1 | use cfg_if::cfg_if; |
2 | |
3 | use crate::cell::UnsafeCell; |
4 | use crate::fmt; |
5 | use crate::ops::Deref; |
6 | use crate::panic::{RefUnwindSafe, UnwindSafe}; |
7 | use crate::sys::sync as sys; |
8 | use crate::thread::{ThreadId, current_id}; |
9 | |
10 | /// A re-entrant mutual exclusion lock |
11 | /// |
12 | /// This lock will block *other* threads waiting for the lock to become |
13 | /// available. The thread which has already locked the mutex can lock it |
14 | /// multiple times without blocking, preventing a common source of deadlocks. |
15 | /// |
16 | /// # Examples |
17 | /// |
18 | /// Allow recursively calling a function needing synchronization from within |
19 | /// a callback (this is how [`StdoutLock`](crate::io::StdoutLock) is currently |
20 | /// implemented): |
21 | /// |
22 | /// ``` |
23 | /// #![feature(reentrant_lock)] |
24 | /// |
25 | /// use std::cell::RefCell; |
26 | /// use std::sync::ReentrantLock; |
27 | /// |
28 | /// pub struct Log { |
29 | /// data: RefCell<String>, |
30 | /// } |
31 | /// |
32 | /// impl Log { |
33 | /// pub fn append(&self, msg: &str) { |
34 | /// self.data.borrow_mut().push_str(msg); |
35 | /// } |
36 | /// } |
37 | /// |
38 | /// static LOG: ReentrantLock<Log> = ReentrantLock::new(Log { data: RefCell::new(String::new()) }); |
39 | /// |
40 | /// pub fn with_log<R>(f: impl FnOnce(&Log) -> R) -> R { |
41 | /// let log = LOG.lock(); |
42 | /// f(&*log) |
43 | /// } |
44 | /// |
45 | /// with_log(|log| { |
46 | /// log.append("Hello" ); |
47 | /// with_log(|log| log.append(" there!" )); |
48 | /// }); |
49 | /// ``` |
50 | /// |
51 | // # Implementation details |
52 | // |
53 | // The 'owner' field tracks which thread has locked the mutex. |
54 | // |
55 | // We use thread::current_id() as the thread identifier, which is just the |
56 | // current thread's ThreadId, so it's unique across the process lifetime. |
57 | // |
58 | // If `owner` is set to the identifier of the current thread, |
59 | // we assume the mutex is already locked and instead of locking it again, |
60 | // we increment `lock_count`. |
61 | // |
62 | // When unlocking, we decrement `lock_count`, and only unlock the mutex when |
63 | // it reaches zero. |
64 | // |
65 | // `lock_count` is protected by the mutex and only accessed by the thread that has |
66 | // locked the mutex, so needs no synchronization. |
67 | // |
68 | // `owner` can be checked by other threads that want to see if they already |
69 | // hold the lock, so needs to be atomic. If it compares equal, we're on the |
70 | // same thread that holds the mutex and memory access can use relaxed ordering |
71 | // since we're not dealing with multiple threads. If it's not equal, |
72 | // synchronization is left to the mutex, making relaxed memory ordering for |
73 | // the `owner` field fine in all cases. |
74 | // |
75 | // On systems without 64 bit atomics we also store the address of a TLS variable |
76 | // along the 64-bit TID. We then first check that address against the address |
77 | // of that variable on the current thread, and only if they compare equal do we |
78 | // compare the actual TIDs. Because we only ever read the TID on the same thread |
79 | // that it was written on (or a thread sharing the TLS block with that writer thread), |
80 | // we don't need to further synchronize the TID accesses, so they can be regular 64-bit |
81 | // non-atomic accesses. |
82 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
83 | pub struct ReentrantLock<T: ?Sized> { |
84 | mutex: sys::Mutex, |
85 | owner: Tid, |
86 | lock_count: UnsafeCell<u32>, |
87 | data: T, |
88 | } |
89 | |
90 | cfg_if!( |
91 | if #[cfg(target_has_atomic = "64" )] { |
92 | use crate::sync::atomic::{AtomicU64, Ordering::Relaxed}; |
93 | |
94 | struct Tid(AtomicU64); |
95 | |
96 | impl Tid { |
97 | const fn new() -> Self { |
98 | Self(AtomicU64::new(0)) |
99 | } |
100 | |
101 | #[inline ] |
102 | fn contains(&self, owner: ThreadId) -> bool { |
103 | owner.as_u64().get() == self.0.load(Relaxed) |
104 | } |
105 | |
106 | #[inline ] |
107 | // This is just unsafe to match the API of the Tid type below. |
108 | unsafe fn set(&self, tid: Option<ThreadId>) { |
109 | let value = tid.map_or(0, |tid| tid.as_u64().get()); |
110 | self.0.store(value, Relaxed); |
111 | } |
112 | } |
113 | } else { |
114 | /// Returns the address of a TLS variable. This is guaranteed to |
115 | /// be unique across all currently alive threads. |
116 | fn tls_addr() -> usize { |
117 | thread_local! { static X: u8 = const { 0u8 } }; |
118 | |
119 | X.with(|p| <*const u8>::addr(p)) |
120 | } |
121 | |
122 | use crate::sync::atomic::{ |
123 | AtomicUsize, |
124 | Ordering, |
125 | }; |
126 | |
127 | struct Tid { |
128 | // When a thread calls `set()`, this value gets updated to |
129 | // the address of a thread local on that thread. This is |
130 | // used as a first check in `contains()`; if the `tls_addr` |
131 | // doesn't match the TLS address of the current thread, then |
132 | // the ThreadId also can't match. Only if the TLS addresses do |
133 | // match do we read out the actual TID. |
134 | // Note also that we can use relaxed atomic operations here, because |
135 | // we only ever read from the tid if `tls_addr` matches the current |
136 | // TLS address. In that case, either the tid has been set by |
137 | // the current thread, or by a thread that has terminated before |
138 | // the current thread was created. In either case, no further |
139 | // synchronization is needed (as per <https://github.com/rust-lang/miri/issues/3450>) |
140 | tls_addr: AtomicUsize, |
141 | tid: UnsafeCell<u64>, |
142 | } |
143 | |
144 | unsafe impl Send for Tid {} |
145 | unsafe impl Sync for Tid {} |
146 | |
147 | impl Tid { |
148 | const fn new() -> Self { |
149 | Self { tls_addr: AtomicUsize::new(0), tid: UnsafeCell::new(0) } |
150 | } |
151 | |
152 | #[inline] |
153 | // NOTE: This assumes that `owner` is the ID of the current |
154 | // thread, and may spuriously return `false` if that's not the case. |
155 | fn contains(&self, owner: ThreadId) -> bool { |
156 | // SAFETY: See the comments in the struct definition. |
157 | self.tls_addr.load(Ordering::Relaxed) == tls_addr() |
158 | && unsafe { *self.tid.get() } == owner.as_u64().get() |
159 | } |
160 | |
161 | #[inline] |
162 | // This may only be called by one thread at a time, and can lead to |
163 | // race conditions otherwise. |
164 | unsafe fn set(&self, tid: Option<ThreadId>) { |
165 | // It's important that we set `self.tls_addr` to 0 if the tid is |
166 | // cleared. Otherwise, there might be race conditions between |
167 | // `set()` and `get()`. |
168 | let tls_addr = if tid.is_some() { tls_addr() } else { 0 }; |
169 | let value = tid.map_or(0, |tid| tid.as_u64().get()); |
170 | self.tls_addr.store(tls_addr, Ordering::Relaxed); |
171 | unsafe { *self.tid.get() = value }; |
172 | } |
173 | } |
174 | } |
175 | ); |
176 | |
177 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
178 | unsafe impl<T: Send + ?Sized> Send for ReentrantLock<T> {} |
179 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
180 | unsafe impl<T: Send + ?Sized> Sync for ReentrantLock<T> {} |
181 | |
182 | // Because of the `UnsafeCell`, these traits are not implemented automatically |
183 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
184 | impl<T: UnwindSafe + ?Sized> UnwindSafe for ReentrantLock<T> {} |
185 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
186 | impl<T: RefUnwindSafe + ?Sized> RefUnwindSafe for ReentrantLock<T> {} |
187 | |
188 | /// An RAII implementation of a "scoped lock" of a re-entrant lock. When this |
189 | /// structure is dropped (falls out of scope), the lock will be unlocked. |
190 | /// |
191 | /// The data protected by the mutex can be accessed through this guard via its |
192 | /// [`Deref`] implementation. |
193 | /// |
194 | /// This structure is created by the [`lock`](ReentrantLock::lock) method on |
195 | /// [`ReentrantLock`]. |
196 | /// |
197 | /// # Mutability |
198 | /// |
199 | /// Unlike [`MutexGuard`](super::MutexGuard), `ReentrantLockGuard` does not |
200 | /// implement [`DerefMut`](crate::ops::DerefMut), because implementation of |
201 | /// the trait would violate Rust’s reference aliasing rules. Use interior |
202 | /// mutability (usually [`RefCell`](crate::cell::RefCell)) in order to mutate |
203 | /// the guarded data. |
204 | #[must_use = "if unused the ReentrantLock will immediately unlock" ] |
205 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
206 | pub struct ReentrantLockGuard<'a, T: ?Sized + 'a> { |
207 | lock: &'a ReentrantLock<T>, |
208 | } |
209 | |
210 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
211 | impl<T: ?Sized> !Send for ReentrantLockGuard<'_, T> {} |
212 | |
213 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
214 | unsafe impl<T: ?Sized + Sync> Sync for ReentrantLockGuard<'_, T> {} |
215 | |
216 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
217 | impl<T> ReentrantLock<T> { |
218 | /// Creates a new re-entrant lock in an unlocked state ready for use. |
219 | /// |
220 | /// # Examples |
221 | /// |
222 | /// ``` |
223 | /// #![feature(reentrant_lock)] |
224 | /// use std::sync::ReentrantLock; |
225 | /// |
226 | /// let lock = ReentrantLock::new(0); |
227 | /// ``` |
228 | pub const fn new(t: T) -> ReentrantLock<T> { |
229 | ReentrantLock { |
230 | mutex: sys::Mutex::new(), |
231 | owner: Tid::new(), |
232 | lock_count: UnsafeCell::new(0), |
233 | data: t, |
234 | } |
235 | } |
236 | |
237 | /// Consumes this lock, returning the underlying data. |
238 | /// |
239 | /// # Examples |
240 | /// |
241 | /// ``` |
242 | /// #![feature(reentrant_lock)] |
243 | /// |
244 | /// use std::sync::ReentrantLock; |
245 | /// |
246 | /// let lock = ReentrantLock::new(0); |
247 | /// assert_eq!(lock.into_inner(), 0); |
248 | /// ``` |
249 | pub fn into_inner(self) -> T { |
250 | self.data |
251 | } |
252 | } |
253 | |
254 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
255 | impl<T: ?Sized> ReentrantLock<T> { |
256 | /// Acquires the lock, blocking the current thread until it is able to do |
257 | /// so. |
258 | /// |
259 | /// This function will block the caller until it is available to acquire |
260 | /// the lock. Upon returning, the thread is the only thread with the lock |
261 | /// held. When the thread calling this method already holds the lock, the |
262 | /// call succeeds without blocking. |
263 | /// |
264 | /// # Examples |
265 | /// |
266 | /// ``` |
267 | /// #![feature(reentrant_lock)] |
268 | /// use std::cell::Cell; |
269 | /// use std::sync::{Arc, ReentrantLock}; |
270 | /// use std::thread; |
271 | /// |
272 | /// let lock = Arc::new(ReentrantLock::new(Cell::new(0))); |
273 | /// let c_lock = Arc::clone(&lock); |
274 | /// |
275 | /// thread::spawn(move || { |
276 | /// c_lock.lock().set(10); |
277 | /// }).join().expect("thread::spawn failed" ); |
278 | /// assert_eq!(lock.lock().get(), 10); |
279 | /// ``` |
280 | pub fn lock(&self) -> ReentrantLockGuard<'_, T> { |
281 | let this_thread = current_id(); |
282 | // Safety: We only touch lock_count when we own the inner mutex. |
283 | // Additionally, we only call `self.owner.set()` while holding |
284 | // the inner mutex, so no two threads can call it concurrently. |
285 | unsafe { |
286 | if self.owner.contains(this_thread) { |
287 | self.increment_lock_count().expect("lock count overflow in reentrant mutex" ); |
288 | } else { |
289 | self.mutex.lock(); |
290 | self.owner.set(Some(this_thread)); |
291 | debug_assert_eq!(*self.lock_count.get(), 0); |
292 | *self.lock_count.get() = 1; |
293 | } |
294 | } |
295 | ReentrantLockGuard { lock: self } |
296 | } |
297 | |
298 | /// Returns a mutable reference to the underlying data. |
299 | /// |
300 | /// Since this call borrows the `ReentrantLock` mutably, no actual locking |
301 | /// needs to take place -- the mutable borrow statically guarantees no locks |
302 | /// exist. |
303 | /// |
304 | /// # Examples |
305 | /// |
306 | /// ``` |
307 | /// #![feature(reentrant_lock)] |
308 | /// use std::sync::ReentrantLock; |
309 | /// |
310 | /// let mut lock = ReentrantLock::new(0); |
311 | /// *lock.get_mut() = 10; |
312 | /// assert_eq!(*lock.lock(), 10); |
313 | /// ``` |
314 | pub fn get_mut(&mut self) -> &mut T { |
315 | &mut self.data |
316 | } |
317 | |
318 | /// Attempts to acquire this lock. |
319 | /// |
320 | /// If the lock could not be acquired at this time, then `None` is returned. |
321 | /// Otherwise, an RAII guard is returned. |
322 | /// |
323 | /// This function does not block. |
324 | // FIXME maybe make it a public part of the API? |
325 | #[unstable (issue = "none" , feature = "std_internals" )] |
326 | #[doc (hidden)] |
327 | pub fn try_lock(&self) -> Option<ReentrantLockGuard<'_, T>> { |
328 | let this_thread = current_id(); |
329 | // Safety: We only touch lock_count when we own the inner mutex. |
330 | // Additionally, we only call `self.owner.set()` while holding |
331 | // the inner mutex, so no two threads can call it concurrently. |
332 | unsafe { |
333 | if self.owner.contains(this_thread) { |
334 | self.increment_lock_count()?; |
335 | Some(ReentrantLockGuard { lock: self }) |
336 | } else if self.mutex.try_lock() { |
337 | self.owner.set(Some(this_thread)); |
338 | debug_assert_eq!(*self.lock_count.get(), 0); |
339 | *self.lock_count.get() = 1; |
340 | Some(ReentrantLockGuard { lock: self }) |
341 | } else { |
342 | None |
343 | } |
344 | } |
345 | } |
346 | |
347 | unsafe fn increment_lock_count(&self) -> Option<()> { |
348 | unsafe { |
349 | *self.lock_count.get() = (*self.lock_count.get()).checked_add(1)?; |
350 | } |
351 | Some(()) |
352 | } |
353 | } |
354 | |
355 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
356 | impl<T: fmt::Debug + ?Sized> fmt::Debug for ReentrantLock<T> { |
357 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
358 | let mut d: DebugStruct<'_, '_> = f.debug_struct(name:"ReentrantLock" ); |
359 | match self.try_lock() { |
360 | Some(v: ReentrantLockGuard<'_, T>) => d.field(name:"data" , &&*v), |
361 | None => d.field(name:"data" , &format_args!("<locked>" )), |
362 | }; |
363 | d.finish_non_exhaustive() |
364 | } |
365 | } |
366 | |
367 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
368 | impl<T: Default> Default for ReentrantLock<T> { |
369 | fn default() -> Self { |
370 | Self::new(T::default()) |
371 | } |
372 | } |
373 | |
374 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
375 | impl<T> From<T> for ReentrantLock<T> { |
376 | fn from(t: T) -> Self { |
377 | Self::new(t) |
378 | } |
379 | } |
380 | |
381 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
382 | impl<T: ?Sized> Deref for ReentrantLockGuard<'_, T> { |
383 | type Target = T; |
384 | |
385 | fn deref(&self) -> &T { |
386 | &self.lock.data |
387 | } |
388 | } |
389 | |
390 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
391 | impl<T: fmt::Debug + ?Sized> fmt::Debug for ReentrantLockGuard<'_, T> { |
392 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
393 | (**self).fmt(f) |
394 | } |
395 | } |
396 | |
397 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
398 | impl<T: fmt::Display + ?Sized> fmt::Display for ReentrantLockGuard<'_, T> { |
399 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
400 | (**self).fmt(f) |
401 | } |
402 | } |
403 | |
404 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
405 | impl<T: ?Sized> Drop for ReentrantLockGuard<'_, T> { |
406 | #[inline ] |
407 | fn drop(&mut self) { |
408 | // Safety: We own the lock. |
409 | unsafe { |
410 | *self.lock.lock_count.get() -= 1; |
411 | if *self.lock.lock_count.get() == 0 { |
412 | self.lock.owner.set(tid:None); |
413 | self.lock.mutex.unlock(); |
414 | } |
415 | } |
416 | } |
417 | } |
418 | |