0, 0, 1]]; |
34 | const FWD_SHIFT_64X32: TxfmShifts = [[4, -1, -2], [2, 0, -1], [0, 0, 1]]; |
35 | const FWD_SHIFT_4X16: TxfmShifts = [[4, -1, 0], [2, 0, 1], [0, 0, 3]]; |
36 | const FWD_SHIFT_16X4: TxfmShifts = [[4, -1, 0], [2, 0, 1], [0, 0, 3]]; |
37 | const FWD_SHIFT_8X32: TxfmShifts = [[4, -1, 0], [2, 0, 1], [0, 0, 3]]; |
38 | const FWD_SHIFT_32X8: TxfmShifts = [[4, -1, 0], [2, 0, 1], [0, 0, 3]]; |
39 | const FWD_SHIFT_16X64: TxfmShifts = [[4, -2, 0], [2, 0, 0], [0, 0, 2]]; |
40 | const FWD_SHIFT_64X16: TxfmShifts = [[4, -2, 0], [2, 0, 0], [0, 0, 2]]; |
41 | |
42 | const FWD_SHIFT_4X4_WHT: TxfmShift = [0, 0, 2]; |
43 | |
44 | pub const FWD_TXFM_SHIFT_LS: [TxfmShifts; TxSize::TX_SIZES_ALL] = [ |
45 | FWD_SHIFT_4X4, |
46 | FWD_SHIFT_8X8, |
47 | FWD_SHIFT_16X16, |
48 | FWD_SHIFT_32X32, |
49 | FWD_SHIFT_64X64, |
50 | FWD_SHIFT_4X8, |
51 | FWD_SHIFT_8X4, |
52 | FWD_SHIFT_8X16, |
53 | FWD_SHIFT_16X8, |
54 | FWD_SHIFT_16X32, |
55 | FWD_SHIFT_32X16, |
56 | FWD_SHIFT_32X64, |
57 | FWD_SHIFT_64X32, |
58 | FWD_SHIFT_4X16, |
59 | FWD_SHIFT_16X4, |
60 | FWD_SHIFT_8X32, |
61 | FWD_SHIFT_32X8, |
62 | FWD_SHIFT_16X64, |
63 | FWD_SHIFT_64X16, |
64 | ]; |
65 | |
66 | #[derive (Debug, Clone, Copy, PartialEq, Eq)] |
67 | pub enum TxfmType { |
68 | DCT4, |
69 | DCT8, |
70 | DCT16, |
71 | DCT32, |
72 | DCT64, |
73 | ADST4, |
74 | ADST8, |
75 | ADST16, |
76 | Identity4, |
77 | Identity8, |
78 | Identity16, |
79 | Identity32, |
80 | WHT4, |
81 | } |
82 | |
83 | impl TxfmType { |
84 | const TX_TYPES_1D: usize = 5; |
85 | const AV1_TXFM_TYPE_LS: [[Option<TxfmType>; Self::TX_TYPES_1D]; 5] = [ |
86 | [ |
87 | Some(TxfmType::DCT4), |
88 | Some(TxfmType::ADST4), |
89 | Some(TxfmType::ADST4), |
90 | Some(TxfmType::Identity4), |
91 | Some(TxfmType::WHT4), |
92 | ], |
93 | [ |
94 | Some(TxfmType::DCT8), |
95 | Some(TxfmType::ADST8), |
96 | Some(TxfmType::ADST8), |
97 | Some(TxfmType::Identity8), |
98 | None, |
99 | ], |
100 | [ |
101 | Some(TxfmType::DCT16), |
102 | Some(TxfmType::ADST16), |
103 | Some(TxfmType::ADST16), |
104 | Some(TxfmType::Identity16), |
105 | None, |
106 | ], |
107 | [Some(TxfmType::DCT32), None, None, Some(TxfmType::Identity32), None], |
108 | [Some(TxfmType::DCT64), None, None, None, None], |
109 | ]; |
110 | } |
111 | |
112 | #[derive (Debug, Clone, Copy)] |
113 | pub struct Txfm2DFlipCfg { |
114 | pub tx_size: TxSize, |
115 | /// Flip upside down |
116 | pub ud_flip: bool, |
117 | /// Flip left to right |
118 | pub lr_flip: bool, |
119 | pub shift: TxfmShift, |
120 | pub txfm_type_col: TxfmType, |
121 | pub txfm_type_row: TxfmType, |
122 | } |
123 | |
124 | impl Txfm2DFlipCfg { |
125 | /// # Panics |
126 | /// |
127 | /// - If called with an invalid combination of `tx_size` and `tx_type` |
128 | pub fn fwd(tx_type: TxType, tx_size: TxSize, bd: usize) -> Self { |
129 | let tx_type_1d_col = VTX_TAB[tx_type as usize]; |
130 | let tx_type_1d_row = HTX_TAB[tx_type as usize]; |
131 | let txw_idx = tx_size.width_index(); |
132 | let txh_idx = tx_size.height_index(); |
133 | let txfm_type_col = |
134 | TxfmType::AV1_TXFM_TYPE_LS[txh_idx][tx_type_1d_col as usize].unwrap(); |
135 | let txfm_type_row = |
136 | TxfmType::AV1_TXFM_TYPE_LS[txw_idx][tx_type_1d_row as usize].unwrap(); |
137 | let (ud_flip, lr_flip) = Self::get_flip_cfg(tx_type); |
138 | let shift = if tx_type == TxType::WHT_WHT { |
139 | FWD_SHIFT_4X4_WHT |
140 | } else { |
141 | FWD_TXFM_SHIFT_LS[tx_size as usize][(bd - 8) / 2] |
142 | }; |
143 | |
144 | Txfm2DFlipCfg { |
145 | tx_size, |
146 | ud_flip, |
147 | lr_flip, |
148 | shift, |
149 | txfm_type_col, |
150 | txfm_type_row, |
151 | } |
152 | } |
153 | |
154 | /// Determine the flip config, returning `(ud_flip, lr_flip)` |
155 | const fn get_flip_cfg(tx_type: TxType) -> (bool, bool) { |
156 | use self::TxType::*; |
157 | match tx_type { |
158 | DCT_DCT | ADST_DCT | DCT_ADST | ADST_ADST | IDTX | V_DCT | H_DCT |
159 | | V_ADST | H_ADST | WHT_WHT => (false, false), |
160 | FLIPADST_DCT | FLIPADST_ADST | V_FLIPADST => (true, false), |
161 | DCT_FLIPADST | ADST_FLIPADST | H_FLIPADST => (false, true), |
162 | FLIPADST_FLIPADST => (true, true), |
163 | } |
164 | } |
165 | } |
166 | |
167 | macro_rules! store_coeffs { |
168 | ( $arr:expr, $( $x:expr ),* ) => { |
169 | { |
170 | let mut i: i32 = -1; |
171 | $( |
172 | i += 1; |
173 | $arr[i as usize] = $x; |
174 | )* |
175 | } |
176 | }; |
177 | } |
178 | |
179 | macro_rules! impl_1d_tx { |
180 | () => { |
181 | impl_1d_tx! {allow(unused_attributes), } |
182 | }; |
183 | |
184 | ($m:meta, $($s:ident),*) => { |
185 | pub trait TxOperations: Copy { |
186 | $($s)* fn zero() -> Self; |
187 | |
188 | $($s)* fn tx_mul<const SHIFT: i32>(self, mul: i32) -> Self; |
189 | $($s)* fn rshift1(self) -> Self; |
190 | $($s)* fn add(self, b: Self) -> Self; |
191 | $($s)* fn sub(self, b: Self) -> Self; |
192 | $($s)* fn add_avg(self, b: Self) -> Self; |
193 | $($s)* fn sub_avg(self, b: Self) -> Self; |
194 | |
195 | $($s)* fn copy_fn(self) -> Self { |
196 | self |
197 | } |
198 | } |
199 | |
200 | #[inline] |
201 | fn get_func(t: TxfmType) -> TxfmFunc { |
202 | use self::TxfmType::*; |
203 | match t { |
204 | DCT4 => daala_fdct4, |
205 | DCT8 => daala_fdct8, |
206 | DCT16 => daala_fdct16, |
207 | DCT32 => daala_fdct32, |
208 | DCT64 => daala_fdct64, |
209 | ADST4 => daala_fdst_vii_4, |
210 | ADST8 => daala_fdst8, |
211 | ADST16 => daala_fdst16, |
212 | Identity4 => fidentity, |
213 | Identity8 => fidentity, |
214 | Identity16 => fidentity, |
215 | Identity32 => fidentity, |
216 | WHT4 => fwht4, |
217 | } |
218 | } |
219 | |
220 | trait RotateKernelPi4<T: TxOperations> { |
221 | const ADD: $($s)* fn(T, T) -> T; |
222 | const SUB: $($s)* fn(T, T) -> T; |
223 | |
224 | #[$m] |
225 | $($s)* fn kernel<const SHIFT0: i32, const SHIFT1: i32>(p0: T, p1: T, m: (i32, i32)) -> (T, T) { |
226 | let t = Self::ADD(p1, p0); |
227 | let (a, out0) = (p0.tx_mul::<SHIFT0>(m.0), t.tx_mul::<SHIFT1>(m.1)); |
228 | let out1 = Self::SUB(a, out0); |
229 | (out0, out1) |
230 | } |
231 | } |
232 | |
233 | struct RotatePi4Add; |
234 | struct RotatePi4AddAvg; |
235 | struct RotatePi4Sub; |
236 | struct RotatePi4SubAvg; |
237 | |
238 | impl<T: TxOperations> RotateKernelPi4<T> for RotatePi4Add { |
239 | const ADD: $($s)* fn(T, T) -> T = T::add; |
240 | const SUB: $($s)* fn(T, T) -> T = T::sub; |
241 | } |
242 | |
243 | impl<T: TxOperations> RotateKernelPi4<T> for RotatePi4AddAvg { |
244 | const ADD: $($s)* fn(T, T) -> T = T::add_avg; |
245 | const SUB: $($s)* fn(T, T) -> T = T::sub; |
246 | } |
247 | |
248 | impl<T: TxOperations> RotateKernelPi4<T> for RotatePi4Sub { |
249 | const ADD: $($s)* fn(T, T) -> T = T::sub; |
250 | const SUB: $($s)* fn(T, T) -> T = T::add; |
251 | } |
252 | |
253 | impl<T: TxOperations> RotateKernelPi4<T> for RotatePi4SubAvg { |
254 | const ADD: $($s)* fn(T, T) -> T = T::sub_avg; |
255 | const SUB: $($s)* fn(T, T) -> T = T::add; |
256 | } |
257 | |
258 | trait RotateKernel<T: TxOperations> { |
259 | const ADD: $($s)* fn(T, T) -> T; |
260 | const SUB: $($s)* fn(T, T) -> T; |
261 | const SHIFT: $($s)* fn(T) -> T; |
262 | |
263 | #[$m] |
264 | $($s)* fn half_kernel<const SHIFT0: i32, const SHIFT1: i32, const SHIFT2: i32>( |
265 | p0: (T, T), p1: T, m: (i32, i32, i32), |
266 | ) -> (T, T) { |
267 | let t = Self::ADD(p1, p0.0); |
268 | let (a, b, c) = (p0.1.tx_mul::<SHIFT0>(m.0), p1.tx_mul::<SHIFT1>(m.1), t.tx_mul::<SHIFT2>(m.2)); |
269 | let out0 = b.add(c); |
270 | let shifted = Self::SHIFT(c); |
271 | let out1 = Self::SUB(a, shifted); |
272 | (out0, out1) |
273 | } |
274 | |
275 | #[$m] |
276 | $($s)* fn kernel<const SHIFT0: i32, const SHIFT1: i32, const SHIFT2: i32>(p0: T, p1: T, m: (i32, i32, i32)) -> (T, T) { |
277 | Self::half_kernel::<SHIFT0, SHIFT1, SHIFT2>((p0, p0), p1, m) |
278 | } |
279 | } |
280 | |
281 | trait RotateKernelNeg<T: TxOperations> { |
282 | const ADD: $($s)* fn(T, T) -> T; |
283 | |
284 | #[$m] |
285 | $($s)* fn kernel<const SHIFT0: i32, const SHIFT1: i32, const SHIFT2: i32>(p0: T, p1: T, m: (i32, i32, i32)) -> (T, T) { |
286 | let t = Self::ADD(p0, p1); |
287 | let (a, b, c) = (p0.tx_mul::<SHIFT0>(m.0), p1.tx_mul::<SHIFT1>(m.1), t.tx_mul::<SHIFT2>(m.2)); |
288 | let out0 = b.sub(c); |
289 | let out1 = c.sub(a); |
290 | (out0, out1) |
291 | } |
292 | } |
293 | |
294 | struct RotateAdd; |
295 | struct RotateAddAvg; |
296 | struct RotateAddShift; |
297 | struct RotateSub; |
298 | struct RotateSubAvg; |
299 | struct RotateSubShift; |
300 | struct RotateNeg; |
301 | struct RotateNegAvg; |
302 | |
303 | impl<T: TxOperations> RotateKernel<T> for RotateAdd { |
304 | const ADD: $($s)* fn(T, T) -> T = T::add; |
305 | const SUB: $($s)* fn(T, T) -> T = T::sub; |
306 | const SHIFT: $($s)* fn(T) -> T = T::copy_fn; |
307 | } |
308 | |
309 | impl<T: TxOperations> RotateKernel<T> for RotateAddAvg { |
310 | const ADD: $($s)* fn(T, T) -> T = T::add_avg; |
311 | const SUB: $($s)* fn(T, T) -> T = T::sub; |
312 | const SHIFT: $($s)* fn(T) -> T = T::copy_fn; |
313 | } |
314 | |
315 | impl<T: TxOperations> RotateKernel<T> for RotateAddShift { |
316 | const ADD: $($s)* fn(T, T) -> T = T::add; |
317 | const SUB: $($s)* fn(T, T) -> T = T::sub; |
318 | const SHIFT: $($s)* fn(T) -> T = T::rshift1; |
319 | } |
320 | |
321 | impl<T: TxOperations> RotateKernel<T> for RotateSub { |
322 | const ADD: $($s)* fn(T, T) -> T = T::sub; |
323 | const SUB: $($s)* fn(T, T) -> T = T::add; |
324 | const SHIFT: $($s)* fn(T) -> T = T::copy_fn; |
325 | } |
326 | |
327 | impl<T: TxOperations> RotateKernel<T> for RotateSubAvg { |
328 | const ADD: $($s)* fn(T, T) -> T = T::sub_avg; |
329 | const SUB: $($s)* fn(T, T) -> T = T::add; |
330 | const SHIFT: $($s)* fn(T) -> T = T::copy_fn; |
331 | } |
332 | |
333 | impl<T: TxOperations> RotateKernel<T> for RotateSubShift { |
334 | const ADD: $($s)* fn(T, T) -> T = T::sub; |
335 | const SUB: $($s)* fn(T, T) -> T = T::add; |
336 | const SHIFT: $($s)* fn(T) -> T = T::rshift1; |
337 | } |
338 | |
339 | impl<T: TxOperations> RotateKernelNeg<T> for RotateNeg { |
340 | const ADD: $($s)* fn(T, T) -> T = T::sub; |
341 | } |
342 | |
343 | impl<T: TxOperations> RotateKernelNeg<T> for RotateNegAvg { |
344 | const ADD: $($s)* fn(T, T) -> T = T::sub_avg; |
345 | } |
346 | |
347 | #[inline] |
348 | #[$m] |
349 | $($s)* fn butterfly_add<T: TxOperations>(p0: T, p1: T) -> ((T, T), T) { |
350 | let p0 = p0.add(p1); |
351 | let p0h = p0.rshift1(); |
352 | let p1h = p1.sub(p0h); |
353 | ((p0h, p0), p1h) |
354 | } |
355 | |
356 | #[inline] |
357 | #[$m] |
358 | $($s)* fn butterfly_sub<T: TxOperations>(p0: T, p1: T) -> ((T, T), T) { |
359 | let p0 = p0.sub(p1); |
360 | let p0h = p0.rshift1(); |
361 | let p1h = p1.add(p0h); |
362 | ((p0h, p0), p1h) |
363 | } |
364 | |
365 | #[inline] |
366 | #[$m] |
367 | $($s)* fn butterfly_neg<T: TxOperations>(p0: T, p1: T) -> (T, (T, T)) { |
368 | let p1 = p0.sub(p1); |
369 | let p1h = p1.rshift1(); |
370 | let p0h = p0.sub(p1h); |
371 | (p0h, (p1h, p1)) |
372 | } |
373 | |
374 | #[inline] |
375 | #[$m] |
376 | $($s)* fn butterfly_add_asym<T: TxOperations>(p0: (T, T), p1h: T) -> (T, T) { |
377 | let p1 = p1h.add(p0.0); |
378 | let p0 = p0.1.sub(p1); |
379 | (p0, p1) |
380 | } |
381 | |
382 | #[inline] |
383 | #[$m] |
384 | $($s)* fn butterfly_sub_asym<T: TxOperations>(p0: (T, T), p1h: T) -> (T, T) { |
385 | let p1 = p1h.sub(p0.0); |
386 | let p0 = p0.1.add(p1); |
387 | (p0, p1) |
388 | } |
389 | |
390 | #[inline] |
391 | #[$m] |
392 | $($s)* fn butterfly_neg_asym<T: TxOperations>(p0h: T, p1: (T, T)) -> (T, T) { |
393 | let p0 = p0h.add(p1.0); |
394 | let p1 = p0.sub(p1.1); |
395 | (p0, p1) |
396 | } |
397 | |
398 | #[$m] |
399 | $($s)* fn daala_fdct_ii_2_asym<T: TxOperations>(p0h: T, p1: (T, T)) -> (T, T) { |
400 | butterfly_neg_asym(p0h, p1) |
401 | } |
402 | |
403 | #[$m] |
404 | $($s)* fn daala_fdst_iv_2_asym<T: TxOperations>(p0: (T, T), p1h: T) -> (T, T) { |
405 | // 473/512 = (Sin[3*Pi/8] + Cos[3*Pi/8])/Sqrt[2] = 0.9238795325112867 |
406 | // 3135/4096 = (Sin[3*Pi/8] - Cos[3*Pi/8])*Sqrt[2] = 0.7653668647301795 |
407 | // 4433/8192 = Cos[3*Pi/8]*Sqrt[2] = 0.5411961001461971 |
408 | RotateAdd::half_kernel::<9, 12, 13>(p0, p1h, (473, 3135, 4433)) |
409 | } |
410 | |
411 | #[$m] |
412 | $($s)* fn daala_fdct_ii_4<T: TxOperations>( |
413 | q0: T, q1: T, q2: T, q3: T, output: &mut [T], |
414 | ) { |
415 | // +/- Butterflies with asymmetric output. |
416 | let (q0h, q3) = butterfly_neg(q0, q3); |
417 | let (q1, q2h) = butterfly_add(q1, q2); |
418 | |
419 | // Embedded 2-point transforms with asymmetric input. |
420 | let (q0, q1) = daala_fdct_ii_2_asym(q0h, q1); |
421 | let (q3, q2) = daala_fdst_iv_2_asym(q3, q2h); |
422 | |
423 | store_coeffs!(output, q0, q1, q2, q3); |
424 | } |
425 | |
426 | #[$m] |
427 | $($s)* fn daala_fdct4<T: TxOperations>(coeffs: &mut [T]) { |
428 | assert!(coeffs.len() >= 4); |
429 | let mut temp_out: [T; 4] = [T::zero(); 4]; |
430 | daala_fdct_ii_4(coeffs[0], coeffs[1], coeffs[2], coeffs[3], &mut temp_out); |
431 | |
432 | coeffs[0] = temp_out[0]; |
433 | coeffs[1] = temp_out[2]; |
434 | coeffs[2] = temp_out[1]; |
435 | coeffs[3] = temp_out[3]; |
436 | } |
437 | |
438 | #[$m] |
439 | $($s)* fn daala_fdst_vii_4<T: TxOperations>(coeffs: &mut [T]) { |
440 | assert!(coeffs.len() >= 4); |
441 | |
442 | let q0 = coeffs[0]; |
443 | let q1 = coeffs[1]; |
444 | let q2 = coeffs[2]; |
445 | let q3 = coeffs[3]; |
446 | let t0 = q1.add(q3); |
447 | // t1 = (q0 + q1 - q3)/2 |
448 | let t1 = q1.add(q0.sub_avg(t0)); |
449 | let t2 = q0.sub(q1); |
450 | let t3 = q2; |
451 | let t4 = q0.add(q3); |
452 | // 7021/16384 ~= 2*Sin[2*Pi/9]/3 ~= 0.428525073124360 |
453 | let t0 = t0.tx_mul::<14>(7021); |
454 | // 37837/32768 ~= 4*Sin[3*Pi/9]/3 ~= 1.154700538379252 |
455 | let t1 = t1.tx_mul::<15>(37837); |
456 | // 21513/32768 ~= 2*Sin[4*Pi/9]/3 ~= 0.656538502008139 |
457 | let t2 = t2.tx_mul::<15>(21513); |
458 | // 37837/32768 ~= 4*Sin[3*Pi/9]/3 ~= 1.154700538379252 |
459 | let t3 = t3.tx_mul::<15>(37837); |
460 | // 467/2048 ~= 2*Sin[1*Pi/9]/3 ~= 0.228013428883779 |
461 | let t4 = t4.tx_mul::<11>(467); |
462 | let t3h = t3.rshift1(); |
463 | let u4 = t4.add(t3h); |
464 | coeffs[0] = t0.add(u4); |
465 | coeffs[1] = t1; |
466 | coeffs[2] = t0.add(t2.sub(t3h)); |
467 | coeffs[3] = t2.add(t3.sub(u4)); |
468 | } |
469 | |
470 | #[$m] |
471 | $($s)* fn daala_fdct_ii_2<T: TxOperations>(p0: T, p1: T) -> (T, T) { |
472 | // 11585/8192 = Sin[Pi/4] + Cos[Pi/4] = 1.4142135623730951 |
473 | // 11585/8192 = 2*Cos[Pi/4] = 1.4142135623730951 |
474 | let (p1, p0) = RotatePi4SubAvg::kernel::<13, 13>(p1, p0, (11585, 11585)); |
475 | (p0, p1) |
476 | } |
477 | |
478 | #[$m] |
479 | $($s)* fn daala_fdst_iv_2<T: TxOperations>(p0: T, p1: T) -> (T, T) { |
480 | // 10703/8192 = Sin[3*Pi/8] + Cos[3*Pi/8] = 1.3065629648763766 |
481 | // 8867/16384 = Sin[3*Pi/8] - Cos[3*Pi/8] = 0.5411961001461971 |
482 | // 3135/4096 = 2*Cos[3*Pi/8] = 0.7653668647301796 |
483 | RotateAddAvg::kernel::<13, 14, 12>(p0, p1, (10703, 8867, 3135)) |
484 | } |
485 | |
486 | #[$m] |
487 | $($s)* fn daala_fdct_ii_4_asym<T: TxOperations>( |
488 | q0h: T, q1: (T, T), q2h: T, q3: (T, T), output: &mut [T], |
489 | ) { |
490 | // +/- Butterflies with asymmetric input. |
491 | let (q0, q3) = butterfly_neg_asym(q0h, q3); |
492 | let (q1, q2) = butterfly_sub_asym(q1, q2h); |
493 | |
494 | // Embedded 2-point orthonormal transforms. |
495 | let (q0, q1) = daala_fdct_ii_2(q0, q1); |
496 | let (q3, q2) = daala_fdst_iv_2(q3, q2); |
497 | |
498 | store_coeffs!(output, q0, q1, q2, q3); |
499 | } |
500 | |
501 | #[$m] |
502 | $($s)* fn daala_fdst_iv_4_asym<T: TxOperations>( |
503 | q0: (T, T), q1h: T, q2: (T, T), q3h: T, output: &mut [T], |
504 | ) { |
505 | // Stage 0 |
506 | // 9633/16384 = (Sin[7*Pi/16] + Cos[7*Pi/16])/2 = 0.5879378012096793 |
507 | // 12873/8192 = (Sin[7*Pi/16] - Cos[7*Pi/16])*2 = 1.5713899167742045 |
508 | // 12785/32768 = Cos[7*Pi/16]*2 = 0.3901806440322565 |
509 | let (q0, q3) = RotateAddShift::half_kernel::<14, 13, 15>( |
510 | q0, |
511 | q3h, |
512 | (9633, 12873, 12785), |
513 | ); |
514 | // 11363/16384 = (Sin[5*Pi/16] + Cos[5*Pi/16])/2 = 0.6935199226610738 |
515 | // 18081/32768 = (Sin[5*Pi/16] - Cos[5*Pi/16])*2 = 0.5517987585658861 |
516 | // 4551/4096 = Cos[5*Pi/16]*2 = 1.1111404660392044 |
517 | let (q2, q1) = RotateSubShift::half_kernel::<14, 15, 12>( |
518 | q2, |
519 | q1h, |
520 | (11363, 18081, 4551), |
521 | ); |
522 | |
523 | // Stage 1 |
524 | let (q2, q3) = butterfly_sub_asym((q2.rshift1(), q2), q3); |
525 | let (q0, q1) = butterfly_sub_asym((q0.rshift1(), q0), q1); |
526 | |
527 | // Stage 2 |
528 | // 11585/8192 = Sin[Pi/4] + Cos[Pi/4] = 1.4142135623730951 |
529 | // 11585/8192 = 2*Cos[Pi/4] = 1.4142135623730951 |
530 | let (q2, q1) = RotatePi4AddAvg::kernel::<13, 13>(q2, q1, (11585, 11585)); |
531 | |
532 | store_coeffs!(output, q0, q1, q2, q3); |
533 | } |
534 | |
535 | #[$m] |
536 | $($s)* fn daala_fdct_ii_8<T: TxOperations>( |
537 | r0: T, r1: T, r2: T, r3: T, r4: T, r5: T, r6: T, r7: T, output: &mut [T], |
538 | ) { |
539 | // +/- Butterflies with asymmetric output. |
540 | let (r0h, r7) = butterfly_neg(r0, r7); |
541 | let (r1, r6h) = butterfly_add(r1, r6); |
542 | let (r2h, r5) = butterfly_neg(r2, r5); |
543 | let (r3, r4h) = butterfly_add(r3, r4); |
544 | |
545 | // Embedded 4-point transforms with asymmetric input. |
546 | daala_fdct_ii_4_asym(r0h, r1, r2h, r3, &mut output[0..4]); |
547 | daala_fdst_iv_4_asym(r7, r6h, r5, r4h, &mut output[4..8]); |
548 | output[4..8].reverse(); |
549 | } |
550 | |
551 | #[$m] |
552 | $($s)* fn daala_fdct8<T: TxOperations>(coeffs: &mut [T]) { |
553 | assert!(coeffs.len() >= 8); |
554 | let mut temp_out: [T; 8] = [T::zero(); 8]; |
555 | daala_fdct_ii_8( |
556 | coeffs[0], |
557 | coeffs[1], |
558 | coeffs[2], |
559 | coeffs[3], |
560 | coeffs[4], |
561 | coeffs[5], |
562 | coeffs[6], |
563 | coeffs[7], |
564 | &mut temp_out, |
565 | ); |
566 | |
567 | coeffs[0] = temp_out[0]; |
568 | coeffs[1] = temp_out[4]; |
569 | coeffs[2] = temp_out[2]; |
570 | coeffs[3] = temp_out[6]; |
571 | coeffs[4] = temp_out[1]; |
572 | coeffs[5] = temp_out[5]; |
573 | coeffs[6] = temp_out[3]; |
574 | coeffs[7] = temp_out[7]; |
575 | } |
576 | |
577 | #[$m] |
578 | $($s)* fn daala_fdst_iv_8<T: TxOperations>( |
579 | r0: T, r1: T, r2: T, r3: T, r4: T, r5: T, r6: T, r7: T, output: &mut [T], |
580 | ) { |
581 | // Stage 0 |
582 | // 17911/16384 = Sin[15*Pi/32] + Cos[15*Pi/32] = 1.0932018670017576 |
583 | // 14699/16384 = Sin[15*Pi/32] - Cos[15*Pi/32] = 0.8971675863426363 |
584 | // 803/8192 = Cos[15*Pi/32] = 0.0980171403295606 |
585 | let (r0, r7) = |
586 | RotateAdd::kernel::<14, 14, 13>(r0, r7, (17911, 14699, 803)); |
587 | // 20435/16384 = Sin[13*Pi/32] + Cos[13*Pi/32] = 1.24722501298667123 |
588 | // 21845/32768 = Sin[13*Pi/32] - Cos[13*Pi/32] = 0.66665565847774650 |
589 | // 1189/4096 = Cos[13*Pi/32] = 0.29028467725446233 |
590 | let (r6, r1) = |
591 | RotateSub::kernel::<14, 15, 12>(r6, r1, (20435, 21845, 1189)); |
592 | // 22173/16384 = Sin[11*Pi/32] + Cos[11*Pi/32] = 1.3533180011743526 |
593 | // 3363/8192 = Sin[11*Pi/32] - Cos[11*Pi/32] = 0.4105245275223574 |
594 | // 15447/32768 = Cos[11*Pi/32] = 0.47139673682599764 |
595 | let (r2, r5) = |
596 | RotateAdd::kernel::<14, 13, 15>(r2, r5, (22173, 3363, 15447)); |
597 | // 23059/16384 = Sin[9*Pi/32] + Cos[9*Pi/32] = 1.4074037375263826 |
598 | // 2271/16384 = Sin[9*Pi/32] - Cos[9*Pi/32] = 0.1386171691990915 |
599 | // 5197/8192 = Cos[9*Pi/32] = 0.6343932841636455 |
600 | let (r4, r3) = |
601 | RotateSub::kernel::<14, 14, 13>(r4, r3, (23059, 2271, 5197)); |
602 | |
603 | // Stage 1 |
604 | let (r0, r3h) = butterfly_add(r0, r3); |
605 | let (r2, r1h) = butterfly_sub(r2, r1); |
606 | let (r5, r6h) = butterfly_add(r5, r6); |
607 | let (r7, r4h) = butterfly_sub(r7, r4); |
608 | |
609 | // Stage 2 |
610 | let (r7, r6) = butterfly_add_asym(r7, r6h); |
611 | let (r5, r3) = butterfly_add_asym(r5, r3h); |
612 | let (r2, r4) = butterfly_add_asym(r2, r4h); |
613 | let (r0, r1) = butterfly_sub_asym(r0, r1h); |
614 | |
615 | // Stage 3 |
616 | // 10703/8192 = Sin[3*Pi/8] + Cos[3*Pi/8] = 1.3065629648763766 |
617 | // 8867/16384 = Sin[3*Pi/8] - Cos[3*Pi/8] = 0.5411961001461969 |
618 | // 3135/4096 = 2*Cos[3*Pi/8] = 0.7653668647301796 |
619 | let (r3, r4) = |
620 | RotateSubAvg::kernel::<13, 14, 12>(r3, r4, (10703, 8867, 3135)); |
621 | // 10703/8192 = Sin[3*Pi/8] + Cos[3*Pi/8] = 1.3065629648763766 |
622 | // 8867/16384 = Sin[3*Pi/8] - Cos[3*Pi/8] = 0.5411961001461969 |
623 | // 3135/4096 = 2*Cos[3*Pi/8] = 0.7653668647301796 |
624 | let (r2, r5) = |
625 | RotateNegAvg::kernel::<13, 14, 12>(r2, r5, (10703, 8867, 3135)); |
626 | // 11585/8192 = Sin[Pi/4] + Cos[Pi/4] = 1.4142135623730951 |
627 | // 11585/8192 = 2*Cos[Pi/4] = 1.4142135623730951 |
628 | let (r1, r6) = RotatePi4SubAvg::kernel::<13, 13>(r1, r6, (11585, 11585)); |
629 | |
630 | store_coeffs!(output, r0, r1, r2, r3, r4, r5, r6, r7); |
631 | } |
632 | |
633 | #[$m] |
634 | $($s)* fn daala_fdst8<T: TxOperations>(coeffs: &mut [T]) { |
635 | assert!(coeffs.len() >= 8); |
636 | let mut temp_out: [T; 8] = [T::zero(); 8]; |
637 | daala_fdst_iv_8( |
638 | coeffs[0], |
639 | coeffs[1], |
640 | coeffs[2], |
641 | coeffs[3], |
642 | coeffs[4], |
643 | coeffs[5], |
644 | coeffs[6], |
645 | coeffs[7], |
646 | &mut temp_out, |
647 | ); |
648 | |
649 | coeffs[0] = temp_out[0]; |
650 | coeffs[1] = temp_out[4]; |
651 | coeffs[2] = temp_out[2]; |
652 | coeffs[3] = temp_out[6]; |
653 | coeffs[4] = temp_out[1]; |
654 | coeffs[5] = temp_out[5]; |
655 | coeffs[6] = temp_out[3]; |
656 | coeffs[7] = temp_out[7]; |
657 | } |
658 | |
659 | #[$m] |
660 | $($s)* fn daala_fdst_iv_4<T: TxOperations>( |
661 | q0: T, q1: T, q2: T, q3: T, output: &mut [T], |
662 | ) { |
663 | // Stage 0 |
664 | // 13623/16384 = (Sin[7*Pi/16] + Cos[7*Pi/16])/Sqrt[2] = 0.831469612302545 |
665 | // 4551/4096 = (Sin[7*Pi/16] - Cos[7*Pi/16])*Sqrt[2] = 1.111140466039204 |
666 | // 9041/32768 = Cos[7*Pi/16]*Sqrt[2] = 0.275899379282943 |
667 | let (q0, q3) = |
668 | RotateAddShift::kernel::<14, 12, 11>(q0, q3, (13623, 4551, 565)); |
669 | // 16069/16384 = (Sin[5*Pi/16] + Cos[5*Pi/16])/Sqrt[2] = 0.9807852804032304 |
670 | // 12785/32768 = (Sin[5*Pi/16] - Cos[5*Pi/16])*Sqrt[2] = 0.3901806440322566 |
671 | // 1609/2048 = Cos[5*Pi/16]*Sqrt[2] = 0.7856949583871021 |
672 | let (q2, q1) = |
673 | RotateSubShift::kernel::<14, 15, 11>(q2, q1, (16069, 12785, 1609)); |
674 | |
675 | // Stage 1 |
676 | let (q2, q3) = butterfly_sub_asym((q2.rshift1(), q2), q3); |
677 | let (q0, q1) = butterfly_sub_asym((q0.rshift1(), q0), q1); |
678 | |
679 | // Stage 2 |
680 | // 11585/8192 = Sin[Pi/4] + Cos[Pi/4] = 1.4142135623730951 |
681 | // 11585/8192 = 2*Cos[Pi/4] = 1.4142135623730951 |
682 | let (q2, q1) = RotatePi4AddAvg::kernel::<13, 13>(q2, q1, (11585, 11585)); |
683 | |
684 | store_coeffs!(output, q0, q1, q2, q3); |
685 | } |
686 | |
687 | |
688 | #[$m] |
689 | $($s)* fn daala_fdct_ii_8_asym<T: TxOperations>( |
690 | r0h: T, r1: (T, T), r2h: T, r3: (T, T), r4h: T, r5: (T, T), r6h: T, |
691 | r7: (T, T), output: &mut [T], |
692 | ) { |
693 | // +/- Butterflies with asymmetric input. |
694 | let (r0, r7) = butterfly_neg_asym(r0h, r7); |
695 | let (r1, r6) = butterfly_sub_asym(r1, r6h); |
696 | let (r2, r5) = butterfly_neg_asym(r2h, r5); |
697 | let (r3, r4) = butterfly_sub_asym(r3, r4h); |
698 | |
699 | // Embedded 4-point orthonormal transforms. |
700 | daala_fdct_ii_4(r0, r1, r2, r3, &mut output[0..4]); |
701 | daala_fdst_iv_4(r7, r6, r5, r4, &mut output[4..8]); |
702 | output[4..8].reverse(); |
703 | } |
704 | |
705 | #[$m] |
706 | $($s)* fn daala_fdst_iv_8_asym<T: TxOperations>( |
707 | r0: (T, T), r1h: T, r2: (T, T), r3h: T, r4: (T, T), r5h: T, r6: (T, T), |
708 | r7h: T, output: &mut [T], |
709 | ) { |
710 | // Stage 0 |
711 | // 12665/16384 = (Sin[15*Pi/32] + Cos[15*Pi/32])/Sqrt[2] = 0.77301045336274 |
712 | // 5197/4096 = (Sin[15*Pi/32] - Cos[15*Pi/32])*Sqrt[2] = 1.26878656832729 |
713 | // 2271/16384 = Cos[15*Pi/32]*Sqrt[2] = 0.13861716919909 |
714 | let (r0, r7) = |
715 | RotateAdd::half_kernel::<14, 12, 14>(r0, r7h, (12665, 5197, 2271)); |
716 | // 14449/16384 = Sin[13*Pi/32] + Cos[13*Pi/32])/Sqrt[2] = 0.881921264348355 |
717 | // 30893/32768 = Sin[13*Pi/32] - Cos[13*Pi/32])*Sqrt[2] = 0.942793473651995 |
718 | // 3363/8192 = Cos[13*Pi/32]*Sqrt[2] = 0.410524527522357 |
719 | let (r6, r1) = |
720 | RotateSub::half_kernel::<14, 15, 13>(r6, r1h, (14449, 30893, 3363)); |
721 | // 15679/16384 = Sin[11*Pi/32] + Cos[11*Pi/32])/Sqrt[2] = 0.956940335732209 |
722 | // 1189/2048 = Sin[11*Pi/32] - Cos[11*Pi/32])*Sqrt[2] = 0.580569354508925 |
723 | // 5461/8192 = Cos[11*Pi/32]*Sqrt[2] = 0.666655658477747 |
724 | let (r2, r5) = |
725 | RotateAdd::half_kernel::<14, 11, 13>(r2, r5h, (15679, 1189, 5461)); |
726 | // 16305/16384 = (Sin[9*Pi/32] + Cos[9*Pi/32])/Sqrt[2] = 0.9951847266721969 |
727 | // 803/4096 = (Sin[9*Pi/32] - Cos[9*Pi/32])*Sqrt[2] = 0.1960342806591213 |
728 | // 14699/16384 = Cos[9*Pi/32]*Sqrt[2] = 0.8971675863426364 |
729 | let (r4, r3) = |
730 | RotateSub::half_kernel::<14, 12, 14>(r4, r3h, (16305, 803, 14699)); |
731 | |
732 | // Stage 1 |
733 | let (r0, r3h) = butterfly_add(r0, r3); |
734 | let (r2, r1h) = butterfly_sub(r2, r1); |
735 | let (r5, r6h) = butterfly_add(r5, r6); |
736 | let (r7, r4h) = butterfly_sub(r7, r4); |
737 | |
738 | // Stage 2 |
739 | let (r7, r6) = butterfly_add_asym(r7, r6h); |
740 | let (r5, r3) = butterfly_add_asym(r5, r3h); |
741 | let (r2, r4) = butterfly_add_asym(r2, r4h); |
742 | let (r0, r1) = butterfly_sub_asym(r0, r1h); |
743 | |
744 | // Stage 3 |
745 | // 10703/8192 = Sin[3*Pi/8] + Cos[3*Pi/8] = 1.3065629648763766 |
746 | // 8867/16384 = Sin[3*Pi/8] - Cos[3*Pi/8] = 0.5411961001461969 |
747 | // 3135/4096 = 2*Cos[3*Pi/8] = 0.7653668647301796 |
748 | let (r3, r4) = |
749 | RotateSubAvg::kernel::<9, 14, 12>(r3, r4, (669, 8867, 3135)); |
750 | // 10703/8192 = Sin[3*Pi/8] + Cos[3*Pi/8] = 1.3065629648763766 |
751 | // 8867/16384 = Sin[3*Pi/8] - Cos[3*Pi/8] = 0.5411961001461969 |
752 | // 3135/4096 = 2*Cos[3*Pi/8] = 0.7653668647301796 |
753 | let (r2, r5) = |
754 | RotateNegAvg::kernel::<9, 14, 12>(r2, r5, (669, 8867, 3135)); |
755 | // 11585/8192 = Sin[Pi/4] + Cos[Pi/4] = 1.4142135623730951 |
756 | // 11585/8192 = 2*Cos[Pi/4] = 1.4142135623730951 |
757 | let (r1, r6) = RotatePi4SubAvg::kernel::<12, 13>(r1, r6, (5793, 11585)); |
758 | |
759 | store_coeffs!(output, r0, r1, r2, r3, r4, r5, r6, r7); |
760 | } |
761 | |
762 | #[$m] |
763 | $($s)* fn daala_fdct_ii_16<T: TxOperations>( |
764 | s0: T, s1: T, s2: T, s3: T, s4: T, s5: T, s6: T, s7: T, s8: T, s9: T, sa: T, |
765 | sb: T, sc: T, sd: T, se: T, sf: T, output: &mut [T], |
766 | ) { |
767 | // +/- Butterflies with asymmetric output. |
768 | let (s0h, sf) = butterfly_neg(s0, sf); |
769 | let (s1, seh) = butterfly_add(s1, se); |
770 | let (s2h, sd) = butterfly_neg(s2, sd); |
771 | let (s3, sch) = butterfly_add(s3, sc); |
772 | let (s4h, sb) = butterfly_neg(s4, sb); |
773 | let (s5, sah) = butterfly_add(s5, sa); |
774 | let (s6h, s9) = butterfly_neg(s6, s9); |
775 | let (s7, s8h) = butterfly_add(s7, s8); |
776 | |
777 | // Embedded 8-point transforms with asymmetric input. |
778 | daala_fdct_ii_8_asym(s0h, s1, s2h, s3, s4h, s5, s6h, s7, &mut output[0..8]); |
779 | daala_fdst_iv_8_asym(sf, seh, sd, sch, sb, sah, s9, s8h, &mut output[8..16]); |
780 | output[8..16].reverse(); |
781 | } |
782 | |
783 | #[$m] |
784 | $($s)* fn daala_fdct16<T: TxOperations>(coeffs: &mut [T]) { |
785 | assert!(coeffs.len() >= 16); |
786 | let mut temp_out: [T; 16] = [T::zero(); 16]; |
787 | daala_fdct_ii_16( |
788 | coeffs[0], |
789 | coeffs[1], |
790 | coeffs[2], |
791 | coeffs[3], |
792 | coeffs[4], |
793 | coeffs[5], |
794 | coeffs[6], |
795 | coeffs[7], |
796 | coeffs[8], |
797 | coeffs[9], |
798 | coeffs[10], |
799 | coeffs[11], |
800 | coeffs[12], |
801 | coeffs[13], |
802 | coeffs[14], |
803 | coeffs[15], |
804 | &mut temp_out, |
805 | ); |
806 | |
807 | coeffs[0] = temp_out[0]; |
808 | coeffs[1] = temp_out[8]; |
809 | coeffs[2] = temp_out[4]; |
810 | coeffs[3] = temp_out[12]; |
811 | coeffs[4] = temp_out[2]; |
812 | coeffs[5] = temp_out[10]; |
813 | coeffs[6] = temp_out[6]; |
814 | coeffs[7] = temp_out[14]; |
815 | coeffs[8] = temp_out[1]; |
816 | coeffs[9] = temp_out[9]; |
817 | coeffs[10] = temp_out[5]; |
818 | coeffs[11] = temp_out[13]; |
819 | coeffs[12] = temp_out[3]; |
820 | coeffs[13] = temp_out[11]; |
821 | coeffs[14] = temp_out[7]; |
822 | coeffs[15] = temp_out[15]; |
823 | } |
824 | |
825 | #[$m] |
826 | $($s)* fn daala_fdst_iv_16<T: TxOperations>( |
827 | s0: T, s1: T, s2: T, s3: T, s4: T, s5: T, s6: T, s7: T, s8: T, s9: T, sa: T, |
828 | sb: T, sc: T, sd: T, se: T, sf: T, output: &mut [T], |
829 | ) { |
830 | // Stage 0 |
831 | // 24279/32768 = (Sin[31*Pi/64] + Cos[31*Pi/64])/Sqrt[2] = 0.74095112535496 |
832 | // 11003/8192 = (Sin[31*Pi/64] - Cos[31*Pi/64])*Sqrt[2] = 1.34311790969404 |
833 | // 1137/16384 = Cos[31*Pi/64]*Sqrt[2] = 0.06939217050794 |
834 | let (s0, sf) = |
835 | RotateAddShift::kernel::<15, 13, 14>(s0, sf, (24279, 11003, 1137)); |
836 | // 1645/2048 = (Sin[29*Pi/64] + Cos[29*Pi/64])/Sqrt[2] = 0.8032075314806449 |
837 | // 305/256 = (Sin[29*Pi/64] - Cos[29*Pi/64])*Sqrt[2] = 1.1913986089848667 |
838 | // 425/2048 = Cos[29*Pi/64]*Sqrt[2] = 0.2075082269882116 |
839 | let (se, s1) = |
840 | RotateSubShift::kernel::<11, 8, 11>(se, s1, (1645, 305, 425)); |
841 | // 14053/32768 = (Sin[27*Pi/64] + Cos[27*Pi/64])/Sqrt[2] = 0.85772861000027 |
842 | // 8423/8192 = (Sin[27*Pi/64] - Cos[27*Pi/64])*Sqrt[2] = 1.02820548838644 |
843 | // 2815/8192 = Cos[27*Pi/64]*Sqrt[2] = 0.34362586580705 |
844 | let (s2, sd) = |
845 | RotateAddShift::kernel::<14, 13, 13>(s2, sd, (14053, 8423, 2815)); |
846 | // 14811/16384 = (Sin[25*Pi/64] + Cos[25*Pi/64])/Sqrt[2] = 0.90398929312344 |
847 | // 7005/8192 = (Sin[25*Pi/64] - Cos[25*Pi/64])*Sqrt[2] = 0.85511018686056 |
848 | // 3903/8192 = Cos[25*Pi/64]*Sqrt[2] = 0.47643419969316 |
849 | let (sc, s3) = |
850 | RotateSubShift::kernel::<14, 13, 13>(sc, s3, (14811, 7005, 3903)); |
851 | // 30853/32768 = (Sin[23*Pi/64] + Cos[23*Pi/64])/Sqrt[2] = 0.94154406518302 |
852 | // 11039/16384 = (Sin[23*Pi/64] - Cos[23*Pi/64])*Sqrt[2] = 0.67377970678444 |
853 | // 9907/16384 = Cos[23*Pi/64]*Sqrt[2] = 0.60465421179080 |
854 | let (s4, sb) = |
855 | RotateAddShift::kernel::<15, 14, 14>(s4, sb, (30853, 11039, 9907)); |
856 | // 15893/16384 = (Sin[21*Pi/64] + Cos[21*Pi/64])/Sqrt[2] = 0.97003125319454 |
857 | // 3981/8192 = (Sin[21*Pi/64] - Cos[21*Pi/64])*Sqrt[2] = 0.89716758634264 |
858 | // 1489/2048 = Cos[21*Pi/64]*Sqrt[2] = 0.72705107329128 |
859 | let (sa, s5) = |
860 | RotateSubShift::kernel::<14, 13, 11>(sa, s5, (15893, 3981, 1489)); |
861 | // 32413/32768 = (Sin[19*Pi/64] + Cos[19*Pi/64])/Sqrt[2] = 0.98917650996478 |
862 | // 601/2048 = (Sin[19*Pi/64] - Cos[19*Pi/64])*Sqrt[2] = 0.29346094891072 |
863 | // 13803/16384 = Cos[19*Pi/64]*Sqrt[2] = 0.84244603550942 |
864 | let (s6, s9) = |
865 | RotateAddShift::kernel::<15, 11, 14>(s6, s9, (32413, 601, 13803)); |
866 | // 32729/32768 = (Sin[17*Pi/64] + Cos[17*Pi/64])/Sqrt[2] = 0.99879545620517 |
867 | // 201/2048 = (Sin[17*Pi/64] - Cos[17*Pi/64])*Sqrt[2] = 0.09813534865484 |
868 | // 1945/2048 = Cos[17*Pi/64]*Sqrt[2] = 0.94972778187775 |
869 | let (s8, s7) = |
870 | RotateSubShift::kernel::<15, 11, 11>(s8, s7, (32729, 201, 1945)); |
871 | |
872 | // Stage 1 |
873 | let (s0, s7) = butterfly_sub_asym((s0.rshift1(), s0), s7); |
874 | let (s8, sf) = butterfly_sub_asym((s8.rshift1(), s8), sf); |
875 | let (s4, s3) = butterfly_add_asym((s4.rshift1(), s4), s3); |
876 | let (sc, sb) = butterfly_add_asym((sc.rshift1(), sc), sb); |
877 | let (s2, s5) = butterfly_sub_asym((s2.rshift1(), s2), s5); |
878 | let (sa, sd) = butterfly_sub_asym((sa.rshift1(), sa), sd); |
879 | let (s6, s1) = butterfly_add_asym((s6.rshift1(), s6), s1); |
880 | let (se, s9) = butterfly_add_asym((se.rshift1(), se), s9); |
881 | |
882 | // Stage 2 |
883 | let ((_s8h, s8), s4h) = butterfly_add(s8, s4); |
884 | let ((_s7h, s7), sbh) = butterfly_add(s7, sb); |
885 | let ((_sah, sa), s6h) = butterfly_sub(sa, s6); |
886 | let ((_s5h, s5), s9h) = butterfly_sub(s5, s9); |
887 | let (s0, s3h) = butterfly_add(s0, s3); |
888 | let (sd, seh) = butterfly_add(sd, se); |
889 | let (s2, s1h) = butterfly_sub(s2, s1); |
890 | let (sf, sch) = butterfly_sub(sf, sc); |
891 | |
892 | // Stage 3 |
893 | // 301/256 = Sin[7*Pi/16] + Cos[7*Pi/16] = 1.1758756024193586 |
894 | // 1609/2048 = Sin[7*Pi/16] - Cos[7*Pi/16] = 0.7856949583871022 |
895 | // 12785/32768 = 2*Cos[7*Pi/16] = 0.3901806440322565 |
896 | let (s8, s7) = |
897 | RotateAddAvg::kernel::<8, 11, 15>(s8, s7, (301, 1609, 12785)); |
898 | // 11363/8192 = Sin[5*Pi/16] + Cos[5*Pi/16] = 1.3870398453221475 |
899 | // 9041/32768 = Sin[5*Pi/16] - Cos[5*Pi/16] = 0.2758993792829431 |
900 | // 4551/8192 = Cos[5*Pi/16] = 0.5555702330196022 |
901 | let (s9, s6) = |
902 | RotateAdd::kernel::<13, 15, 13>(s9h, s6h, (11363, 9041, 4551)); |
903 | // 5681/4096 = Sin[5*Pi/16] + Cos[5*Pi/16] = 1.3870398453221475 |
904 | // 9041/32768 = Sin[5*Pi/16] - Cos[5*Pi/16] = 0.2758993792829431 |
905 | // 4551/4096 = 2*Cos[5*Pi/16] = 1.1111404660392044 |
906 | let (s5, sa) = |
907 | RotateNegAvg::kernel::<12, 15, 12>(s5, sa, (5681, 9041, 4551)); |
908 | // 9633/8192 = Sin[7*Pi/16] + Cos[7*Pi/16] = 1.1758756024193586 |
909 | // 12873/16384 = Sin[7*Pi/16] - Cos[7*Pi/16] = 0.7856949583871022 |
910 | // 6393/32768 = Cos[7*Pi/16] = 0.1950903220161283 |
911 | let (s4, sb) = |
912 | RotateNeg::kernel::<13, 14, 15>(s4h, sbh, (9633, 12873, 6393)); |
913 | |
914 | // Stage 4 |
915 | let (s2, sc) = butterfly_add_asym(s2, sch); |
916 | let (s0, s1) = butterfly_sub_asym(s0, s1h); |
917 | let (sf, se) = butterfly_add_asym(sf, seh); |
918 | let (sd, s3) = butterfly_add_asym(sd, s3h); |
919 | let (s7, s6) = butterfly_add_asym((s7.rshift1(), s7), s6); |
920 | let (s8, s9) = butterfly_sub_asym((s8.rshift1(), s8), s9); |
921 | let (sa, sb) = butterfly_sub_asym((sa.rshift1(), sa), sb); |
922 | let (s5, s4) = butterfly_add_asym((s5.rshift1(), s5), s4); |
923 | |
924 | // Stage 5 |
925 | // 669/512 = Sin[3*Pi/8] + Cos[3*Pi/8] = 1.3065629648763766 |
926 | // 8867/16384 = Sin[3*Pi/8] - Cos[3*Pi/8] = 0.5411961001461969 |
927 | // 3135/4096 = 2*Cos[7*Pi/8] = 0.7653668647301796 |
928 | let (sc, s3) = |
929 | RotateAddAvg::kernel::<9, 14, 12>(sc, s3, (669, 8867, 3135)); |
930 | // 669/512 = Sin[3*Pi/8] + Cos[3*Pi/8] = 1.3870398453221475 |
931 | // 8867/16384 = Sin[3*Pi/8] - Cos[3*Pi/8] = 0.5411961001461969 |
932 | // 3135/4096 = 2*Cos[3*Pi/8] = 0.7653668647301796 |
933 | let (s2, sd) = |
934 | RotateNegAvg::kernel::<9, 14, 12>(s2, sd, (669, 8867, 3135)); |
935 | // 5793/4096 = Sin[Pi/4] + Cos[Pi/4] = 1.4142135623730951 |
936 | // 11585/8192 = 2*Cos[Pi/4] = 1.4142135623730951 |
937 | let (sa, s5) = RotatePi4AddAvg::kernel::<12, 13>(sa, s5, (5793, 11585)); |
938 | // 5793/4096 = Sin[Pi/4] + Cos[Pi/4] = 1.4142135623730951 |
939 | // 11585/8192 = 2*Cos[Pi/4] = 1.4142135623730951 |
940 | let (s6, s9) = RotatePi4AddAvg::kernel::<12, 13>(s6, s9, (5793, 11585)); |
941 | // 5793/4096 = Sin[Pi/4] + Cos[Pi/4] = 1.4142135623730951 |
942 | // 11585/8192 = 2*Cos[Pi/4] = 1.4142135623730951 |
943 | let (se, s1) = RotatePi4AddAvg::kernel::<12, 13>(se, s1, (5793, 11585)); |
944 | |
945 | store_coeffs!( |
946 | output, s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, sa, sb, sc, sd, se, sf |
947 | ); |
948 | } |
949 | |
950 | #[$m] |
951 | $($s)* fn daala_fdst16<T: TxOperations>(coeffs: &mut [T]) { |
952 | assert!(coeffs.len() >= 16); |
953 | let mut temp_out: [T; 16] = [T::zero(); 16]; |
954 | daala_fdst_iv_16( |
955 | coeffs[0], |
956 | coeffs[1], |
957 | coeffs[2], |
958 | coeffs[3], |
959 | coeffs[4], |
960 | coeffs[5], |
961 | coeffs[6], |
962 | coeffs[7], |
963 | coeffs[8], |
964 | coeffs[9], |
965 | coeffs[10], |
966 | coeffs[11], |
967 | coeffs[12], |
968 | coeffs[13], |
969 | coeffs[14], |
970 | coeffs[15], |
971 | &mut temp_out, |
972 | ); |
973 | |
974 | coeffs[0] = temp_out[0]; |
975 | coeffs[1] = temp_out[8]; |
976 | coeffs[2] = temp_out[4]; |
977 | coeffs[3] = temp_out[12]; |
978 | coeffs[4] = temp_out[2]; |
979 | coeffs[5] = temp_out[10]; |
980 | coeffs[6] = temp_out[6]; |
981 | coeffs[7] = temp_out[14]; |
982 | coeffs[8] = temp_out[1]; |
983 | coeffs[9] = temp_out[9]; |
984 | coeffs[10] = temp_out[5]; |
985 | coeffs[11] = temp_out[13]; |
986 | coeffs[12] = temp_out[3]; |
987 | coeffs[13] = temp_out[11]; |
988 | coeffs[14] = temp_out[7]; |
989 | coeffs[15] = temp_out[15]; |
990 | } |
991 | |
992 | #[$m] |
993 | $($s)* fn daala_fdct_ii_16_asym<T: TxOperations>( |
994 | s0h: T, s1: (T, T), s2h: T, s3: (T, T), s4h: T, s5: (T, T), s6h: T, |
995 | s7: (T, T), s8h: T, s9: (T, T), sah: T, sb: (T, T), sch: T, sd: (T, T), |
996 | seh: T, sf: (T, T), output: &mut [T], |
997 | ) { |
998 | // +/- Butterflies with asymmetric input. |
999 | let (s0, sf) = butterfly_neg_asym(s0h, sf); |
1000 | let (s1, se) = butterfly_sub_asym(s1, seh); |
1001 | let (s2, sd) = butterfly_neg_asym(s2h, sd); |
1002 | let (s3, sc) = butterfly_sub_asym(s3, sch); |
1003 | let (s4, sb) = butterfly_neg_asym(s4h, sb); |
1004 | let (s5, sa) = butterfly_sub_asym(s5, sah); |
1005 | let (s6, s9) = butterfly_neg_asym(s6h, s9); |
1006 | let (s7, s8) = butterfly_sub_asym(s7, s8h); |
1007 | |
1008 | // Embedded 8-point orthonormal transforms. |
1009 | daala_fdct_ii_8(s0, s1, s2, s3, s4, s5, s6, s7, &mut output[0..8]); |
1010 | daala_fdst_iv_8(sf, se, sd, sc, sb, sa, s9, s8, &mut output[8..16]); |
1011 | output[8..16].reverse(); |
1012 | } |
1013 | |
1014 | #[$m] |
1015 | $($s)* fn daala_fdst_iv_16_asym<T: TxOperations>( |
1016 | s0: (T, T), s1h: T, s2: (T, T), s3h: T, s4: (T, T), s5h: T, s6: (T, T), |
1017 | s7h: T, s8: (T, T), s9h: T, sa: (T, T), sbh: T, sc: (T, T), sdh: T, |
1018 | se: (T, T), sfh: T, output: &mut [T], |
1019 | ) { |
1020 | // Stage 0 |
1021 | // 1073/2048 = (Sin[31*Pi/64] + Cos[31*Pi/64])/2 = 0.5239315652662953 |
1022 | // 62241/32768 = (Sin[31*Pi/64] - Cos[31*Pi/64])*2 = 1.8994555637555088 |
1023 | // 201/16384 = Cos[31*Pi/64]*2 = 0.0981353486548360 |
1024 | let (s0, sf) = |
1025 | RotateAddShift::half_kernel::<11, 15, 11>(s0, sfh, (1073, 62241, 201)); |
1026 | // 18611/32768 = (Sin[29*Pi/64] + Cos[29*Pi/64])/2 = 0.5679534922100714 |
1027 | // 55211/32768 = (Sin[29*Pi/64] - Cos[29*Pi/64])*2 = 1.6848920710188384 |
1028 | // 601/2048 = Cos[29*Pi/64]*2 = 0.2934609489107235 |
1029 | let (se, s1) = RotateSubShift::half_kernel::<15, 15, 11>( |
1030 | se, |
1031 | s1h, |
1032 | (18611, 55211, 601), |
1033 | ); |
1034 | // 9937/16384 = (Sin[27*Pi/64] + Cos[27*Pi/64])/2 = 0.6065057165489039 |
1035 | // 1489/1024 = (Sin[27*Pi/64] - Cos[27*Pi/64])*2 = 1.4541021465825602 |
1036 | // 3981/8192 = Cos[27*Pi/64]*2 = 0.4859603598065277 |
1037 | let (s2, sd) = |
1038 | RotateAddShift::half_kernel::<14, 10, 13>(s2, sdh, (9937, 1489, 3981)); |
1039 | // 10473/16384 = (Sin[25*Pi/64] + Cos[25*Pi/64])/2 = 0.6392169592876205 |
1040 | // 39627/32768 = (Sin[25*Pi/64] - Cos[25*Pi/64])*2 = 1.2093084235816014 |
1041 | // 11039/16384 = Cos[25*Pi/64]*2 = 0.6737797067844401 |
1042 | let (sc, s3) = RotateSubShift::half_kernel::<14, 15, 14>( |
1043 | sc, |
1044 | s3h, |
1045 | (10473, 39627, 11039), |
1046 | ); |
1047 | // 2727/4096 = (Sin[23*Pi/64] + Cos[23*Pi/64])/2 = 0.6657721932768628 |
1048 | // 3903/4096 = (Sin[23*Pi/64] - Cos[23*Pi/64])*2 = 0.9528683993863225 |
1049 | // 7005/8192 = Cos[23*Pi/64]*2 = 0.8551101868605642 |
1050 | let (s4, sb) = |
1051 | RotateAddShift::half_kernel::<12, 12, 13>(s4, sbh, (2727, 3903, 7005)); |
1052 | // 5619/8192 = (Sin[21*Pi/64] + Cos[21*Pi/64])/2 = 0.6859156770967569 |
1053 | // 2815/4096 = (Sin[21*Pi/64] - Cos[21*Pi/64])*2 = 0.6872517316141069 |
1054 | // 8423/8192 = Cos[21*Pi/64]*2 = 1.0282054883864433 |
1055 | let (sa, s5) = |
1056 | RotateSubShift::half_kernel::<13, 12, 13>(sa, s5h, (5619, 2815, 8423)); |
1057 | // 2865/4096 = (Sin[19*Pi/64] + Cos[19*Pi/64])/2 = 0.6994534179865391 |
1058 | // 13588/32768 = (Sin[19*Pi/64] - Cos[19*Pi/64])*2 = 0.4150164539764232 |
1059 | // 305/256 = Cos[19*Pi/64]*2 = 1.1913986089848667 |
1060 | let (s6, s9) = |
1061 | RotateAddShift::half_kernel::<12, 15, 8>(s6, s9h, (2865, 13599, 305)); |
1062 | // 23143/32768 = (Sin[17*Pi/64] + Cos[17*Pi/64])/2 = 0.7062550401009887 |
1063 | // 1137/8192 = (Sin[17*Pi/64] - Cos[17*Pi/64])*2 = 0.1387843410158816 |
1064 | // 11003/8192 = Cos[17*Pi/64]*2 = 1.3431179096940367 |
1065 | let (s8, s7) = RotateSubShift::half_kernel::<15, 13, 13>( |
1066 | s8, |
1067 | s7h, |
1068 | (23143, 1137, 11003), |
1069 | ); |
1070 | |
1071 | // Stage 1 |
1072 | let (s0, s7) = butterfly_sub_asym((s0.rshift1(), s0), s7); |
1073 | let (s8, sf) = butterfly_sub_asym((s8.rshift1(), s8), sf); |
1074 | let (s4, s3) = butterfly_add_asym((s4.rshift1(), s4), s3); |
1075 | let (sc, sb) = butterfly_add_asym((sc.rshift1(), sc), sb); |
1076 | let (s2, s5) = butterfly_sub_asym((s2.rshift1(), s2), s5); |
1077 | let (sa, sd) = butterfly_sub_asym((sa.rshift1(), sa), sd); |
1078 | let (s6, s1) = butterfly_add_asym((s6.rshift1(), s6), s1); |
1079 | let (se, s9) = butterfly_add_asym((se.rshift1(), se), s9); |
1080 | |
1081 | // Stage 2 |
1082 | let ((_s8h, s8), s4h) = butterfly_add(s8, s4); |
1083 | let ((_s7h, s7), sbh) = butterfly_add(s7, sb); |
1084 | let ((_sah, sa), s6h) = butterfly_sub(sa, s6); |
1085 | let ((_s5h, s5), s9h) = butterfly_sub(s5, s9); |
1086 | let (s0, s3h) = butterfly_add(s0, s3); |
1087 | let (sd, seh) = butterfly_add(sd, se); |
1088 | let (s2, s1h) = butterfly_sub(s2, s1); |
1089 | let (sf, sch) = butterfly_sub(sf, sc); |
1090 | |
1091 | // Stage 3 |
1092 | // 9633/8192 = Sin[7*Pi/16] + Cos[7*Pi/16] = 1.1758756024193586 |
1093 | // 12873/16384 = Sin[7*Pi/16] - Cos[7*Pi/16] = 0.7856949583871022 |
1094 | // 6393/32768 = Cos[7*Pi/16] = 0.1950903220161283 |
1095 | let (s8, s7) = |
1096 | RotateAdd::kernel::<13, 14, 15>(s8, s7, (9633, 12873, 6393)); |
1097 | // 22725/16384 = Sin[5*Pi/16] + Cos[5*Pi/16] = 1.3870398453221475 |
1098 | // 9041/32768 = Sin[5*Pi/16] - Cos[5*Pi/16] = 0.2758993792829431 |
1099 | // 4551/8192 = Cos[5*Pi/16] = 0.5555702330196022 |
1100 | let (s9, s6) = |
1101 | RotateAdd::kernel::<14, 15, 13>(s9h, s6h, (22725, 9041, 4551)); |
1102 | // 11363/8192 = Sin[5*Pi/16] + Cos[5*Pi/16] = 1.3870398453221475 |
1103 | // 9041/32768 = Sin[5*Pi/16] - Cos[5*Pi/16] = 0.2758993792829431 |
1104 | // 4551/8192 = Cos[5*Pi/16] = 0.5555702330196022 |
1105 | let (s5, sa) = |
1106 | RotateNeg::kernel::<13, 15, 13>(s5, sa, (11363, 9041, 4551)); |
1107 | // 9633/32768 = Sin[7*Pi/16] + Cos[7*Pi/16] = 1.1758756024193586 |
1108 | // 12873/16384 = Sin[7*Pi/16] - Cos[7*Pi/16] = 0.7856949583871022 |
1109 | // 6393/32768 = Cos[7*Pi/16] = 0.1950903220161283 |
1110 | let (s4, sb) = |
1111 | RotateNeg::kernel::<13, 14, 15>(s4h, sbh, (9633, 12873, 6393)); |
1112 | |
1113 | // Stage 4 |
1114 | let (s2, sc) = butterfly_add_asym(s2, sch); |
1115 | let (s0, s1) = butterfly_sub_asym(s0, s1h); |
1116 | let (sf, se) = butterfly_add_asym(sf, seh); |
1117 | let (sd, s3) = butterfly_add_asym(sd, s3h); |
1118 | let (s7, s6) = butterfly_add_asym((s7.rshift1(), s7), s6); |
1119 | let (s8, s9) = butterfly_sub_asym((s8.rshift1(), s8), s9); |
1120 | let (sa, sb) = butterfly_sub_asym((sa.rshift1(), sa), sb); |
1121 | let (s5, s4) = butterfly_add_asym((s5.rshift1(), s5), s4); |
1122 | |
1123 | // Stage 5 |
1124 | // 10703/8192 = Sin[3*Pi/8] + Cos[3*Pi/8] = 1.3065629648763766 |
1125 | // 8867/16384 = Sin[3*Pi/8] - Cos[3*Pi/8] = 0.5411961001461969 |
1126 | // 3135/8192 = Cos[3*Pi/8] = 0.3826834323650898 |
1127 | let (sc, s3) = |
1128 | RotateAdd::kernel::<13, 14, 13>(sc, s3, (10703, 8867, 3135)); |
1129 | // 10703/8192 = Sin[3*Pi/8] + Cos[3*Pi/8] = 1.3870398453221475 |
1130 | // 8867/16384 = Sin[3*Pi/8] - Cos[3*Pi/8] = 0.5411961001461969 |
1131 | // 3135/8192 = Cos[3*Pi/8] = 0.3826834323650898 |
1132 | let (s2, sd) = |
1133 | RotateNeg::kernel::<13, 14, 13>(s2, sd, (10703, 8867, 3135)); |
1134 | // 11585/8192 = Sin[Pi/4] + Cos[Pi/4] = 1.4142135623730951 |
1135 | // 5793/8192 = Cos[Pi/4] = 0.7071067811865475 |
1136 | let (sa, s5) = RotatePi4Add::kernel::<13, 13>(sa, s5, (11585, 5793)); |
1137 | // 11585/8192 = Sin[Pi/4] + Cos[Pi/4] = 1.4142135623730951 |
1138 | // 5793/8192 = Cos[Pi/4] = 0.7071067811865475 |
1139 | let (s6, s9) = RotatePi4Add::kernel::<13, 13>(s6, s9, (11585, 5793)); |
1140 | // 11585/8192 = Sin[Pi/4] + Cos[Pi/4] = 1.4142135623730951 |
1141 | // 5793/8192 = Cos[Pi/4] = 0.7071067811865475 |
1142 | let (se, s1) = RotatePi4Add::kernel::<13, 13>(se, s1, (11585, 5793)); |
1143 | |
1144 | store_coeffs!( |
1145 | output, s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, sa, sb, sc, sd, se, sf |
1146 | ); |
1147 | } |
1148 | |
1149 | #[$m] |
1150 | $($s)* fn daala_fdct_ii_32<T: TxOperations>( |
1151 | t0: T, t1: T, t2: T, t3: T, t4: T, t5: T, t6: T, t7: T, t8: T, t9: T, ta: T, |
1152 | tb: T, tc: T, td: T, te: T, tf: T, tg: T, th: T, ti: T, tj: T, tk: T, tl: T, |
1153 | tm: T, tn: T, to: T, tp: T, tq: T, tr: T, ts: T, tt: T, tu: T, tv: T, |
1154 | output: &mut [T], |
1155 | ) { |
1156 | // +/- Butterflies with asymmetric output. |
1157 | let (t0h, tv) = butterfly_neg(t0, tv); |
1158 | let (t1, tuh) = butterfly_add(t1, tu); |
1159 | let (t2h, tt) = butterfly_neg(t2, tt); |
1160 | let (t3, tsh) = butterfly_add(t3, ts); |
1161 | let (t4h, tr) = butterfly_neg(t4, tr); |
1162 | let (t5, tqh) = butterfly_add(t5, tq); |
1163 | let (t6h, tp) = butterfly_neg(t6, tp); |
1164 | let (t7, toh) = butterfly_add(t7, to); |
1165 | let (t8h, tn) = butterfly_neg(t8, tn); |
1166 | let (t9, tmh) = butterfly_add(t9, tm); |
1167 | let (tah, tl) = butterfly_neg(ta, tl); |
1168 | let (tb, tkh) = butterfly_add(tb, tk); |
1169 | let (tch, tj) = butterfly_neg(tc, tj); |
1170 | let (td, tih) = butterfly_add(td, ti); |
1171 | let (teh, th) = butterfly_neg(te, th); |
1172 | let (tf, tgh) = butterfly_add(tf, tg); |
1173 | |
1174 | // Embedded 16-point transforms with asymmetric input. |
1175 | daala_fdct_ii_16_asym( |
1176 | t0h, |
1177 | t1, |
1178 | t2h, |
1179 | t3, |
1180 | t4h, |
1181 | t5, |
1182 | t6h, |
1183 | t7, |
1184 | t8h, |
1185 | t9, |
1186 | tah, |
1187 | tb, |
1188 | tch, |
1189 | td, |
1190 | teh, |
1191 | tf, |
1192 | &mut output[0..16], |
1193 | ); |
1194 | daala_fdst_iv_16_asym( |
1195 | tv, |
1196 | tuh, |
1197 | tt, |
1198 | tsh, |
1199 | tr, |
1200 | tqh, |
1201 | tp, |
1202 | toh, |
1203 | tn, |
1204 | tmh, |
1205 | tl, |
1206 | tkh, |
1207 | tj, |
1208 | tih, |
1209 | th, |
1210 | tgh, |
1211 | &mut output[16..32], |
1212 | ); |
1213 | output[16..32].reverse(); |
1214 | } |
1215 | |
1216 | #[$m] |
1217 | $($s)* fn daala_fdct32<T: TxOperations>(coeffs: &mut [T]) { |
1218 | assert!(coeffs.len() >= 32); |
1219 | let mut temp_out: [T; 32] = [T::zero(); 32]; |
1220 | daala_fdct_ii_32( |
1221 | coeffs[0], |
1222 | coeffs[1], |
1223 | coeffs[2], |
1224 | coeffs[3], |
1225 | coeffs[4], |
1226 | coeffs[5], |
1227 | coeffs[6], |
1228 | coeffs[7], |
1229 | coeffs[8], |
1230 | coeffs[9], |
1231 | coeffs[10], |
1232 | coeffs[11], |
1233 | coeffs[12], |
1234 | coeffs[13], |
1235 | coeffs[14], |
1236 | coeffs[15], |
1237 | coeffs[16], |
1238 | coeffs[17], |
1239 | coeffs[18], |
1240 | coeffs[19], |
1241 | coeffs[20], |
1242 | coeffs[21], |
1243 | coeffs[22], |
1244 | coeffs[23], |
1245 | coeffs[24], |
1246 | coeffs[25], |
1247 | coeffs[26], |
1248 | coeffs[27], |
1249 | coeffs[28], |
1250 | coeffs[29], |
1251 | coeffs[30], |
1252 | coeffs[31], |
1253 | &mut temp_out, |
1254 | ); |
1255 | |
1256 | coeffs[0] = temp_out[0]; |
1257 | coeffs[1] = temp_out[16]; |
1258 | coeffs[2] = temp_out[8]; |
1259 | coeffs[3] = temp_out[24]; |
1260 | coeffs[4] = temp_out[4]; |
1261 | coeffs[5] = temp_out[20]; |
1262 | coeffs[6] = temp_out[12]; |
1263 | coeffs[7] = temp_out[28]; |
1264 | coeffs[8] = temp_out[2]; |
1265 | coeffs[9] = temp_out[18]; |
1266 | coeffs[10] = temp_out[10]; |
1267 | coeffs[11] = temp_out[26]; |
1268 | coeffs[12] = temp_out[6]; |
1269 | coeffs[13] = temp_out[22]; |
1270 | coeffs[14] = temp_out[14]; |
1271 | coeffs[15] = temp_out[30]; |
1272 | coeffs[16] = temp_out[1]; |
1273 | coeffs[17] = temp_out[17]; |
1274 | coeffs[18] = temp_out[9]; |
1275 | coeffs[19] = temp_out[25]; |
1276 | coeffs[20] = temp_out[5]; |
1277 | coeffs[21] = temp_out[21]; |
1278 | coeffs[22] = temp_out[13]; |
1279 | coeffs[23] = temp_out[29]; |
1280 | coeffs[24] = temp_out[3]; |
1281 | coeffs[25] = temp_out[19]; |
1282 | coeffs[26] = temp_out[11]; |
1283 | coeffs[27] = temp_out[27]; |
1284 | coeffs[28] = temp_out[7]; |
1285 | coeffs[29] = temp_out[23]; |
1286 | coeffs[30] = temp_out[15]; |
1287 | coeffs[31] = temp_out[31]; |
1288 | } |
1289 | |
1290 | #[$m] |
1291 | $($s)* fn daala_fdct_ii_32_asym<T: TxOperations>( |
1292 | t0h: T, t1: (T, T), t2h: T, t3: (T, T), t4h: T, t5: (T, T), t6h: T, |
1293 | t7: (T, T), t8h: T, t9: (T, T), tah: T, tb: (T, T), tch: T, td: (T, T), |
1294 | teh: T, tf: (T, T), tgh: T, th: (T, T), tih: T, tj: (T, T), tkh: T, |
1295 | tl: (T, T), tmh: T, tn: (T, T), toh: T, tp: (T, T), tqh: T, tr: (T, T), |
1296 | tsh: T, tt: (T, T), tuh: T, tv: (T, T), output: &mut [T], |
1297 | ) { |
1298 | // +/- Butterflies with asymmetric input. |
1299 | let (t0, tv) = butterfly_neg_asym(t0h, tv); |
1300 | let (t1, tu) = butterfly_sub_asym(t1, tuh); |
1301 | let (t2, tt) = butterfly_neg_asym(t2h, tt); |
1302 | let (t3, ts) = butterfly_sub_asym(t3, tsh); |
1303 | let (t4, tr) = butterfly_neg_asym(t4h, tr); |
1304 | let (t5, tq) = butterfly_sub_asym(t5, tqh); |
1305 | let (t6, tp) = butterfly_neg_asym(t6h, tp); |
1306 | let (t7, to) = butterfly_sub_asym(t7, toh); |
1307 | let (t8, tn) = butterfly_neg_asym(t8h, tn); |
1308 | let (t9, tm) = butterfly_sub_asym(t9, tmh); |
1309 | let (ta, tl) = butterfly_neg_asym(tah, tl); |
1310 | let (tb, tk) = butterfly_sub_asym(tb, tkh); |
1311 | let (tc, tj) = butterfly_neg_asym(tch, tj); |
1312 | let (td, ti) = butterfly_sub_asym(td, tih); |
1313 | let (te, th) = butterfly_neg_asym(teh, th); |
1314 | let (tf, tg) = butterfly_sub_asym(tf, tgh); |
1315 | |
1316 | // Embedded 16-point orthonormal transforms. |
1317 | daala_fdct_ii_16( |
1318 | t0, |
1319 | t1, |
1320 | t2, |
1321 | t3, |
1322 | t4, |
1323 | t5, |
1324 | t6, |
1325 | t7, |
1326 | t8, |
1327 | t9, |
1328 | ta, |
1329 | tb, |
1330 | tc, |
1331 | td, |
1332 | te, |
1333 | tf, |
1334 | &mut output[0..16], |
1335 | ); |
1336 | daala_fdst_iv_16( |
1337 | tv, |
1338 | tu, |
1339 | tt, |
1340 | ts, |
1341 | tr, |
1342 | tq, |
1343 | tp, |
1344 | to, |
1345 | tn, |
1346 | tm, |
1347 | tl, |
1348 | tk, |
1349 | tj, |
1350 | ti, |
1351 | th, |
1352 | tg, |
1353 | &mut output[16..32], |
1354 | ); |
1355 | output[16..32].reverse(); |
1356 | } |
1357 | |
1358 | #[$m] |
1359 | $($s)* fn daala_fdst_iv_32_asym<T: TxOperations>( |
1360 | t0: (T, T), t1h: T, t2: (T, T), t3h: T, t4: (T, T), t5h: T, t6: (T, T), |
1361 | t7h: T, t8: (T, T), t9h: T, ta: (T, T), tbh: T, tc: (T, T), tdh: T, |
1362 | te: (T, T), tfh: T, tg: (T, T), thh: T, ti: (T, T), tjh: T, tk: (T, T), |
1363 | tlh: T, tm: (T, T), tnh: T, to: (T, T), tph: T, tq: (T, T), trh: T, |
1364 | ts: (T, T), tth: T, tu: (T, T), tvh: T, output: &mut [T], |
1365 | ) { |
1366 | // Stage 0 |
1367 | // 5933/8192 = (Sin[63*Pi/128] + Cos[63*Pi/128])/Sqrt[2] = 0.72424708295147 |
1368 | // 22595/16384 = (Sin[63*Pi/128] - Cos[63*Pi/128])*Sqrt[2] = 1.37908108947413 |
1369 | // 1137/32768 = Cos[63*Pi/128]*Sqrt[2] = 0.03470653821440 |
1370 | let (t0, tv) = |
1371 | RotateAdd::half_kernel::<13, 14, 15>(t0, tvh, (5933, 22595, 1137)); |
1372 | // 6203/8192 = (Sin[61*Pi/128] + Cos[61*Pi/128])/Sqrt[2] = 0.75720884650648 |
1373 | // 21403/16384 = (Sin[61*Pi/128] - Cos[61*Pi/128])*Sqrt[2] = 1.30634568590755 |
1374 | // 3409/32768 = Cos[61*Pi/128]*Sqrt[2] = 0.10403600355271 |
1375 | let (tu, t1) = |
1376 | RotateSub::half_kernel::<13, 14, 15>(tu, t1h, (6203, 21403, 3409)); |
1377 | // 25833/32768 = (Sin[59*Pi/128] + Cos[59*Pi/128])/Sqrt[2] = 0.78834642762661 |
1378 | // 315/256 = (Sin[59*Pi/128] - Cos[59*Pi/128])*Sqrt[2] = 1.23046318116125 |
1379 | // 5673/32768 = Cos[59*Pi/128]*Sqrt[2] = 0.17311483704598 |
1380 | let (t2, tt) = |
1381 | RotateAdd::half_kernel::<15, 8, 15>(t2, tth, (25833, 315, 5673)); |
1382 | // 26791/32768 = (Sin[57*Pi/128] + Cos[57*Pi/128])/Sqrt[2] = 0.81758481315158 |
1383 | // 4717/4096 = (Sin[57*Pi/128] - Cos[57*Pi/128])*Sqrt[2] = 1.15161638283569 |
1384 | // 7923/32768 = Cos[57*Pi/128]*Sqrt[2] = 0.24177662173374 |
1385 | let (ts, t3) = |
1386 | RotateSub::half_kernel::<15, 12, 15>(ts, t3h, (26791, 4717, 7923)); |
1387 | // 6921/8192 = (Sin[55*Pi/128] + Cos[55*Pi/128])/Sqrt[2] = 0.84485356524971 |
1388 | // 17531/16384 = (Sin[55*Pi/128] - Cos[55*Pi/128])*Sqrt[2] = 1.06999523977419 |
1389 | // 10153/32768 = Cos[55*Pi/128]*Sqrt[2] = 0.30985594536261 |
1390 | let (t4, tr) = |
1391 | RotateAdd::half_kernel::<13, 14, 15>(t4, trh, (6921, 17531, 10153)); |
1392 | // 28511/32768 = (Sin[53*Pi/128] + Cos[53*Pi/128])/Sqrt[2] = 0.87008699110871 |
1393 | // 32303/32768 = (Sin[53*Pi/128] - Cos[53*Pi/128])*Sqrt[2] = 0.98579638445957 |
1394 | // 1545/4096 = Cos[53*Pi/128]*Sqrt[2] = 0.37718879887893 |
1395 | let (tq, t5) = |
1396 | RotateSub::half_kernel::<15, 15, 12>(tq, t5h, (28511, 32303, 1545)); |
1397 | // 29269/32768 = (Sin[51*Pi/128] + Cos[51*Pi/128])/Sqrt[2] = 0.89322430119552 |
1398 | // 14733/16384 = (Sin[51*Pi/128] - Cos[51*Pi/128])*Sqrt[2] = 0.89922265930921 |
1399 | // 1817/4096 = Cos[51*Pi/128]*Sqrt[2] = 0.44361297154091 |
1400 | let (t6, tp) = |
1401 | RotateAdd::half_kernel::<15, 14, 12>(t6, tph, (29269, 14733, 1817)); |
1402 | // 29957/32768 = (Sin[49*Pi/128] + Cos[49*Pi/128])/Sqrt[2] = 0.91420975570353 |
1403 | // 13279/16384 = (Sin[49*Pi/128] - Cos[49*Pi/128])*Sqrt[2] = 0.81048262800998 |
1404 | // 8339/16384 = Cos[49*Pi/128]*Sqrt[2] = 0.50896844169854 |
1405 | let (to, t7) = |
1406 | RotateSub::half_kernel::<15, 14, 14>(to, t7h, (29957, 13279, 8339)); |
1407 | // 7643/8192 = (Sin[47*Pi/128] + Cos[47*Pi/128])/Sqrt[2] = 0.93299279883474 |
1408 | // 11793/16384 = (Sin[47*Pi/128] - Cos[47*Pi/128])*Sqrt[2] = 0.71979007306998 |
1409 | // 18779/32768 = Cos[47*Pi/128]*Sqrt[2] = 0.57309776229975 |
1410 | let (t8, tn) = |
1411 | RotateAdd::half_kernel::<13, 14, 15>(t8, tnh, (7643, 11793, 18779)); |
1412 | // 15557/16384 = (Sin[45*Pi/128] + Cos[45*Pi/128])/Sqrt[2] = 0.94952818059304 |
1413 | // 20557/32768 = (Sin[45*Pi/128] - Cos[45*Pi/128])*Sqrt[2] = 0.62736348079778 |
1414 | // 20835/32768 = Cos[45*Pi/128]*Sqrt[2] = 0.63584644019415 |
1415 | let (tm, t9) = |
1416 | RotateSub::half_kernel::<14, 15, 15>(tm, t9h, (15557, 20557, 20835)); |
1417 | // 31581/32768 = (Sin[43*Pi/128] + Cos[43*Pi/128])/Sqrt[2] = 0.96377606579544 |
1418 | // 17479/32768 = (Sin[43*Pi/128] - Cos[43*Pi/128])*Sqrt[2] = 0.53342551494980 |
1419 | // 22841/32768 = Cos[43*Pi/128]*Sqrt[2] = 0.69706330832054 |
1420 | let (ta, tl) = |
1421 | RotateAdd::half_kernel::<15, 15, 15>(ta, tlh, (31581, 17479, 22841)); |
1422 | // 7993/8192 = (Sin[41*Pi/128] + Cos[41*Pi/128])/Sqrt[2] = 0.97570213003853 |
1423 | // 14359/32768 = (Sin[41*Pi/128] - Cos[41*Pi/128])*Sqrt[2] = 0.43820248031374 |
1424 | // 3099/4096 = Cos[41*Pi/128]*Sqrt[2] = 0.75660088988166 |
1425 | let (tk, tb) = |
1426 | RotateSub::half_kernel::<13, 15, 12>(tk, tbh, (7993, 14359, 3099)); |
1427 | // 16143/16384 = (Sin[39*Pi/128] + Cos[39*Pi/128])/Sqrt[2] = 0.98527764238894 |
1428 | // 2801/8192 = (Sin[39*Pi/128] - Cos[39*Pi/128])*Sqrt[2] = 0.34192377752060 |
1429 | // 26683/32768 = Cos[39*Pi/128]*Sqrt[2] = 0.81431575362864 |
1430 | let (tc, tj) = |
1431 | RotateAdd::half_kernel::<14, 13, 15>(tc, tjh, (16143, 2801, 26683)); |
1432 | // 16261/16384 = (Sin[37*Pi/128] + Cos[37*Pi/128])/Sqrt[2] = 0.99247953459871 |
1433 | // 4011/16384 = (Sin[37*Pi/128] - Cos[37*Pi/128])*Sqrt[2] = 0.24482135039843 |
1434 | // 14255/16384 = Cos[37*Pi/128]*Sqrt[2] = 0.87006885939949 |
1435 | let (ti, td) = |
1436 | RotateSub::half_kernel::<14, 14, 14>(ti, tdh, (16261, 4011, 14255)); |
1437 | // 32679/32768 = (Sin[35*Pi/128] + Cos[35*Pi/128])/Sqrt[2] = 0.99729045667869 |
1438 | // 4821/32768 = (Sin[35*Pi/128] - Cos[35*Pi/128])*Sqrt[2] = 0.14712912719933 |
1439 | // 30269/32768 = Cos[35*Pi/128]*Sqrt[2] = 0.92372589307902 |
1440 | let (te, th) = |
1441 | RotateAdd::half_kernel::<15, 15, 15>(te, thh, (32679, 4821, 30269)); |
1442 | // 16379/16384 = (Sin[33*Pi/128] + Cos[33*Pi/128])/Sqrt[2] = 0.99969881869620 |
1443 | // 201/4096 = (Sin[33*Pi/128] - Cos[33*Pi/128])*Sqrt[2] = 0.04908245704582 |
1444 | // 15977/16384 = Cos[33*Pi/128]*Sqrt[2] = 0.97515759017329 |
1445 | let (tg, tf) = |
1446 | RotateSub::half_kernel::<14, 12, 14>(tg, tfh, (16379, 201, 15977)); |
1447 | |
1448 | // Stage 1 |
1449 | let (t0, tfh) = butterfly_add(t0, tf); |
1450 | let (tv, tgh) = butterfly_sub(tv, tg); |
1451 | let (th, tuh) = butterfly_add(th, tu); |
1452 | let (te, t1h) = butterfly_sub(te, t1); |
1453 | let (t2, tdh) = butterfly_add(t2, td); |
1454 | let (tt, tih) = butterfly_sub(tt, ti); |
1455 | let (tj, tsh) = butterfly_add(tj, ts); |
1456 | let (tc, t3h) = butterfly_sub(tc, t3); |
1457 | let (t4, tbh) = butterfly_add(t4, tb); |
1458 | let (tr, tkh) = butterfly_sub(tr, tk); |
1459 | let (tl, tqh) = butterfly_add(tl, tq); |
1460 | let (ta, t5h) = butterfly_sub(ta, t5); |
1461 | let (t6, t9h) = butterfly_add(t6, t9); |
1462 | let (tp, tmh) = butterfly_sub(tp, tm); |
1463 | let (tn, toh) = butterfly_add(tn, to); |
1464 | let (t8, t7h) = butterfly_sub(t8, t7); |
1465 | |
1466 | // Stage 2 |
1467 | let (t0, t7) = butterfly_sub_asym(t0, t7h); |
1468 | let (tv, to) = butterfly_add_asym(tv, toh); |
1469 | let (tp, tu) = butterfly_sub_asym(tp, tuh); |
1470 | let (t6, t1) = butterfly_add_asym(t6, t1h); |
1471 | let (t2, t5) = butterfly_sub_asym(t2, t5h); |
1472 | let (tt, tq) = butterfly_add_asym(tt, tqh); |
1473 | let (tr, ts) = butterfly_sub_asym(tr, tsh); |
1474 | let (t4, t3) = butterfly_add_asym(t4, t3h); |
1475 | let (t8, tg) = butterfly_add_asym(t8, tgh); |
1476 | let (te, tm) = butterfly_sub_asym(te, tmh); |
1477 | let (tn, tf) = butterfly_add_asym(tn, tfh); |
1478 | let (th, t9) = butterfly_sub_asym(th, t9h); |
1479 | let (ta, ti) = butterfly_add_asym(ta, tih); |
1480 | let (tc, tk) = butterfly_sub_asym(tc, tkh); |
1481 | let (tl, td) = butterfly_add_asym(tl, tdh); |
1482 | let (tj, tb) = butterfly_sub_asym(tj, tbh); |
1483 | |
1484 | // Stage 3 |
1485 | // 17911/16384 = Sin[15*Pi/32] + Cos[15*Pi/32] = 1.0932018670017576 |
1486 | // 14699/16384 = Sin[15*Pi/32] - Cos[15*Pi/32] = 0.8971675863426363 |
1487 | // 803/8192 = Cos[15*Pi/32] = 0.0980171403295606 |
1488 | let (tf, tg) = |
1489 | RotateSub::kernel::<14, 14, 13>(tf, tg, (17911, 14699, 803)); |
1490 | // 10217/8192 = Sin[13*Pi/32] + Cos[13*Pi/32] = 1.2472250129866712 |
1491 | // 5461/8192 = Sin[13*Pi/32] - Cos[13*Pi/32] = 0.6666556584777465 |
1492 | // 1189/4096 = Cos[13*Pi/32] = 0.2902846772544623 |
1493 | let (th, te) = |
1494 | RotateAdd::kernel::<13, 13, 12>(th, te, (10217, 5461, 1189)); |
1495 | // 5543/4096 = Sin[11*Pi/32] + Cos[11*Pi/32] = 1.3533180011743526 |
1496 | // 3363/8192 = Sin[11*Pi/32] - Cos[11*Pi/32] = 0.4105245275223574 |
1497 | // 7723/16384 = Cos[11*Pi/32] = 0.4713967368259976 |
1498 | let (ti, td) = |
1499 | RotateAdd::kernel::<12, 13, 14>(ti, td, (5543, 3363, 7723)); |
1500 | // 11529/8192 = Sin[9*Pi/32] + Cos[9*Pi/32] = 1.4074037375263826 |
1501 | // 2271/16384 = Sin[9*Pi/32] - Cos[9*Pi/32] = 0.1386171691990915 |
1502 | // 5197/8192 = Cos[9*Pi/32] = 0.6343932841636455 |
1503 | let (tc, tj) = |
1504 | RotateSub::kernel::<13, 14, 13>(tc, tj, (11529, 2271, 5197)); |
1505 | // 11529/8192 = Sin[9*Pi/32] + Cos[9*Pi/32] = 1.4074037375263826 |
1506 | // 2271/16384 = Sin[9*Pi/32] - Cos[9*Pi/32] = 0.1386171691990915 |
1507 | // 5197/8192 = Cos[9*Pi/32] = 0.6343932841636455 |
1508 | let (tb, tk) = |
1509 | RotateNeg::kernel::<13, 14, 13>(tb, tk, (11529, 2271, 5197)); |
1510 | // 5543/4096 = Sin[11*Pi/32] + Cos[11*Pi/32] = 1.3533180011743526 |
1511 | // 3363/8192 = Sin[11*Pi/32] - Cos[11*Pi/32] = 0.4105245275223574 |
1512 | // 7723/16384 = Cos[11*Pi/32] = 0.4713967368259976 |
1513 | let (ta, tl) = |
1514 | RotateNeg::kernel::<12, 13, 14>(ta, tl, (5543, 3363, 7723)); |
1515 | // 10217/8192 = Sin[13*Pi/32] + Cos[13*Pi/32] = 1.2472250129866712 |
1516 | // 5461/8192 = Sin[13*Pi/32] - Cos[13*Pi/32] = 0.6666556584777465 |
1517 | // 1189/4096 = Cos[13*Pi/32] = 0.2902846772544623 |
1518 | let (t9, tm) = |
1519 | RotateNeg::kernel::<13, 13, 12>(t9, tm, (10217, 5461, 1189)); |
1520 | // 17911/16384 = Sin[15*Pi/32] + Cos[15*Pi/32] = 1.0932018670017576 |
1521 | // 14699/16384 = Sin[15*Pi/32] - Cos[15*Pi/32] = 0.8971675863426363 |
1522 | // 803/8192 = Cos[15*Pi/32] = 0.0980171403295606 |
1523 | let (t8, tn) = |
1524 | RotateNeg::kernel::<14, 14, 13>(t8, tn, (17911, 14699, 803)); |
1525 | |
1526 | // Stage 4 |
1527 | let (t3, t0h) = butterfly_sub(t3, t0); |
1528 | let (ts, tvh) = butterfly_add(ts, tv); |
1529 | let (tu, tth) = butterfly_sub(tu, tt); |
1530 | let (t1, t2h) = butterfly_add(t1, t2); |
1531 | let ((_toh, to), t4h) = butterfly_add(to, t4); |
1532 | let ((_tqh, tq), t6h) = butterfly_sub(tq, t6); |
1533 | let ((_t7h, t7), trh) = butterfly_add(t7, tr); |
1534 | let ((_t5h, t5), tph) = butterfly_sub(t5, tp); |
1535 | let (tb, t8h) = butterfly_sub(tb, t8); |
1536 | let (tk, tnh) = butterfly_add(tk, tn); |
1537 | let (tm, tlh) = butterfly_sub(tm, tl); |
1538 | let (t9, tah) = butterfly_add(t9, ta); |
1539 | let (tf, tch) = butterfly_sub(tf, tc); |
1540 | let (tg, tjh) = butterfly_add(tg, tj); |
1541 | let (ti, thh) = butterfly_sub(ti, th); |
1542 | let (td, teh) = butterfly_add(td, te); |
1543 | |
1544 | // Stage 5 |
1545 | // 301/256 = Sin[7*Pi/16] + Cos[7*Pi/16] = 1.1758756024193586 |
1546 | // 1609/2048 = Sin[7*Pi/16] - Cos[7*Pi/16] = 0.7856949583871022 |
1547 | // 6393/32768 = Cos[7*Pi/16] = 0.1950903220161283 |
1548 | let (to, t7) = RotateAdd::kernel::<8, 11, 15>(to, t7, (301, 1609, 6393)); |
1549 | // 11363/8192 = Sin[5*Pi/16] + Cos[5*Pi/16] = 1.3870398453221475 |
1550 | // 9041/32768 = Sin[5*Pi/16] - Cos[5*Pi/16] = 0.2758993792829431 |
1551 | // 4551/8192 = Cos[5*Pi/16] = 0.5555702330196022 |
1552 | let (tph, t6h) = |
1553 | RotateAdd::kernel::<13, 15, 13>(tph, t6h, (11363, 9041, 4551)); |
1554 | // 5681/4096 = Sin[5*Pi/16] + Cos[5*Pi/16] = 1.3870398453221475 |
1555 | // 9041/32768 = Sin[5*Pi/16] - Cos[5*Pi/16] = 0.2758993792829431 |
1556 | // 4551/8192 = Cos[5*Pi/16] = 0.5555702330196022 |
1557 | let (t5, tq) = |
1558 | RotateNeg::kernel::<12, 15, 13>(t5, tq, (5681, 9041, 4551)); |
1559 | // 9633/8192 = Sin[7*Pi/16] + Cos[7*Pi/16] = 1.1758756024193586 |
1560 | // 12873/16384 = Sin[7*Pi/16] - Cos[7*Pi/16] = 0.7856949583871022 |
1561 | // 6393/32768 = Cos[7*Pi/16] = 0.1950903220161283 |
1562 | let (t4h, trh) = |
1563 | RotateNeg::kernel::<13, 14, 15>(t4h, trh, (9633, 12873, 6393)); |
1564 | |
1565 | // Stage 6 |
1566 | let (t1, t0) = butterfly_add_asym(t1, t0h); |
1567 | let (tu, tv) = butterfly_sub_asym(tu, tvh); |
1568 | let (ts, t2) = butterfly_sub_asym(ts, t2h); |
1569 | let (t3, tt) = butterfly_sub_asym(t3, tth); |
1570 | let (t5, t4) = butterfly_add_asym((t5.rshift1(), t5), t4h); |
1571 | let (tq, tr) = butterfly_sub_asym((tq.rshift1(), tq), trh); |
1572 | let (t7, t6) = butterfly_add_asym((t7.rshift1(), t7), t6h); |
1573 | let (to, tp) = butterfly_sub_asym((to.rshift1(), to), tph); |
1574 | let (t9, t8) = butterfly_add_asym(t9, t8h); |
1575 | let (tm, tn) = butterfly_sub_asym(tm, tnh); |
1576 | let (tk, ta) = butterfly_sub_asym(tk, tah); |
1577 | let (tb, tl) = butterfly_sub_asym(tb, tlh); |
1578 | let (ti, tc) = butterfly_add_asym(ti, tch); |
1579 | let (td, tj) = butterfly_add_asym(td, tjh); |
1580 | let (tf, te) = butterfly_add_asym(tf, teh); |
1581 | let (tg, th) = butterfly_sub_asym(tg, thh); |
1582 | |
1583 | // Stage 7 |
1584 | // 669/512 = Sin[3*Pi/8] + Cos[3*Pi/8] = 1.3065629648763766 |
1585 | // 8867/16384 = Sin[3*Pi/8] - Cos[3*Pi/8] = 0.5411961001461969 |
1586 | // 3135/8192 = Cos[3*Pi/8] = 0.3826834323650898 |
1587 | let (t2, tt) = RotateNeg::kernel::<9, 14, 13>(t2, tt, (669, 8867, 3135)); |
1588 | // 669/512 = Sin[3*Pi/8] + Cos[3*Pi/8] = 1.3065629648763766 |
1589 | // 8867/16384 = Sin[3*Pi/8] - Cos[3*Pi/8] = 0.5411961001461969 |
1590 | // 3135/8192 = Cos[3*Pi/8] = 0.3826834323650898 |
1591 | let (ts, t3) = RotateAdd::kernel::<9, 14, 13>(ts, t3, (669, 8867, 3135)); |
1592 | // 669/512 = Sin[3*Pi/8] + Cos[3*Pi/8] = 1.3065629648763766 |
1593 | // 8867/16384 = Sin[3*Pi/8] - Cos[3*Pi/8] = 0.5411961001461969 |
1594 | // 3135/8192 = Cos[3*Pi/8] = 0.3826834323650898 |
1595 | let (ta, tl) = RotateNeg::kernel::<9, 14, 13>(ta, tl, (669, 8867, 3135)); |
1596 | // 669/512 = Sin[3*Pi/8] + Cos[3*Pi/8] = 1.3065629648763766 |
1597 | // 8867/16384 = Sin[3*Pi/8] - Cos[3*Pi/8] = 0.5411961001461969 |
1598 | // 3135/8192 = Cos[3*Pi/8] = 0.3826834323650898 |
1599 | let (tk, tb) = RotateAdd::kernel::<9, 14, 13>(tk, tb, (669, 8867, 3135)); |
1600 | // 669/512 = Sin[3*Pi/8] + Cos[3*Pi/8] = 1.3065629648763766 |
1601 | // 8867/16384 = Sin[3*Pi/8] - Cos[3*Pi/8] = 0.5411961001461969 |
1602 | // 3135/8192 = Cos[3*Pi/8] = 0.3826834323650898 |
1603 | let (tc, tj) = RotateAdd::kernel::<9, 14, 13>(tc, tj, (669, 8867, 3135)); |
1604 | // 669/512 = Sin[3*Pi/8] + Cos[3*Pi/8] = 1.3065629648763766 |
1605 | // 8867/16384 = Sin[3*Pi/8] - Cos[3*Pi/8] = 0.5411961001461969 |
1606 | // 3135/8192 = Cos[3*Pi/8] = 0.3826834323650898 |
1607 | let (ti, td) = RotateNeg::kernel::<9, 14, 13>(ti, td, (669, 8867, 3135)); |
1608 | // 5793/4096 = Sin[Pi/4] + Cos[Pi/4] = 1.4142135623730951 |
1609 | // 5793/8192 = Cos[Pi/4] = 0.7071067811865475 |
1610 | let (tu, t1) = RotatePi4Add::kernel::<12, 13>(tu, t1, (5793, 5793)); |
1611 | // 5793/4096 = Sin[Pi/4] + Cos[Pi/4] = 1.4142135623730951 |
1612 | // 5793/8192 = Cos[Pi/4] = 0.7071067811865475 |
1613 | let (tq, t5) = RotatePi4Add::kernel::<12, 13>(tq, t5, (5793, 5793)); |
1614 | // 5793/4096 = Sin[Pi/4] + Cos[Pi/4] = 1.4142135623730951 |
1615 | // 5793/8192 = Cos[Pi/4] = 0.7071067811865475 |
1616 | let (tp, t6) = RotatePi4Sub::kernel::<12, 13>(tp, t6, (5793, 5793)); |
1617 | // 5793/4096 = Sin[Pi/4] + Cos[Pi/4] = 1.4142135623730951 |
1618 | // 5793/8192 = Cos[Pi/4] = 0.7071067811865475 |
1619 | let (tm, t9) = RotatePi4Add::kernel::<12, 13>(tm, t9, (5793, 5793)); |
1620 | // 5793/4096 = Sin[Pi/4] + Cos[Pi/4] = 1.4142135623730951 |
1621 | // 5793/8192 = Cos[Pi/4] = 0.7071067811865475 |
1622 | let (te, th) = RotatePi4Add::kernel::<12, 13>(te, th, (5793, 5793)); |
1623 | |
1624 | store_coeffs!( |
1625 | output, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, ta, tb, tc, td, te, tf, |
1626 | tg, th, ti, tj, tk, tl, tm, tn, to, tp, tq, tr, ts, tt, tu, tv |
1627 | ); |
1628 | } |
1629 | |
1630 | #[allow(clippy::identity_op)] |
1631 | #[$m] |
1632 | $($s)* fn daala_fdct64<T: TxOperations>(coeffs: &mut [T]) { |
1633 | assert!(coeffs.len() >= 64); |
1634 | // Use arrays to avoid ridiculous variable names |
1635 | let mut asym: [(T, T); 32] = [(T::zero(), T::zero()); 32]; |
1636 | let mut half: [T; 32] = [T::zero(); 32]; |
1637 | // +/- Butterflies with asymmetric output. |
1638 | { |
1639 | #[$m] |
1640 | #[inline] |
1641 | $($s)* fn butterfly_pair<T: TxOperations>( |
1642 | half: &mut [T; 32], asym: &mut [(T, T); 32], input: &[T], i: usize |
1643 | ) { |
1644 | let j = i * 2; |
1645 | let (ah, c) = butterfly_neg(input[j], input[63 - j]); |
1646 | let (b, dh) = butterfly_add(input[j + 1], input[63 - j - 1]); |
1647 | half[i] = ah; |
1648 | half[31 - i] = dh; |
1649 | asym[i] = b; |
1650 | asym[31 - i] = c; |
1651 | } |
1652 | butterfly_pair(&mut half, &mut asym, coeffs, 0); |
1653 | butterfly_pair(&mut half, &mut asym, coeffs, 1); |
1654 | butterfly_pair(&mut half, &mut asym, coeffs, 2); |
1655 | butterfly_pair(&mut half, &mut asym, coeffs, 3); |
1656 | butterfly_pair(&mut half, &mut asym, coeffs, 4); |
1657 | butterfly_pair(&mut half, &mut asym, coeffs, 5); |
1658 | butterfly_pair(&mut half, &mut asym, coeffs, 6); |
1659 | butterfly_pair(&mut half, &mut asym, coeffs, 7); |
1660 | butterfly_pair(&mut half, &mut asym, coeffs, 8); |
1661 | butterfly_pair(&mut half, &mut asym, coeffs, 9); |
1662 | butterfly_pair(&mut half, &mut asym, coeffs, 10); |
1663 | butterfly_pair(&mut half, &mut asym, coeffs, 11); |
1664 | butterfly_pair(&mut half, &mut asym, coeffs, 12); |
1665 | butterfly_pair(&mut half, &mut asym, coeffs, 13); |
1666 | butterfly_pair(&mut half, &mut asym, coeffs, 14); |
1667 | butterfly_pair(&mut half, &mut asym, coeffs, 15); |
1668 | } |
1669 | |
1670 | let mut temp_out: [T; 64] = [T::zero(); 64]; |
1671 | // Embedded 2-point transforms with asymmetric input. |
1672 | daala_fdct_ii_32_asym( |
1673 | half[0], |
1674 | asym[0], |
1675 | half[1], |
1676 | asym[1], |
1677 | half[2], |
1678 | asym[2], |
1679 | half[3], |
1680 | asym[3], |
1681 | half[4], |
1682 | asym[4], |
1683 | half[5], |
1684 | asym[5], |
1685 | half[6], |
1686 | asym[6], |
1687 | half[7], |
1688 | asym[7], |
1689 | half[8], |
1690 | asym[8], |
1691 | half[9], |
1692 | asym[9], |
1693 | half[10], |
1694 | asym[10], |
1695 | half[11], |
1696 | asym[11], |
1697 | half[12], |
1698 | asym[12], |
1699 | half[13], |
1700 | asym[13], |
1701 | half[14], |
1702 | asym[14], |
1703 | half[15], |
1704 | asym[15], |
1705 | &mut temp_out[0..32], |
1706 | ); |
1707 | daala_fdst_iv_32_asym( |
1708 | asym[31], |
1709 | half[31], |
1710 | asym[30], |
1711 | half[30], |
1712 | asym[29], |
1713 | half[29], |
1714 | asym[28], |
1715 | half[28], |
1716 | asym[27], |
1717 | half[27], |
1718 | asym[26], |
1719 | half[26], |
1720 | asym[25], |
1721 | half[25], |
1722 | asym[24], |
1723 | half[24], |
1724 | asym[23], |
1725 | half[23], |
1726 | asym[22], |
1727 | half[22], |
1728 | asym[21], |
1729 | half[21], |
1730 | asym[20], |
1731 | half[20], |
1732 | asym[19], |
1733 | half[19], |
1734 | asym[18], |
1735 | half[18], |
1736 | asym[17], |
1737 | half[17], |
1738 | asym[16], |
1739 | half[16], |
1740 | &mut temp_out[32..64], |
1741 | ); |
1742 | temp_out[32..64].reverse(); |
1743 | |
1744 | // Store a reordered version of output in temp_out |
1745 | #[$m] |
1746 | #[inline] |
1747 | $($s)* fn reorder_4<T: TxOperations>( |
1748 | output: &mut [T], i: usize, tmp: [T; 64], j: usize |
1749 | ) { |
1750 | output[0 + i * 4] = tmp[0 + j]; |
1751 | output[1 + i * 4] = tmp[32 + j]; |
1752 | output[2 + i * 4] = tmp[16 + j]; |
1753 | output[3 + i * 4] = tmp[48 + j]; |
1754 | } |
1755 | reorder_4(coeffs, 0, temp_out, 0); |
1756 | reorder_4(coeffs, 1, temp_out, 8); |
1757 | reorder_4(coeffs, 2, temp_out, 4); |
1758 | reorder_4(coeffs, 3, temp_out, 12); |
1759 | reorder_4(coeffs, 4, temp_out, 2); |
1760 | reorder_4(coeffs, 5, temp_out, 10); |
1761 | reorder_4(coeffs, 6, temp_out, 6); |
1762 | reorder_4(coeffs, 7, temp_out, 14); |
1763 | |
1764 | reorder_4(coeffs, 8, temp_out, 1); |
1765 | reorder_4(coeffs, 9, temp_out, 9); |
1766 | reorder_4(coeffs, 10, temp_out, 5); |
1767 | reorder_4(coeffs, 11, temp_out, 13); |
1768 | reorder_4(coeffs, 12, temp_out, 3); |
1769 | reorder_4(coeffs, 13, temp_out, 11); |
1770 | reorder_4(coeffs, 14, temp_out, 7); |
1771 | reorder_4(coeffs, 15, temp_out, 15); |
1772 | } |
1773 | |
1774 | #[$m] |
1775 | $($s)* fn fidentity<T: TxOperations>(_coeffs: &mut [T]) {} |
1776 | |
1777 | #[$m] |
1778 | $($s)* fn fwht4<T: TxOperations>(coeffs: &mut [T]) { |
1779 | assert!(coeffs.len() >= 4); |
1780 | let x0 = coeffs[0]; |
1781 | let x1 = coeffs[1]; |
1782 | let x2 = coeffs[2]; |
1783 | let x3 = coeffs[3]; |
1784 | |
1785 | let s0 = x0.add(x1); |
1786 | let s1 = x3.sub(x2); |
1787 | let s2 = s0.sub_avg(s1); |
1788 | |
1789 | let q1 = s2.sub(x2); |
1790 | let q0 = s0.sub(q1); |
1791 | let q3 = s2.sub(x1); |
1792 | let q2 = s1.add(q3); |
1793 | |
1794 | store_coeffs!(coeffs, q0, q1, q2, q3); |
1795 | } |
1796 | |
1797 | } |
1798 | |
1799 | } |
1800 | |