1 | use core::iter::FlatMap; |
2 | |
3 | /// A specialized version of `core::iter::FlatMap` for mapping over exact-sized |
4 | /// iterators with a function that returns an array. |
5 | /// |
6 | /// `ArrayFlatMap` differs from `FlatMap` in that `ArrayFlatMap` implements |
7 | /// `ExactSizeIterator`. Since the result of `F` always has `LEN` elements, if |
8 | /// `I` is an exact-sized iterator of length `inner_len` then we know the |
9 | /// length of the flat-mapped result is `inner_len * LEN`. (The constructor |
10 | /// verifies that this multiplication doesn't overflow `usize`.) |
11 | #[derive (Clone)] |
12 | pub struct ArrayFlatMap<I, Item, F, const LEN: usize> { |
13 | inner: FlatMap<I, [Item; LEN], F>, |
14 | remaining: usize, |
15 | } |
16 | |
17 | impl<I, Item, F, const LEN: usize> ArrayFlatMap<I, Item, F, LEN> |
18 | where |
19 | I: ExactSizeIterator, |
20 | F: FnMut(I::Item) -> [Item; LEN], |
21 | { |
22 | /// Constructs an `ArrayFlatMap` wrapping the given iterator, using the |
23 | /// given function |
24 | pub fn new(inner: I, f: F) -> Option<Self> { |
25 | let remaining: usize = inner.len().checked_mul(LEN)?; |
26 | let inner: impl Iterator = inner.flat_map(f); |
27 | Some(Self { inner, remaining }) |
28 | } |
29 | } |
30 | |
31 | impl<I, Item, F, const LEN: usize> Iterator for ArrayFlatMap<I, Item, F, LEN> |
32 | where |
33 | I: Iterator, |
34 | F: FnMut(I::Item) -> [Item; LEN], |
35 | { |
36 | type Item = Item; |
37 | |
38 | fn next(&mut self) -> Option<Self::Item> { |
39 | let result: Option = self.inner.next(); |
40 | if result.is_some() { |
41 | self.remaining -= 1; |
42 | } |
43 | result |
44 | } |
45 | |
46 | /// Required for implementing `ExactSizeIterator`. |
47 | fn size_hint(&self) -> (usize, Option<usize>) { |
48 | (self.remaining, Some(self.remaining)) |
49 | } |
50 | } |
51 | |
52 | impl<I, Item, F, const LEN: usize> ExactSizeIterator for ArrayFlatMap<I, Item, F, LEN> |
53 | where |
54 | I: Iterator, |
55 | F: FnMut(I::Item) -> [Item; LEN], |
56 | { |
57 | } |
58 | |
59 | #[cfg (test)] |
60 | mod tests { |
61 | use super::*; |
62 | use core::mem::size_of; |
63 | |
64 | #[test ] |
65 | fn test_array_flat_map() { |
66 | static TEST_CASES: &[(&[u16], fn(u16) -> [u8; 2], &[u8])] = &[ |
67 | // Empty input |
68 | (&[], u16::to_be_bytes, &[]), |
69 | // Non-empty input. |
70 | ( |
71 | &[0x0102, 0x0304, 0x0506], |
72 | u16::to_be_bytes, |
73 | &[1, 2, 3, 4, 5, 6], |
74 | ), |
75 | // Test with a different mapping function. |
76 | ( |
77 | &[0x0102, 0x0304, 0x0506], |
78 | u16::to_le_bytes, |
79 | &[2, 1, 4, 3, 6, 5], |
80 | ), |
81 | ]; |
82 | TEST_CASES.iter().copied().for_each(|(input, f, expected)| { |
83 | let mapped = ArrayFlatMap::new(input.iter().copied(), f).unwrap(); |
84 | super::super::test::assert_iterator(mapped, expected); |
85 | }); |
86 | } |
87 | |
88 | // Does ArrayFlatMap::new() handle overflow correctly? |
89 | #[test ] |
90 | fn test_array_flat_map_len_overflow() { |
91 | struct DownwardCounter { |
92 | remaining: usize, |
93 | } |
94 | impl Iterator for DownwardCounter { |
95 | type Item = usize; |
96 | |
97 | fn next(&mut self) -> Option<Self::Item> { |
98 | if self.remaining > 0 { |
99 | let result = self.remaining; |
100 | self.remaining -= 1; |
101 | Some(result) |
102 | } else { |
103 | None |
104 | } |
105 | } |
106 | |
107 | fn size_hint(&self) -> (usize, Option<usize>) { |
108 | (self.remaining, Some(self.remaining)) |
109 | } |
110 | } |
111 | impl ExactSizeIterator for DownwardCounter {} |
112 | |
113 | const MAX: usize = usize::MAX / size_of::<usize>(); |
114 | |
115 | static TEST_CASES: &[(usize, bool)] = &[(MAX, true), (MAX + 1, false)]; |
116 | TEST_CASES.iter().copied().for_each(|(input_len, is_some)| { |
117 | let inner = DownwardCounter { |
118 | remaining: input_len, |
119 | }; |
120 | let mapped = ArrayFlatMap::new(inner, usize::to_be_bytes); |
121 | assert_eq!(mapped.is_some(), is_some); |
122 | if let Some(mapped) = mapped { |
123 | assert_eq!(mapped.len(), input_len * size_of::<usize>()); |
124 | } |
125 | }); |
126 | } |
127 | } |
128 | |