| 1 | use super::plumbing::*; |
| 2 | use super::*; |
| 3 | |
| 4 | use std::fmt::{self, Debug}; |
| 5 | |
| 6 | /// The `split` function takes arbitrary data and a closure that knows how to |
| 7 | /// split it, and turns this into a `ParallelIterator`. |
| 8 | /// |
| 9 | /// # Examples |
| 10 | /// |
| 11 | /// As a simple example, Rayon can recursively split ranges of indices |
| 12 | /// |
| 13 | /// ``` |
| 14 | /// use rayon::iter; |
| 15 | /// use rayon::prelude::*; |
| 16 | /// use std::ops::Range; |
| 17 | /// |
| 18 | /// |
| 19 | /// // We define a range of indices as follows |
| 20 | /// type Range1D = Range<usize>; |
| 21 | /// |
| 22 | /// // Splitting it in two can be done like this |
| 23 | /// fn split_range1(r: Range1D) -> (Range1D, Option<Range1D>) { |
| 24 | /// // We are mathematically unable to split the range if there is only |
| 25 | /// // one point inside of it, but we could stop splitting before that. |
| 26 | /// if r.end - r.start <= 1 { return (r, None); } |
| 27 | /// |
| 28 | /// // Here, our range is considered large enough to be splittable |
| 29 | /// let midpoint = r.start + (r.end - r.start) / 2; |
| 30 | /// (r.start..midpoint, Some(midpoint..r.end)) |
| 31 | /// } |
| 32 | /// |
| 33 | /// // By using iter::split, Rayon will split the range until it has enough work |
| 34 | /// // to feed the CPU cores, then give us the resulting sub-ranges |
| 35 | /// iter::split(0..4096, split_range1).for_each(|sub_range| { |
| 36 | /// // As our initial range had a power-of-two size, the final sub-ranges |
| 37 | /// // should have power-of-two sizes too |
| 38 | /// assert!((sub_range.end - sub_range.start).is_power_of_two()); |
| 39 | /// }); |
| 40 | /// ``` |
| 41 | /// |
| 42 | /// This recursive splitting can be extended to two or three dimensions, |
| 43 | /// to reproduce a classic "block-wise" parallelization scheme of graphics and |
| 44 | /// numerical simulations: |
| 45 | /// |
| 46 | /// ``` |
| 47 | /// # use rayon::iter; |
| 48 | /// # use rayon::prelude::*; |
| 49 | /// # use std::ops::Range; |
| 50 | /// # type Range1D = Range<usize>; |
| 51 | /// # fn split_range1(r: Range1D) -> (Range1D, Option<Range1D>) { |
| 52 | /// # if r.end - r.start <= 1 { return (r, None); } |
| 53 | /// # let midpoint = r.start + (r.end - r.start) / 2; |
| 54 | /// # (r.start..midpoint, Some(midpoint..r.end)) |
| 55 | /// # } |
| 56 | /// # |
| 57 | /// // A two-dimensional range of indices can be built out of two 1D ones |
| 58 | /// struct Range2D { |
| 59 | /// // Range of horizontal indices |
| 60 | /// pub rx: Range1D, |
| 61 | /// |
| 62 | /// // Range of vertical indices |
| 63 | /// pub ry: Range1D, |
| 64 | /// } |
| 65 | /// |
| 66 | /// // We want to recursively split them by the largest dimension until we have |
| 67 | /// // enough sub-ranges to feed our mighty multi-core CPU. This function |
| 68 | /// // carries out one such split. |
| 69 | /// fn split_range2(r2: Range2D) -> (Range2D, Option<Range2D>) { |
| 70 | /// // Decide on which axis (horizontal/vertical) the range should be split |
| 71 | /// let width = r2.rx.end - r2.rx.start; |
| 72 | /// let height = r2.ry.end - r2.ry.start; |
| 73 | /// if width >= height { |
| 74 | /// // This is a wide range, split it on the horizontal axis |
| 75 | /// let (split_rx, ry) = (split_range1(r2.rx), r2.ry); |
| 76 | /// let out1 = Range2D { |
| 77 | /// rx: split_rx.0, |
| 78 | /// ry: ry.clone(), |
| 79 | /// }; |
| 80 | /// let out2 = split_rx.1.map(|rx| Range2D { rx, ry }); |
| 81 | /// (out1, out2) |
| 82 | /// } else { |
| 83 | /// // This is a tall range, split it on the vertical axis |
| 84 | /// let (rx, split_ry) = (r2.rx, split_range1(r2.ry)); |
| 85 | /// let out1 = Range2D { |
| 86 | /// rx: rx.clone(), |
| 87 | /// ry: split_ry.0, |
| 88 | /// }; |
| 89 | /// let out2 = split_ry.1.map(|ry| Range2D { rx, ry, }); |
| 90 | /// (out1, out2) |
| 91 | /// } |
| 92 | /// } |
| 93 | /// |
| 94 | /// // Again, rayon can handle the recursive splitting for us |
| 95 | /// let range = Range2D { rx: 0..800, ry: 0..600 }; |
| 96 | /// iter::split(range, split_range2).for_each(|sub_range| { |
| 97 | /// // If the sub-ranges were indeed split by the largest dimension, then |
| 98 | /// // if no dimension was twice larger than the other initially, this |
| 99 | /// // property will remain true in the final sub-ranges. |
| 100 | /// let width = sub_range.rx.end - sub_range.rx.start; |
| 101 | /// let height = sub_range.ry.end - sub_range.ry.start; |
| 102 | /// assert!((width / 2 <= height) && (height / 2 <= width)); |
| 103 | /// }); |
| 104 | /// ``` |
| 105 | /// |
| 106 | pub fn split<D, S>(data: D, splitter: S) -> Split<D, S> |
| 107 | where |
| 108 | D: Send, |
| 109 | S: Fn(D) -> (D, Option<D>) + Sync, |
| 110 | { |
| 111 | Split { data, splitter } |
| 112 | } |
| 113 | |
| 114 | /// `Split` is a parallel iterator using arbitrary data and a splitting function. |
| 115 | /// This struct is created by the [`split()`] function. |
| 116 | /// |
| 117 | /// [`split()`]: fn.split.html |
| 118 | #[derive (Clone)] |
| 119 | pub struct Split<D, S> { |
| 120 | data: D, |
| 121 | splitter: S, |
| 122 | } |
| 123 | |
| 124 | impl<D: Debug, S> Debug for Split<D, S> { |
| 125 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 126 | f.debug_struct("Split" ).field(name:"data" , &self.data).finish() |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | impl<D, S> ParallelIterator for Split<D, S> |
| 131 | where |
| 132 | D: Send, |
| 133 | S: Fn(D) -> (D, Option<D>) + Sync + Send, |
| 134 | { |
| 135 | type Item = D; |
| 136 | |
| 137 | fn drive_unindexed<C>(self, consumer: C) -> C::Result |
| 138 | where |
| 139 | C: UnindexedConsumer<Self::Item>, |
| 140 | { |
| 141 | let producer: SplitProducer<'_, D, S> = SplitProducer { |
| 142 | data: self.data, |
| 143 | splitter: &self.splitter, |
| 144 | }; |
| 145 | bridge_unindexed(producer, consumer) |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | struct SplitProducer<'a, D, S> { |
| 150 | data: D, |
| 151 | splitter: &'a S, |
| 152 | } |
| 153 | |
| 154 | impl<'a, D, S> UnindexedProducer for SplitProducer<'a, D, S> |
| 155 | where |
| 156 | D: Send, |
| 157 | S: Fn(D) -> (D, Option<D>) + Sync, |
| 158 | { |
| 159 | type Item = D; |
| 160 | |
| 161 | fn split(mut self) -> (Self, Option<Self>) { |
| 162 | let splitter: &'a S = self.splitter; |
| 163 | let (left: D, right: Option) = splitter(self.data); |
| 164 | self.data = left; |
| 165 | (self, right.map(|data: D| SplitProducer { data, splitter })) |
| 166 | } |
| 167 | |
| 168 | fn fold_with<F>(self, folder: F) -> F |
| 169 | where |
| 170 | F: Folder<Self::Item>, |
| 171 | { |
| 172 | folder.consume(self.data) |
| 173 | } |
| 174 | } |
| 175 | |