| 1 | // Allow `unreachable_pub` warnings when sync is not enabled |
| 2 | // due to the usage of `Notify` within the `rt` feature set. |
| 3 | // When this module is compiled with `sync` enabled we will warn on |
| 4 | // this lint. When `rt` is enabled we use `pub(crate)` which |
| 5 | // triggers this warning but it is safe to ignore in this case. |
| 6 | #![cfg_attr (not(feature = "sync" ), allow(unreachable_pub, dead_code))] |
| 7 | |
| 8 | use crate::loom::cell::UnsafeCell; |
| 9 | use crate::loom::sync::atomic::AtomicUsize; |
| 10 | use crate::loom::sync::Mutex; |
| 11 | use crate::util::linked_list::{self, GuardedLinkedList, LinkedList}; |
| 12 | use crate::util::WakeList; |
| 13 | |
| 14 | use std::future::Future; |
| 15 | use std::marker::PhantomPinned; |
| 16 | use std::panic::{RefUnwindSafe, UnwindSafe}; |
| 17 | use std::pin::Pin; |
| 18 | use std::ptr::NonNull; |
| 19 | use std::sync::atomic::Ordering::{self, Acquire, Relaxed, Release, SeqCst}; |
| 20 | use std::task::{Context, Poll, Waker}; |
| 21 | |
| 22 | type WaitList = LinkedList<Waiter, <Waiter as linked_list::Link>::Target>; |
| 23 | type GuardedWaitList = GuardedLinkedList<Waiter, <Waiter as linked_list::Link>::Target>; |
| 24 | |
| 25 | /// Notifies a single task to wake up. |
| 26 | /// |
| 27 | /// `Notify` provides a basic mechanism to notify a single task of an event. |
| 28 | /// `Notify` itself does not carry any data. Instead, it is to be used to signal |
| 29 | /// another task to perform an operation. |
| 30 | /// |
| 31 | /// A `Notify` can be thought of as a [`Semaphore`] starting with 0 permits. The |
| 32 | /// [`notified().await`] method waits for a permit to become available, and |
| 33 | /// [`notify_one()`] sets a permit **if there currently are no available |
| 34 | /// permits**. |
| 35 | /// |
| 36 | /// The synchronization details of `Notify` are similar to |
| 37 | /// [`thread::park`][park] and [`Thread::unpark`][unpark] from std. A [`Notify`] |
| 38 | /// value contains a single permit. [`notified().await`] waits for the permit to |
| 39 | /// be made available, consumes the permit, and resumes. [`notify_one()`] sets |
| 40 | /// the permit, waking a pending task if there is one. |
| 41 | /// |
| 42 | /// If `notify_one()` is called **before** `notified().await`, then the next |
| 43 | /// call to `notified().await` will complete immediately, consuming the permit. |
| 44 | /// Any subsequent calls to `notified().await` will wait for a new permit. |
| 45 | /// |
| 46 | /// If `notify_one()` is called **multiple** times before `notified().await`, |
| 47 | /// only a **single** permit is stored. The next call to `notified().await` will |
| 48 | /// complete immediately, but the one after will wait for a new permit. |
| 49 | /// |
| 50 | /// # Examples |
| 51 | /// |
| 52 | /// Basic usage. |
| 53 | /// |
| 54 | /// ``` |
| 55 | /// use tokio::sync::Notify; |
| 56 | /// use std::sync::Arc; |
| 57 | /// |
| 58 | /// #[tokio::main] |
| 59 | /// async fn main() { |
| 60 | /// let notify = Arc::new(Notify::new()); |
| 61 | /// let notify2 = notify.clone(); |
| 62 | /// |
| 63 | /// let handle = tokio::spawn(async move { |
| 64 | /// notify2.notified().await; |
| 65 | /// println!("received notification" ); |
| 66 | /// }); |
| 67 | /// |
| 68 | /// println!("sending notification" ); |
| 69 | /// notify.notify_one(); |
| 70 | /// |
| 71 | /// // Wait for task to receive notification. |
| 72 | /// handle.await.unwrap(); |
| 73 | /// } |
| 74 | /// ``` |
| 75 | /// |
| 76 | /// Unbound multi-producer single-consumer (mpsc) channel. |
| 77 | /// |
| 78 | /// No wakeups can be lost when using this channel because the call to |
| 79 | /// `notify_one()` will store a permit in the `Notify`, which the following call |
| 80 | /// to `notified()` will consume. |
| 81 | /// |
| 82 | /// ``` |
| 83 | /// use tokio::sync::Notify; |
| 84 | /// |
| 85 | /// use std::collections::VecDeque; |
| 86 | /// use std::sync::Mutex; |
| 87 | /// |
| 88 | /// struct Channel<T> { |
| 89 | /// values: Mutex<VecDeque<T>>, |
| 90 | /// notify: Notify, |
| 91 | /// } |
| 92 | /// |
| 93 | /// impl<T> Channel<T> { |
| 94 | /// pub fn send(&self, value: T) { |
| 95 | /// self.values.lock().unwrap() |
| 96 | /// .push_back(value); |
| 97 | /// |
| 98 | /// // Notify the consumer a value is available |
| 99 | /// self.notify.notify_one(); |
| 100 | /// } |
| 101 | /// |
| 102 | /// // This is a single-consumer channel, so several concurrent calls to |
| 103 | /// // `recv` are not allowed. |
| 104 | /// pub async fn recv(&self) -> T { |
| 105 | /// loop { |
| 106 | /// // Drain values |
| 107 | /// if let Some(value) = self.values.lock().unwrap().pop_front() { |
| 108 | /// return value; |
| 109 | /// } |
| 110 | /// |
| 111 | /// // Wait for values to be available |
| 112 | /// self.notify.notified().await; |
| 113 | /// } |
| 114 | /// } |
| 115 | /// } |
| 116 | /// ``` |
| 117 | /// |
| 118 | /// Unbound multi-producer multi-consumer (mpmc) channel. |
| 119 | /// |
| 120 | /// The call to [`enable`] is important because otherwise if you have two |
| 121 | /// calls to `recv` and two calls to `send` in parallel, the following could |
| 122 | /// happen: |
| 123 | /// |
| 124 | /// 1. Both calls to `try_recv` return `None`. |
| 125 | /// 2. Both new elements are added to the vector. |
| 126 | /// 3. The `notify_one` method is called twice, adding only a single |
| 127 | /// permit to the `Notify`. |
| 128 | /// 4. Both calls to `recv` reach the `Notified` future. One of them |
| 129 | /// consumes the permit, and the other sleeps forever. |
| 130 | /// |
| 131 | /// By adding the `Notified` futures to the list by calling `enable` before |
| 132 | /// `try_recv`, the `notify_one` calls in step three would remove the |
| 133 | /// futures from the list and mark them notified instead of adding a permit |
| 134 | /// to the `Notify`. This ensures that both futures are woken. |
| 135 | /// |
| 136 | /// Notice that this failure can only happen if there are two concurrent calls |
| 137 | /// to `recv`. This is why the mpsc example above does not require a call to |
| 138 | /// `enable`. |
| 139 | /// |
| 140 | /// ``` |
| 141 | /// use tokio::sync::Notify; |
| 142 | /// |
| 143 | /// use std::collections::VecDeque; |
| 144 | /// use std::sync::Mutex; |
| 145 | /// |
| 146 | /// struct Channel<T> { |
| 147 | /// messages: Mutex<VecDeque<T>>, |
| 148 | /// notify_on_sent: Notify, |
| 149 | /// } |
| 150 | /// |
| 151 | /// impl<T> Channel<T> { |
| 152 | /// pub fn send(&self, msg: T) { |
| 153 | /// let mut locked_queue = self.messages.lock().unwrap(); |
| 154 | /// locked_queue.push_back(msg); |
| 155 | /// drop(locked_queue); |
| 156 | /// |
| 157 | /// // Send a notification to one of the calls currently |
| 158 | /// // waiting in a call to `recv`. |
| 159 | /// self.notify_on_sent.notify_one(); |
| 160 | /// } |
| 161 | /// |
| 162 | /// pub fn try_recv(&self) -> Option<T> { |
| 163 | /// let mut locked_queue = self.messages.lock().unwrap(); |
| 164 | /// locked_queue.pop_front() |
| 165 | /// } |
| 166 | /// |
| 167 | /// pub async fn recv(&self) -> T { |
| 168 | /// let future = self.notify_on_sent.notified(); |
| 169 | /// tokio::pin!(future); |
| 170 | /// |
| 171 | /// loop { |
| 172 | /// // Make sure that no wakeup is lost if we get |
| 173 | /// // `None` from `try_recv`. |
| 174 | /// future.as_mut().enable(); |
| 175 | /// |
| 176 | /// if let Some(msg) = self.try_recv() { |
| 177 | /// return msg; |
| 178 | /// } |
| 179 | /// |
| 180 | /// // Wait for a call to `notify_one`. |
| 181 | /// // |
| 182 | /// // This uses `.as_mut()` to avoid consuming the future, |
| 183 | /// // which lets us call `Pin::set` below. |
| 184 | /// future.as_mut().await; |
| 185 | /// |
| 186 | /// // Reset the future in case another call to |
| 187 | /// // `try_recv` got the message before us. |
| 188 | /// future.set(self.notify_on_sent.notified()); |
| 189 | /// } |
| 190 | /// } |
| 191 | /// } |
| 192 | /// ``` |
| 193 | /// |
| 194 | /// [park]: std::thread::park |
| 195 | /// [unpark]: std::thread::Thread::unpark |
| 196 | /// [`notified().await`]: Notify::notified() |
| 197 | /// [`notify_one()`]: Notify::notify_one() |
| 198 | /// [`enable`]: Notified::enable() |
| 199 | /// [`Semaphore`]: crate::sync::Semaphore |
| 200 | #[derive (Debug)] |
| 201 | pub struct Notify { |
| 202 | // `state` uses 2 bits to store one of `EMPTY`, |
| 203 | // `WAITING` or `NOTIFIED`. The rest of the bits |
| 204 | // are used to store the number of times `notify_waiters` |
| 205 | // was called. |
| 206 | // |
| 207 | // Throughout the code there are two assumptions: |
| 208 | // - state can be transitioned *from* `WAITING` only if |
| 209 | // `waiters` lock is held |
| 210 | // - number of times `notify_waiters` was called can |
| 211 | // be modified only if `waiters` lock is held |
| 212 | state: AtomicUsize, |
| 213 | waiters: Mutex<WaitList>, |
| 214 | } |
| 215 | |
| 216 | #[derive (Debug)] |
| 217 | struct Waiter { |
| 218 | /// Intrusive linked-list pointers. |
| 219 | pointers: linked_list::Pointers<Waiter>, |
| 220 | |
| 221 | /// Waiting task's waker. Depending on the value of `notification`, |
| 222 | /// this field is either protected by the `waiters` lock in |
| 223 | /// `Notify`, or it is exclusively owned by the enclosing `Waiter`. |
| 224 | waker: UnsafeCell<Option<Waker>>, |
| 225 | |
| 226 | /// Notification for this waiter. Uses 2 bits to store if and how was |
| 227 | /// notified, 1 bit for storing if it was woken up using FIFO or LIFO, and |
| 228 | /// the rest of it is unused. |
| 229 | /// * if it's `None`, then `waker` is protected by the `waiters` lock. |
| 230 | /// * if it's `Some`, then `waker` is exclusively owned by the |
| 231 | /// enclosing `Waiter` and can be accessed without locking. |
| 232 | notification: AtomicNotification, |
| 233 | |
| 234 | /// Should not be `Unpin`. |
| 235 | _p: PhantomPinned, |
| 236 | } |
| 237 | |
| 238 | impl Waiter { |
| 239 | fn new() -> Waiter { |
| 240 | Waiter { |
| 241 | pointers: linked_list::Pointers::new(), |
| 242 | waker: UnsafeCell::new(data:None), |
| 243 | notification: AtomicNotification::none(), |
| 244 | _p: PhantomPinned, |
| 245 | } |
| 246 | } |
| 247 | } |
| 248 | |
| 249 | generate_addr_of_methods! { |
| 250 | impl<> Waiter { |
| 251 | unsafe fn addr_of_pointers(self: NonNull<Self>) -> NonNull<linked_list::Pointers<Waiter>> { |
| 252 | &self.pointers |
| 253 | } |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | // No notification. |
| 258 | const NOTIFICATION_NONE: usize = 0b000; |
| 259 | |
| 260 | // Notification type used by `notify_one`. |
| 261 | const NOTIFICATION_ONE: usize = 0b001; |
| 262 | |
| 263 | // Notification type used by `notify_last`. |
| 264 | const NOTIFICATION_LAST: usize = 0b101; |
| 265 | |
| 266 | // Notification type used by `notify_waiters`. |
| 267 | const NOTIFICATION_ALL: usize = 0b010; |
| 268 | |
| 269 | /// Notification for a `Waiter`. |
| 270 | /// This struct is equivalent to `Option<Notification>`, but uses |
| 271 | /// `AtomicUsize` inside for atomic operations. |
| 272 | #[derive (Debug)] |
| 273 | struct AtomicNotification(AtomicUsize); |
| 274 | |
| 275 | impl AtomicNotification { |
| 276 | fn none() -> Self { |
| 277 | AtomicNotification(AtomicUsize::new(NOTIFICATION_NONE)) |
| 278 | } |
| 279 | |
| 280 | /// Store-release a notification. |
| 281 | /// This method should be called exactly once. |
| 282 | fn store_release(&self, notification: Notification) { |
| 283 | let data: usize = match notification { |
| 284 | Notification::All => NOTIFICATION_ALL, |
| 285 | Notification::One(NotifyOneStrategy::Fifo) => NOTIFICATION_ONE, |
| 286 | Notification::One(NotifyOneStrategy::Lifo) => NOTIFICATION_LAST, |
| 287 | }; |
| 288 | self.0.store(data, Release); |
| 289 | } |
| 290 | |
| 291 | fn load(&self, ordering: Ordering) -> Option<Notification> { |
| 292 | let data = self.0.load(ordering); |
| 293 | match data { |
| 294 | NOTIFICATION_NONE => None, |
| 295 | NOTIFICATION_ONE => Some(Notification::One(NotifyOneStrategy::Fifo)), |
| 296 | NOTIFICATION_LAST => Some(Notification::One(NotifyOneStrategy::Lifo)), |
| 297 | NOTIFICATION_ALL => Some(Notification::All), |
| 298 | _ => unreachable!(), |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | /// Clears the notification. |
| 303 | /// This method is used by a `Notified` future to consume the |
| 304 | /// notification. It uses relaxed ordering and should be only |
| 305 | /// used once the atomic notification is no longer shared. |
| 306 | fn clear(&self) { |
| 307 | self.0.store(NOTIFICATION_NONE, Relaxed); |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | #[derive (Debug, PartialEq, Eq)] |
| 312 | #[repr (usize)] |
| 313 | enum NotifyOneStrategy { |
| 314 | Fifo, |
| 315 | Lifo, |
| 316 | } |
| 317 | |
| 318 | #[derive (Debug, PartialEq, Eq)] |
| 319 | #[repr (usize)] |
| 320 | enum Notification { |
| 321 | One(NotifyOneStrategy), |
| 322 | All, |
| 323 | } |
| 324 | |
| 325 | /// List used in `Notify::notify_waiters`. It wraps a guarded linked list |
| 326 | /// and gates the access to it on `notify.waiters` mutex. It also empties |
| 327 | /// the list on drop. |
| 328 | struct NotifyWaitersList<'a> { |
| 329 | list: GuardedWaitList, |
| 330 | is_empty: bool, |
| 331 | notify: &'a Notify, |
| 332 | } |
| 333 | |
| 334 | impl<'a> NotifyWaitersList<'a> { |
| 335 | fn new( |
| 336 | unguarded_list: WaitList, |
| 337 | guard: Pin<&'a Waiter>, |
| 338 | notify: &'a Notify, |
| 339 | ) -> NotifyWaitersList<'a> { |
| 340 | let guard_ptr = NonNull::from(guard.get_ref()); |
| 341 | let list = unguarded_list.into_guarded(guard_ptr); |
| 342 | NotifyWaitersList { |
| 343 | list, |
| 344 | is_empty: false, |
| 345 | notify, |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | /// Removes the last element from the guarded list. Modifying this list |
| 350 | /// requires an exclusive access to the main list in `Notify`. |
| 351 | fn pop_back_locked(&mut self, _waiters: &mut WaitList) -> Option<NonNull<Waiter>> { |
| 352 | let result = self.list.pop_back(); |
| 353 | if result.is_none() { |
| 354 | // Save information about emptiness to avoid waiting for lock |
| 355 | // in the destructor. |
| 356 | self.is_empty = true; |
| 357 | } |
| 358 | result |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | impl Drop for NotifyWaitersList<'_> { |
| 363 | fn drop(&mut self) { |
| 364 | // If the list is not empty, we unlink all waiters from it. |
| 365 | // We do not wake the waiters to avoid double panics. |
| 366 | if !self.is_empty { |
| 367 | let _lock_guard: MutexGuard<'_, LinkedList<…, …>> = self.notify.waiters.lock(); |
| 368 | while let Some(waiter: NonNull) = self.list.pop_back() { |
| 369 | // Safety: we never make mutable references to waiters. |
| 370 | let waiter: &Waiter = unsafe { waiter.as_ref() }; |
| 371 | waiter.notification.store_release(Notification::All); |
| 372 | } |
| 373 | } |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | /// Future returned from [`Notify::notified()`]. |
| 378 | /// |
| 379 | /// This future is fused, so once it has completed, any future calls to poll |
| 380 | /// will immediately return `Poll::Ready`. |
| 381 | #[derive (Debug)] |
| 382 | #[must_use = "futures do nothing unless you `.await` or poll them" ] |
| 383 | pub struct Notified<'a> { |
| 384 | /// The `Notify` being received on. |
| 385 | notify: &'a Notify, |
| 386 | |
| 387 | /// The current state of the receiving process. |
| 388 | state: State, |
| 389 | |
| 390 | /// Number of calls to `notify_waiters` at the time of creation. |
| 391 | notify_waiters_calls: usize, |
| 392 | |
| 393 | /// Entry in the waiter `LinkedList`. |
| 394 | waiter: Waiter, |
| 395 | } |
| 396 | |
| 397 | unsafe impl<'a> Send for Notified<'a> {} |
| 398 | unsafe impl<'a> Sync for Notified<'a> {} |
| 399 | |
| 400 | #[derive (Debug)] |
| 401 | enum State { |
| 402 | Init, |
| 403 | Waiting, |
| 404 | Done, |
| 405 | } |
| 406 | |
| 407 | const NOTIFY_WAITERS_SHIFT: usize = 2; |
| 408 | const STATE_MASK: usize = (1 << NOTIFY_WAITERS_SHIFT) - 1; |
| 409 | const NOTIFY_WAITERS_CALLS_MASK: usize = !STATE_MASK; |
| 410 | |
| 411 | /// Initial "idle" state. |
| 412 | const EMPTY: usize = 0; |
| 413 | |
| 414 | /// One or more threads are currently waiting to be notified. |
| 415 | const WAITING: usize = 1; |
| 416 | |
| 417 | /// Pending notification. |
| 418 | const NOTIFIED: usize = 2; |
| 419 | |
| 420 | fn set_state(data: usize, state: usize) -> usize { |
| 421 | (data & NOTIFY_WAITERS_CALLS_MASK) | (state & STATE_MASK) |
| 422 | } |
| 423 | |
| 424 | fn get_state(data: usize) -> usize { |
| 425 | data & STATE_MASK |
| 426 | } |
| 427 | |
| 428 | fn get_num_notify_waiters_calls(data: usize) -> usize { |
| 429 | (data & NOTIFY_WAITERS_CALLS_MASK) >> NOTIFY_WAITERS_SHIFT |
| 430 | } |
| 431 | |
| 432 | fn inc_num_notify_waiters_calls(data: usize) -> usize { |
| 433 | data + (1 << NOTIFY_WAITERS_SHIFT) |
| 434 | } |
| 435 | |
| 436 | fn atomic_inc_num_notify_waiters_calls(data: &AtomicUsize) { |
| 437 | data.fetch_add(val:1 << NOTIFY_WAITERS_SHIFT, order:SeqCst); |
| 438 | } |
| 439 | |
| 440 | impl Notify { |
| 441 | /// Create a new `Notify`, initialized without a permit. |
| 442 | /// |
| 443 | /// # Examples |
| 444 | /// |
| 445 | /// ``` |
| 446 | /// use tokio::sync::Notify; |
| 447 | /// |
| 448 | /// let notify = Notify::new(); |
| 449 | /// ``` |
| 450 | pub fn new() -> Notify { |
| 451 | Notify { |
| 452 | state: AtomicUsize::new(0), |
| 453 | waiters: Mutex::new(LinkedList::new()), |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | /// Create a new `Notify`, initialized without a permit. |
| 458 | /// |
| 459 | /// When using the `tracing` [unstable feature], a `Notify` created with |
| 460 | /// `const_new` will not be instrumented. As such, it will not be visible |
| 461 | /// in [`tokio-console`]. Instead, [`Notify::new`] should be used to create |
| 462 | /// an instrumented object if that is needed. |
| 463 | /// |
| 464 | /// # Examples |
| 465 | /// |
| 466 | /// ``` |
| 467 | /// use tokio::sync::Notify; |
| 468 | /// |
| 469 | /// static NOTIFY: Notify = Notify::const_new(); |
| 470 | /// ``` |
| 471 | /// |
| 472 | /// [`tokio-console`]: https://github.com/tokio-rs/console |
| 473 | /// [unstable feature]: crate#unstable-features |
| 474 | #[cfg (not(all(loom, test)))] |
| 475 | pub const fn const_new() -> Notify { |
| 476 | Notify { |
| 477 | state: AtomicUsize::new(0), |
| 478 | waiters: Mutex::const_new(LinkedList::new()), |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | /// Wait for a notification. |
| 483 | /// |
| 484 | /// Equivalent to: |
| 485 | /// |
| 486 | /// ```ignore |
| 487 | /// async fn notified(&self); |
| 488 | /// ``` |
| 489 | /// |
| 490 | /// Each `Notify` value holds a single permit. If a permit is available from |
| 491 | /// an earlier call to [`notify_one()`], then `notified().await` will complete |
| 492 | /// immediately, consuming that permit. Otherwise, `notified().await` waits |
| 493 | /// for a permit to be made available by the next call to `notify_one()`. |
| 494 | /// |
| 495 | /// The `Notified` future is not guaranteed to receive wakeups from calls to |
| 496 | /// `notify_one()` if it has not yet been polled. See the documentation for |
| 497 | /// [`Notified::enable()`] for more details. |
| 498 | /// |
| 499 | /// The `Notified` future is guaranteed to receive wakeups from |
| 500 | /// `notify_waiters()` as soon as it has been created, even if it has not |
| 501 | /// yet been polled. |
| 502 | /// |
| 503 | /// [`notify_one()`]: Notify::notify_one |
| 504 | /// [`Notified::enable()`]: Notified::enable |
| 505 | /// |
| 506 | /// # Cancel safety |
| 507 | /// |
| 508 | /// This method uses a queue to fairly distribute notifications in the order |
| 509 | /// they were requested. Cancelling a call to `notified` makes you lose your |
| 510 | /// place in the queue. |
| 511 | /// |
| 512 | /// # Examples |
| 513 | /// |
| 514 | /// ``` |
| 515 | /// use tokio::sync::Notify; |
| 516 | /// use std::sync::Arc; |
| 517 | /// |
| 518 | /// #[tokio::main] |
| 519 | /// async fn main() { |
| 520 | /// let notify = Arc::new(Notify::new()); |
| 521 | /// let notify2 = notify.clone(); |
| 522 | /// |
| 523 | /// tokio::spawn(async move { |
| 524 | /// notify2.notified().await; |
| 525 | /// println!("received notification" ); |
| 526 | /// }); |
| 527 | /// |
| 528 | /// println!("sending notification" ); |
| 529 | /// notify.notify_one(); |
| 530 | /// } |
| 531 | /// ``` |
| 532 | pub fn notified(&self) -> Notified<'_> { |
| 533 | // we load the number of times notify_waiters |
| 534 | // was called and store that in the future. |
| 535 | let state = self.state.load(SeqCst); |
| 536 | Notified { |
| 537 | notify: self, |
| 538 | state: State::Init, |
| 539 | notify_waiters_calls: get_num_notify_waiters_calls(state), |
| 540 | waiter: Waiter::new(), |
| 541 | } |
| 542 | } |
| 543 | |
| 544 | /// Notifies the first waiting task. |
| 545 | /// |
| 546 | /// If a task is currently waiting, that task is notified. Otherwise, a |
| 547 | /// permit is stored in this `Notify` value and the **next** call to |
| 548 | /// [`notified().await`] will complete immediately consuming the permit made |
| 549 | /// available by this call to `notify_one()`. |
| 550 | /// |
| 551 | /// At most one permit may be stored by `Notify`. Many sequential calls to |
| 552 | /// `notify_one` will result in a single permit being stored. The next call to |
| 553 | /// `notified().await` will complete immediately, but the one after that |
| 554 | /// will wait. |
| 555 | /// |
| 556 | /// [`notified().await`]: Notify::notified() |
| 557 | /// |
| 558 | /// # Examples |
| 559 | /// |
| 560 | /// ``` |
| 561 | /// use tokio::sync::Notify; |
| 562 | /// use std::sync::Arc; |
| 563 | /// |
| 564 | /// #[tokio::main] |
| 565 | /// async fn main() { |
| 566 | /// let notify = Arc::new(Notify::new()); |
| 567 | /// let notify2 = notify.clone(); |
| 568 | /// |
| 569 | /// tokio::spawn(async move { |
| 570 | /// notify2.notified().await; |
| 571 | /// println!("received notification" ); |
| 572 | /// }); |
| 573 | /// |
| 574 | /// println!("sending notification" ); |
| 575 | /// notify.notify_one(); |
| 576 | /// } |
| 577 | /// ``` |
| 578 | // Alias for old name in 0.x |
| 579 | #[cfg_attr (docsrs, doc(alias = "notify" ))] |
| 580 | pub fn notify_one(&self) { |
| 581 | self.notify_with_strategy(NotifyOneStrategy::Fifo); |
| 582 | } |
| 583 | |
| 584 | /// Notifies the last waiting task. |
| 585 | /// |
| 586 | /// This function behaves similar to `notify_one`. The only difference is that it wakes |
| 587 | /// the most recently added waiter instead of the oldest waiter. |
| 588 | /// |
| 589 | /// Check the [`notify_one()`] documentation for more info and |
| 590 | /// examples. |
| 591 | /// |
| 592 | /// [`notify_one()`]: Notify::notify_one |
| 593 | pub fn notify_last(&self) { |
| 594 | self.notify_with_strategy(NotifyOneStrategy::Lifo); |
| 595 | } |
| 596 | |
| 597 | fn notify_with_strategy(&self, strategy: NotifyOneStrategy) { |
| 598 | // Load the current state |
| 599 | let mut curr = self.state.load(SeqCst); |
| 600 | |
| 601 | // If the state is `EMPTY`, transition to `NOTIFIED` and return. |
| 602 | while let EMPTY | NOTIFIED = get_state(curr) { |
| 603 | // The compare-exchange from `NOTIFIED` -> `NOTIFIED` is intended. A |
| 604 | // happens-before synchronization must happen between this atomic |
| 605 | // operation and a task calling `notified().await`. |
| 606 | let new = set_state(curr, NOTIFIED); |
| 607 | let res = self.state.compare_exchange(curr, new, SeqCst, SeqCst); |
| 608 | |
| 609 | match res { |
| 610 | // No waiters, no further work to do |
| 611 | Ok(_) => return, |
| 612 | Err(actual) => { |
| 613 | curr = actual; |
| 614 | } |
| 615 | } |
| 616 | } |
| 617 | |
| 618 | // There are waiters, the lock must be acquired to notify. |
| 619 | let mut waiters = self.waiters.lock(); |
| 620 | |
| 621 | // The state must be reloaded while the lock is held. The state may only |
| 622 | // transition out of WAITING while the lock is held. |
| 623 | curr = self.state.load(SeqCst); |
| 624 | |
| 625 | if let Some(waker) = notify_locked(&mut waiters, &self.state, curr, strategy) { |
| 626 | drop(waiters); |
| 627 | waker.wake(); |
| 628 | } |
| 629 | } |
| 630 | |
| 631 | /// Notifies all waiting tasks. |
| 632 | /// |
| 633 | /// If a task is currently waiting, that task is notified. Unlike with |
| 634 | /// `notify_one()`, no permit is stored to be used by the next call to |
| 635 | /// `notified().await`. The purpose of this method is to notify all |
| 636 | /// already registered waiters. Registering for notification is done by |
| 637 | /// acquiring an instance of the `Notified` future via calling `notified()`. |
| 638 | /// |
| 639 | /// # Examples |
| 640 | /// |
| 641 | /// ``` |
| 642 | /// use tokio::sync::Notify; |
| 643 | /// use std::sync::Arc; |
| 644 | /// |
| 645 | /// #[tokio::main] |
| 646 | /// async fn main() { |
| 647 | /// let notify = Arc::new(Notify::new()); |
| 648 | /// let notify2 = notify.clone(); |
| 649 | /// |
| 650 | /// let notified1 = notify.notified(); |
| 651 | /// let notified2 = notify.notified(); |
| 652 | /// |
| 653 | /// let handle = tokio::spawn(async move { |
| 654 | /// println!("sending notifications" ); |
| 655 | /// notify2.notify_waiters(); |
| 656 | /// }); |
| 657 | /// |
| 658 | /// notified1.await; |
| 659 | /// notified2.await; |
| 660 | /// println!("received notifications" ); |
| 661 | /// } |
| 662 | /// ``` |
| 663 | pub fn notify_waiters(&self) { |
| 664 | let mut waiters = self.waiters.lock(); |
| 665 | |
| 666 | // The state must be loaded while the lock is held. The state may only |
| 667 | // transition out of WAITING while the lock is held. |
| 668 | let curr = self.state.load(SeqCst); |
| 669 | |
| 670 | if matches!(get_state(curr), EMPTY | NOTIFIED) { |
| 671 | // There are no waiting tasks. All we need to do is increment the |
| 672 | // number of times this method was called. |
| 673 | atomic_inc_num_notify_waiters_calls(&self.state); |
| 674 | return; |
| 675 | } |
| 676 | |
| 677 | // Increment the number of times this method was called |
| 678 | // and transition to empty. |
| 679 | let new_state = set_state(inc_num_notify_waiters_calls(curr), EMPTY); |
| 680 | self.state.store(new_state, SeqCst); |
| 681 | |
| 682 | // It is critical for `GuardedLinkedList` safety that the guard node is |
| 683 | // pinned in memory and is not dropped until the guarded list is dropped. |
| 684 | let guard = Waiter::new(); |
| 685 | pin!(guard); |
| 686 | |
| 687 | // We move all waiters to a secondary list. It uses a `GuardedLinkedList` |
| 688 | // underneath to allow every waiter to safely remove itself from it. |
| 689 | // |
| 690 | // * This list will be still guarded by the `waiters` lock. |
| 691 | // `NotifyWaitersList` wrapper makes sure we hold the lock to modify it. |
| 692 | // * This wrapper will empty the list on drop. It is critical for safety |
| 693 | // that we will not leave any list entry with a pointer to the local |
| 694 | // guard node after this function returns / panics. |
| 695 | let mut list = NotifyWaitersList::new(std::mem::take(&mut *waiters), guard.as_ref(), self); |
| 696 | |
| 697 | let mut wakers = WakeList::new(); |
| 698 | 'outer: loop { |
| 699 | while wakers.can_push() { |
| 700 | match list.pop_back_locked(&mut waiters) { |
| 701 | Some(waiter) => { |
| 702 | // Safety: we never make mutable references to waiters. |
| 703 | let waiter = unsafe { waiter.as_ref() }; |
| 704 | |
| 705 | // Safety: we hold the lock, so we can access the waker. |
| 706 | if let Some(waker) = |
| 707 | unsafe { waiter.waker.with_mut(|waker| (*waker).take()) } |
| 708 | { |
| 709 | wakers.push(waker); |
| 710 | } |
| 711 | |
| 712 | // This waiter is unlinked and will not be shared ever again, release it. |
| 713 | waiter.notification.store_release(Notification::All); |
| 714 | } |
| 715 | None => { |
| 716 | break 'outer; |
| 717 | } |
| 718 | } |
| 719 | } |
| 720 | |
| 721 | // Release the lock before notifying. |
| 722 | drop(waiters); |
| 723 | |
| 724 | // One of the wakers may panic, but the remaining waiters will still |
| 725 | // be unlinked from the list in `NotifyWaitersList` destructor. |
| 726 | wakers.wake_all(); |
| 727 | |
| 728 | // Acquire the lock again. |
| 729 | waiters = self.waiters.lock(); |
| 730 | } |
| 731 | |
| 732 | // Release the lock before notifying |
| 733 | drop(waiters); |
| 734 | |
| 735 | wakers.wake_all(); |
| 736 | } |
| 737 | } |
| 738 | |
| 739 | impl Default for Notify { |
| 740 | fn default() -> Notify { |
| 741 | Notify::new() |
| 742 | } |
| 743 | } |
| 744 | |
| 745 | impl UnwindSafe for Notify {} |
| 746 | impl RefUnwindSafe for Notify {} |
| 747 | |
| 748 | fn notify_locked( |
| 749 | waiters: &mut WaitList, |
| 750 | state: &AtomicUsize, |
| 751 | curr: usize, |
| 752 | strategy: NotifyOneStrategy, |
| 753 | ) -> Option<Waker> { |
| 754 | match get_state(curr) { |
| 755 | EMPTY | NOTIFIED => { |
| 756 | let res = state.compare_exchange(curr, set_state(curr, NOTIFIED), SeqCst, SeqCst); |
| 757 | |
| 758 | match res { |
| 759 | Ok(_) => None, |
| 760 | Err(actual) => { |
| 761 | let actual_state = get_state(actual); |
| 762 | assert!(actual_state == EMPTY || actual_state == NOTIFIED); |
| 763 | state.store(set_state(actual, NOTIFIED), SeqCst); |
| 764 | None |
| 765 | } |
| 766 | } |
| 767 | } |
| 768 | WAITING => { |
| 769 | // At this point, it is guaranteed that the state will not |
| 770 | // concurrently change as holding the lock is required to |
| 771 | // transition **out** of `WAITING`. |
| 772 | // |
| 773 | // Get a pending waiter using one of the available dequeue strategies. |
| 774 | let waiter = match strategy { |
| 775 | NotifyOneStrategy::Fifo => waiters.pop_back().unwrap(), |
| 776 | NotifyOneStrategy::Lifo => waiters.pop_front().unwrap(), |
| 777 | }; |
| 778 | |
| 779 | // Safety: we never make mutable references to waiters. |
| 780 | let waiter = unsafe { waiter.as_ref() }; |
| 781 | |
| 782 | // Safety: we hold the lock, so we can access the waker. |
| 783 | let waker = unsafe { waiter.waker.with_mut(|waker| (*waker).take()) }; |
| 784 | |
| 785 | // This waiter is unlinked and will not be shared ever again, release it. |
| 786 | waiter |
| 787 | .notification |
| 788 | .store_release(Notification::One(strategy)); |
| 789 | |
| 790 | if waiters.is_empty() { |
| 791 | // As this the **final** waiter in the list, the state |
| 792 | // must be transitioned to `EMPTY`. As transitioning |
| 793 | // **from** `WAITING` requires the lock to be held, a |
| 794 | // `store` is sufficient. |
| 795 | state.store(set_state(curr, EMPTY), SeqCst); |
| 796 | } |
| 797 | waker |
| 798 | } |
| 799 | _ => unreachable!(), |
| 800 | } |
| 801 | } |
| 802 | |
| 803 | // ===== impl Notified ===== |
| 804 | |
| 805 | impl Notified<'_> { |
| 806 | /// Adds this future to the list of futures that are ready to receive |
| 807 | /// wakeups from calls to [`notify_one`]. |
| 808 | /// |
| 809 | /// Polling the future also adds it to the list, so this method should only |
| 810 | /// be used if you want to add the future to the list before the first call |
| 811 | /// to `poll`. (In fact, this method is equivalent to calling `poll` except |
| 812 | /// that no `Waker` is registered.) |
| 813 | /// |
| 814 | /// This has no effect on notifications sent using [`notify_waiters`], which |
| 815 | /// are received as long as they happen after the creation of the `Notified` |
| 816 | /// regardless of whether `enable` or `poll` has been called. |
| 817 | /// |
| 818 | /// This method returns true if the `Notified` is ready. This happens in the |
| 819 | /// following situations: |
| 820 | /// |
| 821 | /// 1. The `notify_waiters` method was called between the creation of the |
| 822 | /// `Notified` and the call to this method. |
| 823 | /// 2. This is the first call to `enable` or `poll` on this future, and the |
| 824 | /// `Notify` was holding a permit from a previous call to `notify_one`. |
| 825 | /// The call consumes the permit in that case. |
| 826 | /// 3. The future has previously been enabled or polled, and it has since |
| 827 | /// then been marked ready by either consuming a permit from the |
| 828 | /// `Notify`, or by a call to `notify_one` or `notify_waiters` that |
| 829 | /// removed it from the list of futures ready to receive wakeups. |
| 830 | /// |
| 831 | /// If this method returns true, any future calls to poll on the same future |
| 832 | /// will immediately return `Poll::Ready`. |
| 833 | /// |
| 834 | /// # Examples |
| 835 | /// |
| 836 | /// Unbound multi-producer multi-consumer (mpmc) channel. |
| 837 | /// |
| 838 | /// The call to `enable` is important because otherwise if you have two |
| 839 | /// calls to `recv` and two calls to `send` in parallel, the following could |
| 840 | /// happen: |
| 841 | /// |
| 842 | /// 1. Both calls to `try_recv` return `None`. |
| 843 | /// 2. Both new elements are added to the vector. |
| 844 | /// 3. The `notify_one` method is called twice, adding only a single |
| 845 | /// permit to the `Notify`. |
| 846 | /// 4. Both calls to `recv` reach the `Notified` future. One of them |
| 847 | /// consumes the permit, and the other sleeps forever. |
| 848 | /// |
| 849 | /// By adding the `Notified` futures to the list by calling `enable` before |
| 850 | /// `try_recv`, the `notify_one` calls in step three would remove the |
| 851 | /// futures from the list and mark them notified instead of adding a permit |
| 852 | /// to the `Notify`. This ensures that both futures are woken. |
| 853 | /// |
| 854 | /// ``` |
| 855 | /// use tokio::sync::Notify; |
| 856 | /// |
| 857 | /// use std::collections::VecDeque; |
| 858 | /// use std::sync::Mutex; |
| 859 | /// |
| 860 | /// struct Channel<T> { |
| 861 | /// messages: Mutex<VecDeque<T>>, |
| 862 | /// notify_on_sent: Notify, |
| 863 | /// } |
| 864 | /// |
| 865 | /// impl<T> Channel<T> { |
| 866 | /// pub fn send(&self, msg: T) { |
| 867 | /// let mut locked_queue = self.messages.lock().unwrap(); |
| 868 | /// locked_queue.push_back(msg); |
| 869 | /// drop(locked_queue); |
| 870 | /// |
| 871 | /// // Send a notification to one of the calls currently |
| 872 | /// // waiting in a call to `recv`. |
| 873 | /// self.notify_on_sent.notify_one(); |
| 874 | /// } |
| 875 | /// |
| 876 | /// pub fn try_recv(&self) -> Option<T> { |
| 877 | /// let mut locked_queue = self.messages.lock().unwrap(); |
| 878 | /// locked_queue.pop_front() |
| 879 | /// } |
| 880 | /// |
| 881 | /// pub async fn recv(&self) -> T { |
| 882 | /// let future = self.notify_on_sent.notified(); |
| 883 | /// tokio::pin!(future); |
| 884 | /// |
| 885 | /// loop { |
| 886 | /// // Make sure that no wakeup is lost if we get |
| 887 | /// // `None` from `try_recv`. |
| 888 | /// future.as_mut().enable(); |
| 889 | /// |
| 890 | /// if let Some(msg) = self.try_recv() { |
| 891 | /// return msg; |
| 892 | /// } |
| 893 | /// |
| 894 | /// // Wait for a call to `notify_one`. |
| 895 | /// // |
| 896 | /// // This uses `.as_mut()` to avoid consuming the future, |
| 897 | /// // which lets us call `Pin::set` below. |
| 898 | /// future.as_mut().await; |
| 899 | /// |
| 900 | /// // Reset the future in case another call to |
| 901 | /// // `try_recv` got the message before us. |
| 902 | /// future.set(self.notify_on_sent.notified()); |
| 903 | /// } |
| 904 | /// } |
| 905 | /// } |
| 906 | /// ``` |
| 907 | /// |
| 908 | /// [`notify_one`]: Notify::notify_one() |
| 909 | /// [`notify_waiters`]: Notify::notify_waiters() |
| 910 | pub fn enable(self: Pin<&mut Self>) -> bool { |
| 911 | self.poll_notified(None).is_ready() |
| 912 | } |
| 913 | |
| 914 | /// A custom `project` implementation is used in place of `pin-project-lite` |
| 915 | /// as a custom drop implementation is needed. |
| 916 | fn project(self: Pin<&mut Self>) -> (&Notify, &mut State, &usize, &Waiter) { |
| 917 | unsafe { |
| 918 | // Safety: `notify`, `state` and `notify_waiters_calls` are `Unpin`. |
| 919 | |
| 920 | is_unpin::<&Notify>(); |
| 921 | is_unpin::<State>(); |
| 922 | is_unpin::<usize>(); |
| 923 | |
| 924 | let me = self.get_unchecked_mut(); |
| 925 | ( |
| 926 | me.notify, |
| 927 | &mut me.state, |
| 928 | &me.notify_waiters_calls, |
| 929 | &me.waiter, |
| 930 | ) |
| 931 | } |
| 932 | } |
| 933 | |
| 934 | fn poll_notified(self: Pin<&mut Self>, waker: Option<&Waker>) -> Poll<()> { |
| 935 | let (notify, state, notify_waiters_calls, waiter) = self.project(); |
| 936 | |
| 937 | 'outer_loop: loop { |
| 938 | match *state { |
| 939 | State::Init => { |
| 940 | let curr = notify.state.load(SeqCst); |
| 941 | |
| 942 | // Optimistically try acquiring a pending notification |
| 943 | let res = notify.state.compare_exchange( |
| 944 | set_state(curr, NOTIFIED), |
| 945 | set_state(curr, EMPTY), |
| 946 | SeqCst, |
| 947 | SeqCst, |
| 948 | ); |
| 949 | |
| 950 | if res.is_ok() { |
| 951 | // Acquired the notification |
| 952 | *state = State::Done; |
| 953 | continue 'outer_loop; |
| 954 | } |
| 955 | |
| 956 | // Clone the waker before locking, a waker clone can be |
| 957 | // triggering arbitrary code. |
| 958 | let waker = waker.cloned(); |
| 959 | |
| 960 | // Acquire the lock and attempt to transition to the waiting |
| 961 | // state. |
| 962 | let mut waiters = notify.waiters.lock(); |
| 963 | |
| 964 | // Reload the state with the lock held |
| 965 | let mut curr = notify.state.load(SeqCst); |
| 966 | |
| 967 | // if notify_waiters has been called after the future |
| 968 | // was created, then we are done |
| 969 | if get_num_notify_waiters_calls(curr) != *notify_waiters_calls { |
| 970 | *state = State::Done; |
| 971 | continue 'outer_loop; |
| 972 | } |
| 973 | |
| 974 | // Transition the state to WAITING. |
| 975 | loop { |
| 976 | match get_state(curr) { |
| 977 | EMPTY => { |
| 978 | // Transition to WAITING |
| 979 | let res = notify.state.compare_exchange( |
| 980 | set_state(curr, EMPTY), |
| 981 | set_state(curr, WAITING), |
| 982 | SeqCst, |
| 983 | SeqCst, |
| 984 | ); |
| 985 | |
| 986 | if let Err(actual) = res { |
| 987 | assert_eq!(get_state(actual), NOTIFIED); |
| 988 | curr = actual; |
| 989 | } else { |
| 990 | break; |
| 991 | } |
| 992 | } |
| 993 | WAITING => break, |
| 994 | NOTIFIED => { |
| 995 | // Try consuming the notification |
| 996 | let res = notify.state.compare_exchange( |
| 997 | set_state(curr, NOTIFIED), |
| 998 | set_state(curr, EMPTY), |
| 999 | SeqCst, |
| 1000 | SeqCst, |
| 1001 | ); |
| 1002 | |
| 1003 | match res { |
| 1004 | Ok(_) => { |
| 1005 | // Acquired the notification |
| 1006 | *state = State::Done; |
| 1007 | continue 'outer_loop; |
| 1008 | } |
| 1009 | Err(actual) => { |
| 1010 | assert_eq!(get_state(actual), EMPTY); |
| 1011 | curr = actual; |
| 1012 | } |
| 1013 | } |
| 1014 | } |
| 1015 | _ => unreachable!(), |
| 1016 | } |
| 1017 | } |
| 1018 | |
| 1019 | let mut old_waker = None; |
| 1020 | if waker.is_some() { |
| 1021 | // Safety: called while locked. |
| 1022 | // |
| 1023 | // The use of `old_waiter` here is not necessary, as the field is always |
| 1024 | // None when we reach this line. |
| 1025 | unsafe { |
| 1026 | old_waker = |
| 1027 | waiter.waker.with_mut(|v| std::mem::replace(&mut *v, waker)); |
| 1028 | } |
| 1029 | } |
| 1030 | |
| 1031 | // Insert the waiter into the linked list |
| 1032 | waiters.push_front(NonNull::from(waiter)); |
| 1033 | |
| 1034 | *state = State::Waiting; |
| 1035 | |
| 1036 | drop(waiters); |
| 1037 | drop(old_waker); |
| 1038 | |
| 1039 | return Poll::Pending; |
| 1040 | } |
| 1041 | State::Waiting => { |
| 1042 | #[cfg (tokio_taskdump)] |
| 1043 | if let Some(waker) = waker { |
| 1044 | let mut ctx = Context::from_waker(waker); |
| 1045 | std::task::ready!(crate::trace::trace_leaf(&mut ctx)); |
| 1046 | } |
| 1047 | |
| 1048 | if waiter.notification.load(Acquire).is_some() { |
| 1049 | // Safety: waiter is already unlinked and will not be shared again, |
| 1050 | // so we have an exclusive access to `waker`. |
| 1051 | drop(unsafe { waiter.waker.with_mut(|waker| (*waker).take()) }); |
| 1052 | |
| 1053 | waiter.notification.clear(); |
| 1054 | *state = State::Done; |
| 1055 | return Poll::Ready(()); |
| 1056 | } |
| 1057 | |
| 1058 | // Our waiter was not notified, implying it is still stored in a waiter |
| 1059 | // list (guarded by `notify.waiters`). In order to access the waker |
| 1060 | // fields, we must acquire the lock. |
| 1061 | |
| 1062 | let mut old_waker = None; |
| 1063 | let mut waiters = notify.waiters.lock(); |
| 1064 | |
| 1065 | // We hold the lock and notifications are set only with the lock held, |
| 1066 | // so this can be relaxed, because the happens-before relationship is |
| 1067 | // established through the mutex. |
| 1068 | if waiter.notification.load(Relaxed).is_some() { |
| 1069 | // Safety: waiter is already unlinked and will not be shared again, |
| 1070 | // so we have an exclusive access to `waker`. |
| 1071 | old_waker = unsafe { waiter.waker.with_mut(|waker| (*waker).take()) }; |
| 1072 | |
| 1073 | waiter.notification.clear(); |
| 1074 | |
| 1075 | // Drop the old waker after releasing the lock. |
| 1076 | drop(waiters); |
| 1077 | drop(old_waker); |
| 1078 | |
| 1079 | *state = State::Done; |
| 1080 | return Poll::Ready(()); |
| 1081 | } |
| 1082 | |
| 1083 | // Load the state with the lock held. |
| 1084 | let curr = notify.state.load(SeqCst); |
| 1085 | |
| 1086 | if get_num_notify_waiters_calls(curr) != *notify_waiters_calls { |
| 1087 | // Before we add a waiter to the list we check if these numbers are |
| 1088 | // different while holding the lock. If these numbers are different now, |
| 1089 | // it means that there is a call to `notify_waiters` in progress and this |
| 1090 | // waiter must be contained by a guarded list used in `notify_waiters`. |
| 1091 | // We can treat the waiter as notified and remove it from the list, as |
| 1092 | // it would have been notified in the `notify_waiters` call anyways. |
| 1093 | |
| 1094 | // Safety: we hold the lock, so we can modify the waker. |
| 1095 | old_waker = unsafe { waiter.waker.with_mut(|waker| (*waker).take()) }; |
| 1096 | |
| 1097 | // Safety: we hold the lock, so we have an exclusive access to the list. |
| 1098 | // The list is used in `notify_waiters`, so it must be guarded. |
| 1099 | unsafe { waiters.remove(NonNull::from(waiter)) }; |
| 1100 | |
| 1101 | *state = State::Done; |
| 1102 | } else { |
| 1103 | // Safety: we hold the lock, so we can modify the waker. |
| 1104 | unsafe { |
| 1105 | waiter.waker.with_mut(|v| { |
| 1106 | if let Some(waker) = waker { |
| 1107 | let should_update = match &*v { |
| 1108 | Some(current_waker) => !current_waker.will_wake(waker), |
| 1109 | None => true, |
| 1110 | }; |
| 1111 | if should_update { |
| 1112 | old_waker = std::mem::replace(&mut *v, Some(waker.clone())); |
| 1113 | } |
| 1114 | } |
| 1115 | }); |
| 1116 | } |
| 1117 | |
| 1118 | // Drop the old waker after releasing the lock. |
| 1119 | drop(waiters); |
| 1120 | drop(old_waker); |
| 1121 | |
| 1122 | return Poll::Pending; |
| 1123 | } |
| 1124 | |
| 1125 | // Explicit drop of the lock to indicate the scope that the |
| 1126 | // lock is held. Because holding the lock is required to |
| 1127 | // ensure safe access to fields not held within the lock, it |
| 1128 | // is helpful to visualize the scope of the critical |
| 1129 | // section. |
| 1130 | drop(waiters); |
| 1131 | |
| 1132 | // Drop the old waker after releasing the lock. |
| 1133 | drop(old_waker); |
| 1134 | } |
| 1135 | State::Done => { |
| 1136 | #[cfg (tokio_taskdump)] |
| 1137 | if let Some(waker) = waker { |
| 1138 | let mut ctx = Context::from_waker(waker); |
| 1139 | std::task::ready!(crate::trace::trace_leaf(&mut ctx)); |
| 1140 | } |
| 1141 | return Poll::Ready(()); |
| 1142 | } |
| 1143 | } |
| 1144 | } |
| 1145 | } |
| 1146 | } |
| 1147 | |
| 1148 | impl Future for Notified<'_> { |
| 1149 | type Output = (); |
| 1150 | |
| 1151 | fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> { |
| 1152 | self.poll_notified(waker:Some(cx.waker())) |
| 1153 | } |
| 1154 | } |
| 1155 | |
| 1156 | impl Drop for Notified<'_> { |
| 1157 | fn drop(&mut self) { |
| 1158 | // Safety: The type only transitions to a "Waiting" state when pinned. |
| 1159 | let (notify, state, _, waiter) = unsafe { Pin::new_unchecked(self).project() }; |
| 1160 | |
| 1161 | // This is where we ensure safety. The `Notified` value is being |
| 1162 | // dropped, which means we must ensure that the waiter entry is no |
| 1163 | // longer stored in the linked list. |
| 1164 | if matches!(*state, State::Waiting) { |
| 1165 | let mut waiters = notify.waiters.lock(); |
| 1166 | let mut notify_state = notify.state.load(SeqCst); |
| 1167 | |
| 1168 | // We hold the lock, so this field is not concurrently accessed by |
| 1169 | // `notify_*` functions and we can use the relaxed ordering. |
| 1170 | let notification = waiter.notification.load(Relaxed); |
| 1171 | |
| 1172 | // remove the entry from the list (if not already removed) |
| 1173 | // |
| 1174 | // Safety: we hold the lock, so we have an exclusive access to every list the |
| 1175 | // waiter may be contained in. If the node is not contained in the `waiters` |
| 1176 | // list, then it is contained by a guarded list used by `notify_waiters`. |
| 1177 | unsafe { waiters.remove(NonNull::from(waiter)) }; |
| 1178 | |
| 1179 | if waiters.is_empty() && get_state(notify_state) == WAITING { |
| 1180 | notify_state = set_state(notify_state, EMPTY); |
| 1181 | notify.state.store(notify_state, SeqCst); |
| 1182 | } |
| 1183 | |
| 1184 | // See if the node was notified but not received. In this case, if |
| 1185 | // the notification was triggered via `notify_one`, it must be sent |
| 1186 | // to the next waiter. |
| 1187 | if let Some(Notification::One(strategy)) = notification { |
| 1188 | if let Some(waker) = |
| 1189 | notify_locked(&mut waiters, ¬ify.state, notify_state, strategy) |
| 1190 | { |
| 1191 | drop(waiters); |
| 1192 | waker.wake(); |
| 1193 | } |
| 1194 | } |
| 1195 | } |
| 1196 | } |
| 1197 | } |
| 1198 | |
| 1199 | /// # Safety |
| 1200 | /// |
| 1201 | /// `Waiter` is forced to be !Unpin. |
| 1202 | unsafe impl linked_list::Link for Waiter { |
| 1203 | type Handle = NonNull<Waiter>; |
| 1204 | type Target = Waiter; |
| 1205 | |
| 1206 | fn as_raw(handle: &NonNull<Waiter>) -> NonNull<Waiter> { |
| 1207 | *handle |
| 1208 | } |
| 1209 | |
| 1210 | unsafe fn from_raw(ptr: NonNull<Waiter>) -> NonNull<Waiter> { |
| 1211 | ptr |
| 1212 | } |
| 1213 | |
| 1214 | unsafe fn pointers(target: NonNull<Waiter>) -> NonNull<linked_list::Pointers<Waiter>> { |
| 1215 | Waiter::addr_of_pointers(me:target) |
| 1216 | } |
| 1217 | } |
| 1218 | |
| 1219 | fn is_unpin<T: Unpin>() {} |
| 1220 | |