1 | //! Working with abstract syntax trees. |
2 | //! |
3 | //! In rowan, syntax trees are transient objects. That means that we create |
4 | //! trees when we need them, and tear them down to save memory. In this |
5 | //! architecture, hanging on to a particular syntax node for a long time is |
6 | //! ill-advisable, as that keeps the whole tree resident. |
7 | //! |
8 | //! Instead, we provide a [`SyntaxNodePtr`] type, which stores information about |
9 | //! the _location_ of a particular syntax node in a tree. It's a small type |
10 | //! which can be cheaply stored, and which can be resolved to a real |
11 | //! [`SyntaxNode`] when necessary. |
12 | //! |
13 | //! We also provide an [`AstNode`] trait for typed AST wrapper APIs over rowan |
14 | //! nodes. |
15 | |
16 | use std::{ |
17 | fmt, |
18 | hash::{Hash, Hasher}, |
19 | iter::successors, |
20 | marker::PhantomData, |
21 | }; |
22 | |
23 | use crate::{Language, SyntaxNode, SyntaxNodeChildren, TextRange}; |
24 | |
25 | /// The main trait to go from untyped [`SyntaxNode`] to a typed AST. The |
26 | /// conversion itself has zero runtime cost: AST and syntax nodes have exactly |
27 | /// the same representation: a pointer to the tree root and a pointer to the |
28 | /// node itself. |
29 | pub trait AstNode { |
30 | type Language: Language; |
31 | |
32 | fn can_cast(kind: <Self::Language as Language>::Kind) -> bool |
33 | where |
34 | Self: Sized; |
35 | |
36 | fn cast(node: SyntaxNode<Self::Language>) -> Option<Self> |
37 | where |
38 | Self: Sized; |
39 | |
40 | fn syntax(&self) -> &SyntaxNode<Self::Language>; |
41 | |
42 | fn clone_for_update(&self) -> Self |
43 | where |
44 | Self: Sized, |
45 | { |
46 | Self::cast(self.syntax().clone_for_update()).unwrap() |
47 | } |
48 | |
49 | fn clone_subtree(&self) -> Self |
50 | where |
51 | Self: Sized, |
52 | { |
53 | Self::cast(self.syntax().clone_subtree()).unwrap() |
54 | } |
55 | } |
56 | |
57 | /// A "pointer" to a [`SyntaxNode`], via location in the source code. |
58 | #[derive (Debug, Copy, Clone, PartialEq, Eq, Hash)] |
59 | pub struct SyntaxNodePtr<L: Language> { |
60 | kind: L::Kind, |
61 | range: TextRange, |
62 | } |
63 | |
64 | impl<L: Language> SyntaxNodePtr<L> { |
65 | /// Returns a [`SyntaxNodePtr`] for the node. |
66 | pub fn new(node: &SyntaxNode<L>) -> Self { |
67 | Self { kind: node.kind(), range: node.text_range() } |
68 | } |
69 | |
70 | /// Like [`Self::try_to_node`] but panics instead of returning `None` on |
71 | /// failure. |
72 | pub fn to_node(&self, root: &SyntaxNode<L>) -> SyntaxNode<L> { |
73 | self.try_to_node(root).unwrap_or_else(|| panic!("can't resolve {self:?} with {root:?}" )) |
74 | } |
75 | |
76 | /// "Dereferences" the pointer to get the [`SyntaxNode`] it points to. |
77 | /// |
78 | /// Returns `None` if the node is not found, so make sure that the `root` |
79 | /// syntax tree is equivalent to (i.e. is build from the same text from) the |
80 | /// tree which was originally used to get this [`SyntaxNodePtr`]. |
81 | /// |
82 | /// Also returns `None` if `root` is not actually a root (i.e. it has a |
83 | /// parent). |
84 | /// |
85 | /// The complexity is linear in the depth of the tree and logarithmic in |
86 | /// tree width. As most trees are shallow, thinking about this as |
87 | /// `O(log(N))` in the size of the tree is not too wrong! |
88 | pub fn try_to_node(&self, root: &SyntaxNode<L>) -> Option<SyntaxNode<L>> { |
89 | if root.parent().is_some() { |
90 | return None; |
91 | } |
92 | successors(Some(root.clone()), |node| node.child_or_token_at_range(self.range)?.into_node()) |
93 | .find(|it| it.text_range() == self.range && it.kind() == self.kind) |
94 | } |
95 | |
96 | /// Casts this to an [`AstPtr`] to the given node type if possible. |
97 | pub fn cast<N: AstNode<Language = L>>(self) -> Option<AstPtr<N>> { |
98 | if !N::can_cast(self.kind) { |
99 | return None; |
100 | } |
101 | Some(AstPtr { raw: self }) |
102 | } |
103 | |
104 | /// Returns the kind of the syntax node this points to. |
105 | pub fn kind(&self) -> L::Kind { |
106 | self.kind |
107 | } |
108 | |
109 | /// Returns the range of the syntax node this points to. |
110 | pub fn text_range(&self) -> TextRange { |
111 | self.range |
112 | } |
113 | } |
114 | |
115 | /// Like [`SyntaxNodePtr`], but remembers the type of node. |
116 | pub struct AstPtr<N: AstNode> { |
117 | raw: SyntaxNodePtr<N::Language>, |
118 | } |
119 | |
120 | impl<N: AstNode> AstPtr<N> { |
121 | /// Returns an [`AstPtr`] for the node. |
122 | pub fn new(node: &N) -> Self { |
123 | Self { raw: SyntaxNodePtr::new(node.syntax()) } |
124 | } |
125 | |
126 | /// Like `Self::try_to_node` but panics on failure. |
127 | pub fn to_node(&self, root: &SyntaxNode<N::Language>) -> N { |
128 | self.try_to_node(root).unwrap_or_else(|| panic!("can't resolve {self:?} with {root:?}" )) |
129 | } |
130 | |
131 | /// Given the root node containing the node `n` that `self` is a pointer to, |
132 | /// returns `n` if possible. See [`SyntaxNodePtr::try_to_node`]. |
133 | pub fn try_to_node(&self, root: &SyntaxNode<N::Language>) -> Option<N> { |
134 | N::cast(self.raw.try_to_node(root)?) |
135 | } |
136 | |
137 | /// Returns the underlying [`SyntaxNodePtr`]. |
138 | pub fn syntax_node_ptr(&self) -> SyntaxNodePtr<N::Language> { |
139 | self.raw.clone() |
140 | } |
141 | |
142 | /// Casts this to an [`AstPtr`] to the given node type if possible. |
143 | pub fn cast<U: AstNode<Language = N::Language>>(self) -> Option<AstPtr<U>> { |
144 | if !U::can_cast(self.raw.kind) { |
145 | return None; |
146 | } |
147 | Some(AstPtr { raw: self.raw }) |
148 | } |
149 | } |
150 | |
151 | impl<N: AstNode> fmt::Debug for AstPtr<N> { |
152 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
153 | f.debug_struct("AstPtr" ).field(name:"raw" , &self.raw).finish() |
154 | } |
155 | } |
156 | |
157 | impl<N: AstNode> Clone for AstPtr<N> { |
158 | fn clone(&self) -> Self { |
159 | Self { raw: self.raw.clone() } |
160 | } |
161 | } |
162 | |
163 | impl<N: AstNode> PartialEq for AstPtr<N> { |
164 | fn eq(&self, other: &AstPtr<N>) -> bool { |
165 | self.raw == other.raw |
166 | } |
167 | } |
168 | |
169 | impl<N: AstNode> Eq for AstPtr<N> {} |
170 | |
171 | impl<N: AstNode> Hash for AstPtr<N> { |
172 | fn hash<H: Hasher>(&self, state: &mut H) { |
173 | self.raw.hash(state) |
174 | } |
175 | } |
176 | |
177 | impl<N: AstNode> From<AstPtr<N>> for SyntaxNodePtr<N::Language> { |
178 | fn from(ptr: AstPtr<N>) -> SyntaxNodePtr<N::Language> { |
179 | ptr.raw |
180 | } |
181 | } |
182 | |
183 | #[derive (Debug, Clone)] |
184 | pub struct AstChildren<N: AstNode> { |
185 | inner: SyntaxNodeChildren<N::Language>, |
186 | ph: PhantomData<N>, |
187 | } |
188 | |
189 | impl<N: AstNode> AstChildren<N> { |
190 | fn new(parent: &SyntaxNode<N::Language>) -> Self { |
191 | AstChildren { inner: parent.children(), ph: PhantomData } |
192 | } |
193 | } |
194 | |
195 | impl<N: AstNode> Iterator for AstChildren<N> { |
196 | type Item = N; |
197 | fn next(&mut self) -> Option<N> { |
198 | self.inner.find_map(N::cast) |
199 | } |
200 | } |
201 | |
202 | pub mod support { |
203 | use super::{AstChildren, AstNode}; |
204 | use crate::{Language, SyntaxNode, SyntaxToken}; |
205 | |
206 | pub fn child<N: AstNode>(parent: &SyntaxNode<N::Language>) -> Option<N> { |
207 | parent.children().find_map(N::cast) |
208 | } |
209 | |
210 | pub fn children<N: AstNode>(parent: &SyntaxNode<N::Language>) -> AstChildren<N> { |
211 | AstChildren::new(parent) |
212 | } |
213 | |
214 | pub fn token<L: Language>(parent: &SyntaxNode<L>, kind: L::Kind) -> Option<SyntaxToken<L>> { |
215 | parent.children_with_tokens().filter_map(|it: NodeOrToken, …>| it.into_token()).find(|it: &SyntaxToken| it.kind() == kind) |
216 | } |
217 | } |
218 | |