1// Translated from C to Rust. The original C code can be found at
2// https://github.com/ulfjack/ryu and carries the following license:
3//
4// Copyright 2018 Ulf Adams
5//
6// The contents of this file may be used under the terms of the Apache License,
7// Version 2.0.
8//
9// (See accompanying file LICENSE-Apache or copy at
10// http://www.apache.org/licenses/LICENSE-2.0)
11//
12// Alternatively, the contents of this file may be used under the terms of
13// the Boost Software License, Version 1.0.
14// (See accompanying file LICENSE-Boost or copy at
15// https://www.boost.org/LICENSE_1_0.txt)
16//
17// Unless required by applicable law or agreed to in writing, this software
18// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
19// KIND, either express or implied.
20
21use crate::common::{log10_pow2, log10_pow5, pow5bits};
22use crate::f2s_intrinsics::{
23 mul_pow5_div_pow2, mul_pow5_inv_div_pow2, multiple_of_power_of_2_32, multiple_of_power_of_5_32,
24};
25
26pub const FLOAT_MANTISSA_BITS: u32 = 23;
27pub const FLOAT_EXPONENT_BITS: u32 = 8;
28const FLOAT_BIAS: i32 = 127;
29pub use crate::f2s_intrinsics::{FLOAT_POW5_BITCOUNT, FLOAT_POW5_INV_BITCOUNT};
30
31// A floating decimal representing m * 10^e.
32pub struct FloatingDecimal32 {
33 pub mantissa: u32,
34 // Decimal exponent's range is -45 to 38
35 // inclusive, and can fit in i16 if needed.
36 pub exponent: i32,
37}
38
39#[cfg_attr(feature = "no-panic", inline)]
40pub fn f2d(ieee_mantissa: u32, ieee_exponent: u32) -> FloatingDecimal32 {
41 let (e2, m2) = if ieee_exponent == 0 {
42 (
43 // We subtract 2 so that the bounds computation has 2 additional bits.
44 1 - FLOAT_BIAS - FLOAT_MANTISSA_BITS as i32 - 2,
45 ieee_mantissa,
46 )
47 } else {
48 (
49 ieee_exponent as i32 - FLOAT_BIAS - FLOAT_MANTISSA_BITS as i32 - 2,
50 (1u32 << FLOAT_MANTISSA_BITS) | ieee_mantissa,
51 )
52 };
53 let even = (m2 & 1) == 0;
54 let accept_bounds = even;
55
56 // Step 2: Determine the interval of valid decimal representations.
57 let mv = 4 * m2;
58 let mp = 4 * m2 + 2;
59 // Implicit bool -> int conversion. True is 1, false is 0.
60 let mm_shift = (ieee_mantissa != 0 || ieee_exponent <= 1) as u32;
61 let mm = 4 * m2 - 1 - mm_shift;
62
63 // Step 3: Convert to a decimal power base using 64-bit arithmetic.
64 let mut vr: u32;
65 let mut vp: u32;
66 let mut vm: u32;
67 let e10: i32;
68 let mut vm_is_trailing_zeros = false;
69 let mut vr_is_trailing_zeros = false;
70 let mut last_removed_digit = 0u8;
71 if e2 >= 0 {
72 let q = log10_pow2(e2);
73 e10 = q as i32;
74 let k = FLOAT_POW5_INV_BITCOUNT + pow5bits(q as i32) - 1;
75 let i = -e2 + q as i32 + k;
76 vr = mul_pow5_inv_div_pow2(mv, q, i);
77 vp = mul_pow5_inv_div_pow2(mp, q, i);
78 vm = mul_pow5_inv_div_pow2(mm, q, i);
79 if q != 0 && (vp - 1) / 10 <= vm / 10 {
80 // We need to know one removed digit even if we are not going to loop below. We could use
81 // q = X - 1 above, except that would require 33 bits for the result, and we've found that
82 // 32-bit arithmetic is faster even on 64-bit machines.
83 let l = FLOAT_POW5_INV_BITCOUNT + pow5bits(q as i32 - 1) - 1;
84 last_removed_digit =
85 (mul_pow5_inv_div_pow2(mv, q - 1, -e2 + q as i32 - 1 + l) % 10) as u8;
86 }
87 if q <= 9 {
88 // The largest power of 5 that fits in 24 bits is 5^10, but q <= 9 seems to be safe as well.
89 // Only one of mp, mv, and mm can be a multiple of 5, if any.
90 if mv % 5 == 0 {
91 vr_is_trailing_zeros = multiple_of_power_of_5_32(mv, q);
92 } else if accept_bounds {
93 vm_is_trailing_zeros = multiple_of_power_of_5_32(mm, q);
94 } else {
95 vp -= multiple_of_power_of_5_32(mp, q) as u32;
96 }
97 }
98 } else {
99 let q = log10_pow5(-e2);
100 e10 = q as i32 + e2;
101 let i = -e2 - q as i32;
102 let k = pow5bits(i) - FLOAT_POW5_BITCOUNT;
103 let mut j = q as i32 - k;
104 vr = mul_pow5_div_pow2(mv, i as u32, j);
105 vp = mul_pow5_div_pow2(mp, i as u32, j);
106 vm = mul_pow5_div_pow2(mm, i as u32, j);
107 if q != 0 && (vp - 1) / 10 <= vm / 10 {
108 j = q as i32 - 1 - (pow5bits(i + 1) - FLOAT_POW5_BITCOUNT);
109 last_removed_digit = (mul_pow5_div_pow2(mv, (i + 1) as u32, j) % 10) as u8;
110 }
111 if q <= 1 {
112 // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
113 // mv = 4 * m2, so it always has at least two trailing 0 bits.
114 vr_is_trailing_zeros = true;
115 if accept_bounds {
116 // mm = mv - 1 - mm_shift, so it has 1 trailing 0 bit iff mm_shift == 1.
117 vm_is_trailing_zeros = mm_shift == 1;
118 } else {
119 // mp = mv + 2, so it always has at least one trailing 0 bit.
120 vp -= 1;
121 }
122 } else if q < 31 {
123 // TODO(ulfjack): Use a tighter bound here.
124 vr_is_trailing_zeros = multiple_of_power_of_2_32(mv, q - 1);
125 }
126 }
127
128 // Step 4: Find the shortest decimal representation in the interval of valid representations.
129 let mut removed = 0i32;
130 let output = if vm_is_trailing_zeros || vr_is_trailing_zeros {
131 // General case, which happens rarely (~4.0%).
132 while vp / 10 > vm / 10 {
133 vm_is_trailing_zeros &= vm - (vm / 10) * 10 == 0;
134 vr_is_trailing_zeros &= last_removed_digit == 0;
135 last_removed_digit = (vr % 10) as u8;
136 vr /= 10;
137 vp /= 10;
138 vm /= 10;
139 removed += 1;
140 }
141 if vm_is_trailing_zeros {
142 while vm % 10 == 0 {
143 vr_is_trailing_zeros &= last_removed_digit == 0;
144 last_removed_digit = (vr % 10) as u8;
145 vr /= 10;
146 vp /= 10;
147 vm /= 10;
148 removed += 1;
149 }
150 }
151 if vr_is_trailing_zeros && last_removed_digit == 5 && vr % 2 == 0 {
152 // Round even if the exact number is .....50..0.
153 last_removed_digit = 4;
154 }
155 // We need to take vr + 1 if vr is outside bounds or we need to round up.
156 vr + ((vr == vm && (!accept_bounds || !vm_is_trailing_zeros)) || last_removed_digit >= 5)
157 as u32
158 } else {
159 // Specialized for the common case (~96.0%). Percentages below are relative to this.
160 // Loop iterations below (approximately):
161 // 0: 13.6%, 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01%
162 while vp / 10 > vm / 10 {
163 last_removed_digit = (vr % 10) as u8;
164 vr /= 10;
165 vp /= 10;
166 vm /= 10;
167 removed += 1;
168 }
169 // We need to take vr + 1 if vr is outside bounds or we need to round up.
170 vr + (vr == vm || last_removed_digit >= 5) as u32
171 };
172 let exp = e10 + removed;
173
174 FloatingDecimal32 {
175 exponent: exp,
176 mantissa: output,
177 }
178}
179