| 1 | /* |
| 2 | * Copyright (c) 2023. |
| 3 | * |
| 4 | * This software is free software; |
| 5 | * |
| 6 | * You can redistribute it or modify it under terms of the MIT, Apache License or Zlib license |
| 7 | */ |
| 8 | |
| 9 | #![allow ( |
| 10 | clippy::if_not_else, |
| 11 | clippy::similar_names, |
| 12 | clippy::inline_always, |
| 13 | clippy::doc_markdown, |
| 14 | clippy::cast_sign_loss, |
| 15 | clippy::cast_possible_truncation |
| 16 | )] |
| 17 | |
| 18 | //! This file exposes a single struct that can decode a huffman encoded |
| 19 | //! Bitstream in a JPEG file |
| 20 | //! |
| 21 | //! This code is optimized for speed. |
| 22 | //! It's meant to be super duper super fast, because everyone else depends on this being fast. |
| 23 | //! It's (annoyingly) serial hence we cant use parallel bitstreams(it's variable length coding.) |
| 24 | //! |
| 25 | //! Furthermore, on the case of refills, we have to do bytewise processing because the standard decided |
| 26 | //! that we want to support markers in the middle of streams(seriously few people use RST markers). |
| 27 | //! |
| 28 | //! So we pull in all optimization steps: |
| 29 | //! - use `inline[always]`? ✅ , |
| 30 | //! - pre-execute most common cases ✅, |
| 31 | //! - add random comments ✅ |
| 32 | //! - fast paths ✅. |
| 33 | //! |
| 34 | //! Speed-wise: It is probably the fastest JPEG BitStream decoder to ever sail the seven seas because of |
| 35 | //! a couple of optimization tricks. |
| 36 | //! 1. Fast refills from libjpeg-turbo |
| 37 | //! 2. As few as possible branches in decoder fast paths. |
| 38 | //! 3. Accelerated AC table decoding borrowed from stb_image.h written by Fabian Gissen (@ rygorous), |
| 39 | //! improved by me to handle more cases. |
| 40 | //! 4. Safe and extensible routines(e.g. cool ways to eliminate bounds check) |
| 41 | //! 5. No unsafe here |
| 42 | //! |
| 43 | //! Readability comes as a second priority(I tried with variable names this time, and we are wayy better than libjpeg). |
| 44 | //! |
| 45 | //! Anyway if you are reading this it means your cool and I hope you get whatever part of the code you are looking for |
| 46 | //! (or learn something cool) |
| 47 | //! |
| 48 | //! Knock yourself out. |
| 49 | use alloc::format; |
| 50 | use alloc::string::ToString; |
| 51 | use core::cmp::min; |
| 52 | |
| 53 | use zune_core::bytestream::{ZByteReader, ZReaderTrait}; |
| 54 | |
| 55 | use crate::errors::DecodeErrors; |
| 56 | use crate::huffman::{HuffmanTable, HUFF_LOOKAHEAD}; |
| 57 | use crate::marker::Marker; |
| 58 | use crate::mcu::DCT_BLOCK; |
| 59 | use crate::misc::UN_ZIGZAG; |
| 60 | |
| 61 | macro_rules! decode_huff { |
| 62 | ($stream:tt,$symbol:tt,$table:tt) => { |
| 63 | let mut code_length = $symbol >> HUFF_LOOKAHEAD; |
| 64 | |
| 65 | ($symbol) &= (1 << HUFF_LOOKAHEAD) - 1; |
| 66 | |
| 67 | if code_length > i32::from(HUFF_LOOKAHEAD) |
| 68 | { |
| 69 | // if the symbol cannot be resolved in the first HUFF_LOOKAHEAD bits, |
| 70 | // we know it lies somewhere between HUFF_LOOKAHEAD and 16 bits since jpeg imposes 16 bit |
| 71 | // limit, we can therefore look 16 bits ahead and try to resolve the symbol |
| 72 | // starting from 1+HUFF_LOOKAHEAD bits. |
| 73 | $symbol = ($stream).peek_bits::<16>() as i32; |
| 74 | // (Credits to Sean T. Barrett stb library for this optimization) |
| 75 | // maxcode is pre-shifted 16 bytes long so that it has (16-code_length) |
| 76 | // zeroes at the end hence we do not need to shift in the inner loop. |
| 77 | while code_length < 17{ |
| 78 | if $symbol < $table.maxcode[code_length as usize] { |
| 79 | break; |
| 80 | } |
| 81 | code_length += 1; |
| 82 | } |
| 83 | |
| 84 | if code_length == 17{ |
| 85 | // symbol could not be decoded. |
| 86 | // |
| 87 | // We may think, lets fake zeroes, noo |
| 88 | // panic, because Huffman codes are sensitive, probably everything |
| 89 | // after this will be corrupt, so no need to continue. |
| 90 | return Err(DecodeErrors::Format(format!("Bad Huffman Code 0x{:X}, corrupt JPEG" ,$symbol))) |
| 91 | } |
| 92 | |
| 93 | $symbol >>= (16-code_length); |
| 94 | ($symbol) = i32::from( |
| 95 | ($table).values |
| 96 | [(($symbol + ($table).offset[code_length as usize]) & 0xFF) as usize], |
| 97 | ); |
| 98 | } |
| 99 | // drop bits read |
| 100 | ($stream).drop_bits(code_length as u8); |
| 101 | }; |
| 102 | } |
| 103 | |
| 104 | /// A `BitStream` struct, a bit by bit reader with super powers |
| 105 | /// |
| 106 | pub(crate) struct BitStream { |
| 107 | /// A MSB type buffer that is used for some certain operations |
| 108 | pub buffer: u64, |
| 109 | /// A TOP aligned MSB type buffer that is used to accelerate some operations like |
| 110 | /// peek_bits and get_bits. |
| 111 | /// |
| 112 | /// By top aligned, I mean the top bit (63) represents the top bit in the buffer. |
| 113 | aligned_buffer: u64, |
| 114 | /// Tell us the bits left the two buffer |
| 115 | pub(crate) bits_left: u8, |
| 116 | /// Did we find a marker(RST/EOF) during decoding? |
| 117 | pub marker: Option<Marker>, |
| 118 | |
| 119 | /// Progressive decoding |
| 120 | pub successive_high: u8, |
| 121 | pub successive_low: u8, |
| 122 | spec_start: u8, |
| 123 | spec_end: u8, |
| 124 | pub eob_run: i32, |
| 125 | pub overread_by: usize |
| 126 | } |
| 127 | |
| 128 | impl BitStream { |
| 129 | /// Create a new BitStream |
| 130 | pub(crate) const fn new() -> BitStream { |
| 131 | BitStream { |
| 132 | buffer: 0, |
| 133 | aligned_buffer: 0, |
| 134 | bits_left: 0, |
| 135 | marker: None, |
| 136 | successive_high: 0, |
| 137 | successive_low: 0, |
| 138 | spec_start: 0, |
| 139 | spec_end: 0, |
| 140 | eob_run: 0, |
| 141 | overread_by: 0 |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | /// Create a new Bitstream for progressive decoding |
| 146 | #[allow (clippy::redundant_field_names)] |
| 147 | pub(crate) fn new_progressive(ah: u8, al: u8, spec_start: u8, spec_end: u8) -> BitStream { |
| 148 | BitStream { |
| 149 | buffer: 0, |
| 150 | aligned_buffer: 0, |
| 151 | bits_left: 0, |
| 152 | marker: None, |
| 153 | successive_high: ah, |
| 154 | successive_low: al, |
| 155 | spec_start: spec_start, |
| 156 | spec_end: spec_end, |
| 157 | eob_run: 0, |
| 158 | overread_by: 0 |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | /// Refill the bit buffer by (a maximum of) 32 bits |
| 163 | /// |
| 164 | /// # Arguments |
| 165 | /// - `reader`:`&mut BufReader<R>`: A mutable reference to an underlying |
| 166 | /// File/Memory buffer containing a valid JPEG stream |
| 167 | /// |
| 168 | /// This function will only refill if `self.count` is less than 32 |
| 169 | #[inline (always)] // to many call sites? ( perf improvement by 4%) |
| 170 | fn refill<T>(&mut self, reader: &mut ZByteReader<T>) -> Result<bool, DecodeErrors> |
| 171 | where |
| 172 | T: ZReaderTrait |
| 173 | { |
| 174 | /// Macro version of a single byte refill. |
| 175 | /// Arguments |
| 176 | /// buffer-> our io buffer, because rust macros cannot get values from |
| 177 | /// the surrounding environment bits_left-> number of bits left |
| 178 | /// to full refill |
| 179 | macro_rules! refill { |
| 180 | ($buffer:expr,$byte:expr,$bits_left:expr) => { |
| 181 | // read a byte from the stream |
| 182 | $byte = u64::from(reader.get_u8()); |
| 183 | self.overread_by += usize::from(reader.eof()); |
| 184 | // append to the buffer |
| 185 | // JPEG is a MSB type buffer so that means we append this |
| 186 | // to the lower end (0..8) of the buffer and push the rest bits above.. |
| 187 | $buffer = ($buffer << 8) | $byte; |
| 188 | // Increment bits left |
| 189 | $bits_left += 8; |
| 190 | // Check for special case of OxFF, to see if it's a stream or a marker |
| 191 | if $byte == 0xff { |
| 192 | // read next byte |
| 193 | let mut next_byte = u64::from(reader.get_u8()); |
| 194 | // Byte snuffing, if we encounter byte snuff, we skip the byte |
| 195 | if next_byte != 0x00 { |
| 196 | // skip that byte we read |
| 197 | while next_byte == 0xFF { |
| 198 | next_byte = u64::from(reader.get_u8()); |
| 199 | } |
| 200 | |
| 201 | if next_byte != 0x00 { |
| 202 | // Undo the byte append and return |
| 203 | $buffer >>= 8; |
| 204 | $bits_left -= 8; |
| 205 | |
| 206 | if $bits_left != 0 { |
| 207 | self.aligned_buffer = $buffer << (64 - $bits_left); |
| 208 | } |
| 209 | |
| 210 | self.marker = |
| 211 | Some(Marker::from_u8(next_byte as u8).ok_or_else(|| { |
| 212 | DecodeErrors::Format(format!( |
| 213 | "Unknown marker 0xFF{:X}" , |
| 214 | next_byte |
| 215 | )) |
| 216 | })?); |
| 217 | return Ok(false); |
| 218 | } |
| 219 | } |
| 220 | } |
| 221 | }; |
| 222 | } |
| 223 | |
| 224 | // 32 bits is enough for a decode(16 bits) and receive_extend(max 16 bits) |
| 225 | // If we have less than 32 bits we refill |
| 226 | if self.bits_left < 32 && self.marker.is_none() { |
| 227 | // So before we do anything, check if we have a 0xFF byte |
| 228 | |
| 229 | if reader.has(4) { |
| 230 | // we have 4 bytes to spare, read the 4 bytes into a temporary buffer |
| 231 | // create buffer |
| 232 | let msb_buf = reader.get_u32_be(); |
| 233 | // check if we have 0xff |
| 234 | if !has_byte(msb_buf, 255) { |
| 235 | self.bits_left += 32; |
| 236 | self.buffer <<= 32; |
| 237 | self.buffer |= u64::from(msb_buf); |
| 238 | self.aligned_buffer = self.buffer << (64 - self.bits_left); |
| 239 | return Ok(true); |
| 240 | } |
| 241 | // not there, rewind the read |
| 242 | reader.rewind(4); |
| 243 | } |
| 244 | // This serves two reasons, |
| 245 | // 1: Make clippy shut up |
| 246 | // 2: Favour register reuse |
| 247 | let mut byte; |
| 248 | |
| 249 | // 4 refills, if all succeed the stream should contain enough bits to decode a |
| 250 | // value |
| 251 | refill!(self.buffer, byte, self.bits_left); |
| 252 | refill!(self.buffer, byte, self.bits_left); |
| 253 | refill!(self.buffer, byte, self.bits_left); |
| 254 | refill!(self.buffer, byte, self.bits_left); |
| 255 | // Construct an MSB buffer whose top bits are the bitstream we are currently holding. |
| 256 | self.aligned_buffer = self.buffer << (64 - self.bits_left); |
| 257 | } |
| 258 | |
| 259 | return Ok(true); |
| 260 | } |
| 261 | /// Decode the DC coefficient in a MCU block. |
| 262 | /// |
| 263 | /// The decoded coefficient is written to `dc_prediction` |
| 264 | /// |
| 265 | #[allow ( |
| 266 | clippy::cast_possible_truncation, |
| 267 | clippy::cast_sign_loss, |
| 268 | clippy::unwrap_used |
| 269 | )] |
| 270 | #[inline (always)] |
| 271 | fn decode_dc<T>( |
| 272 | &mut self, reader: &mut ZByteReader<T>, dc_table: &HuffmanTable, dc_prediction: &mut i32 |
| 273 | ) -> Result<bool, DecodeErrors> |
| 274 | where |
| 275 | T: ZReaderTrait |
| 276 | { |
| 277 | let (mut symbol, r); |
| 278 | |
| 279 | if self.bits_left < 32 { |
| 280 | self.refill(reader)?; |
| 281 | }; |
| 282 | // look a head HUFF_LOOKAHEAD bits into the bitstream |
| 283 | symbol = self.peek_bits::<HUFF_LOOKAHEAD>(); |
| 284 | symbol = dc_table.lookup[symbol as usize]; |
| 285 | |
| 286 | decode_huff!(self, symbol, dc_table); |
| 287 | |
| 288 | if symbol != 0 { |
| 289 | r = self.get_bits(symbol as u8); |
| 290 | symbol = huff_extend(r, symbol); |
| 291 | } |
| 292 | // Update DC prediction |
| 293 | *dc_prediction = dc_prediction.wrapping_add(symbol); |
| 294 | |
| 295 | return Ok(true); |
| 296 | } |
| 297 | |
| 298 | /// Decode a Minimum Code Unit(MCU) as quickly as possible |
| 299 | /// |
| 300 | /// # Arguments |
| 301 | /// - reader: The bitstream from where we read more bits. |
| 302 | /// - dc_table: The Huffman table used to decode the DC coefficient |
| 303 | /// - ac_table: The Huffman table used to decode AC values |
| 304 | /// - block: A memory region where we will write out the decoded values |
| 305 | /// - DC prediction: Last DC value for this component |
| 306 | /// |
| 307 | #[allow ( |
| 308 | clippy::many_single_char_names, |
| 309 | clippy::cast_possible_truncation, |
| 310 | clippy::cast_sign_loss |
| 311 | )] |
| 312 | #[inline (never)] |
| 313 | pub fn decode_mcu_block<T>( |
| 314 | &mut self, reader: &mut ZByteReader<T>, dc_table: &HuffmanTable, ac_table: &HuffmanTable, |
| 315 | qt_table: &[i32; DCT_BLOCK], block: &mut [i32; 64], dc_prediction: &mut i32 |
| 316 | ) -> Result<(), DecodeErrors> |
| 317 | where |
| 318 | T: ZReaderTrait |
| 319 | { |
| 320 | // Get fast AC table as a reference before we enter the hot path |
| 321 | let ac_lookup = ac_table.ac_lookup.as_ref().unwrap(); |
| 322 | |
| 323 | let (mut symbol, mut r, mut fast_ac); |
| 324 | // Decode AC coefficients |
| 325 | let mut pos: usize = 1; |
| 326 | |
| 327 | // decode DC, dc prediction will contain the value |
| 328 | self.decode_dc(reader, dc_table, dc_prediction)?; |
| 329 | |
| 330 | // set dc to be the dc prediction. |
| 331 | block[0] = *dc_prediction * qt_table[0]; |
| 332 | |
| 333 | while pos < 64 { |
| 334 | self.refill(reader)?; |
| 335 | symbol = self.peek_bits::<HUFF_LOOKAHEAD>(); |
| 336 | fast_ac = ac_lookup[symbol as usize]; |
| 337 | symbol = ac_table.lookup[symbol as usize]; |
| 338 | |
| 339 | if fast_ac != 0 { |
| 340 | // FAST AC path |
| 341 | pos += ((fast_ac >> 4) & 15) as usize; // run |
| 342 | let t_pos = UN_ZIGZAG[min(pos, 63)] & 63; |
| 343 | |
| 344 | block[t_pos] = i32::from(fast_ac >> 8) * (qt_table[t_pos]); // Value |
| 345 | self.drop_bits((fast_ac & 15) as u8); |
| 346 | pos += 1; |
| 347 | } else { |
| 348 | decode_huff!(self, symbol, ac_table); |
| 349 | |
| 350 | r = symbol >> 4; |
| 351 | symbol &= 15; |
| 352 | |
| 353 | if symbol != 0 { |
| 354 | pos += r as usize; |
| 355 | r = self.get_bits(symbol as u8); |
| 356 | symbol = huff_extend(r, symbol); |
| 357 | let t_pos = UN_ZIGZAG[pos & 63] & 63; |
| 358 | |
| 359 | block[t_pos] = symbol * qt_table[t_pos]; |
| 360 | |
| 361 | pos += 1; |
| 362 | } else if r != 15 { |
| 363 | return Ok(()); |
| 364 | } else { |
| 365 | pos += 16; |
| 366 | } |
| 367 | } |
| 368 | } |
| 369 | return Ok(()); |
| 370 | } |
| 371 | |
| 372 | /// Peek `look_ahead` bits ahead without discarding them from the buffer |
| 373 | #[inline (always)] |
| 374 | #[allow (clippy::cast_possible_truncation)] |
| 375 | const fn peek_bits<const LOOKAHEAD: u8>(&self) -> i32 { |
| 376 | (self.aligned_buffer >> (64 - LOOKAHEAD)) as i32 |
| 377 | } |
| 378 | |
| 379 | /// Discard the next `N` bits without checking |
| 380 | #[inline ] |
| 381 | fn drop_bits(&mut self, n: u8) { |
| 382 | self.bits_left = self.bits_left.saturating_sub(n); |
| 383 | self.aligned_buffer <<= n; |
| 384 | } |
| 385 | |
| 386 | /// Read `n_bits` from the buffer and discard them |
| 387 | #[inline (always)] |
| 388 | #[allow (clippy::cast_possible_truncation)] |
| 389 | fn get_bits(&mut self, n_bits: u8) -> i32 { |
| 390 | let mask = (1_u64 << n_bits) - 1; |
| 391 | |
| 392 | self.aligned_buffer = self.aligned_buffer.rotate_left(u32::from(n_bits)); |
| 393 | let bits = (self.aligned_buffer & mask) as i32; |
| 394 | self.bits_left = self.bits_left.wrapping_sub(n_bits); |
| 395 | bits |
| 396 | } |
| 397 | |
| 398 | /// Decode a DC block |
| 399 | #[allow (clippy::cast_possible_truncation)] |
| 400 | #[inline ] |
| 401 | pub(crate) fn decode_prog_dc_first<T>( |
| 402 | &mut self, reader: &mut ZByteReader<T>, dc_table: &HuffmanTable, block: &mut i16, |
| 403 | dc_prediction: &mut i32 |
| 404 | ) -> Result<(), DecodeErrors> |
| 405 | where |
| 406 | T: ZReaderTrait |
| 407 | { |
| 408 | self.decode_dc(reader, dc_table, dc_prediction)?; |
| 409 | *block = (*dc_prediction as i16).wrapping_mul(1_i16 << self.successive_low); |
| 410 | return Ok(()); |
| 411 | } |
| 412 | #[inline ] |
| 413 | pub(crate) fn decode_prog_dc_refine<T>( |
| 414 | &mut self, reader: &mut ZByteReader<T>, block: &mut i16 |
| 415 | ) -> Result<(), DecodeErrors> |
| 416 | where |
| 417 | T: ZReaderTrait |
| 418 | { |
| 419 | // refinement scan |
| 420 | if self.bits_left < 1 { |
| 421 | self.refill(reader)?; |
| 422 | } |
| 423 | |
| 424 | if self.get_bit() == 1 { |
| 425 | *block = block.wrapping_add(1 << self.successive_low); |
| 426 | } |
| 427 | |
| 428 | Ok(()) |
| 429 | } |
| 430 | |
| 431 | /// Get a single bit from the bitstream |
| 432 | fn get_bit(&mut self) -> u8 { |
| 433 | let k = (self.aligned_buffer >> 63) as u8; |
| 434 | // discard a bit |
| 435 | self.drop_bits(1); |
| 436 | return k; |
| 437 | } |
| 438 | pub(crate) fn decode_mcu_ac_first<T>( |
| 439 | &mut self, reader: &mut ZByteReader<T>, ac_table: &HuffmanTable, block: &mut [i16; 64] |
| 440 | ) -> Result<bool, DecodeErrors> |
| 441 | where |
| 442 | T: ZReaderTrait |
| 443 | { |
| 444 | let shift = self.successive_low; |
| 445 | let fast_ac = ac_table.ac_lookup.as_ref().unwrap(); |
| 446 | |
| 447 | let mut k = self.spec_start as usize; |
| 448 | let (mut symbol, mut r, mut fac); |
| 449 | |
| 450 | // EOB runs are handled in mcu_prog.rs |
| 451 | 'block: loop { |
| 452 | self.refill(reader)?; |
| 453 | |
| 454 | symbol = self.peek_bits::<HUFF_LOOKAHEAD>(); |
| 455 | fac = fast_ac[symbol as usize]; |
| 456 | symbol = ac_table.lookup[symbol as usize]; |
| 457 | |
| 458 | if fac != 0 { |
| 459 | // fast ac path |
| 460 | k += ((fac >> 4) & 15) as usize; // run |
| 461 | block[UN_ZIGZAG[min(k, 63)] & 63] = (fac >> 8).wrapping_mul(1 << shift); // value |
| 462 | self.drop_bits((fac & 15) as u8); |
| 463 | k += 1; |
| 464 | } else { |
| 465 | decode_huff!(self, symbol, ac_table); |
| 466 | |
| 467 | r = symbol >> 4; |
| 468 | symbol &= 15; |
| 469 | |
| 470 | if symbol != 0 { |
| 471 | k += r as usize; |
| 472 | r = self.get_bits(symbol as u8); |
| 473 | symbol = huff_extend(r, symbol); |
| 474 | block[UN_ZIGZAG[k & 63] & 63] = (symbol as i16).wrapping_mul(1 << shift); |
| 475 | k += 1; |
| 476 | } else { |
| 477 | if r != 15 { |
| 478 | self.eob_run = 1 << r; |
| 479 | self.eob_run += self.get_bits(r as u8); |
| 480 | self.eob_run -= 1; |
| 481 | break; |
| 482 | } |
| 483 | |
| 484 | k += 16; |
| 485 | } |
| 486 | } |
| 487 | |
| 488 | if k > self.spec_end as usize { |
| 489 | break 'block; |
| 490 | } |
| 491 | } |
| 492 | return Ok(true); |
| 493 | } |
| 494 | #[allow (clippy::too_many_lines, clippy::op_ref)] |
| 495 | pub(crate) fn decode_mcu_ac_refine<T>( |
| 496 | &mut self, reader: &mut ZByteReader<T>, table: &HuffmanTable, block: &mut [i16; 64] |
| 497 | ) -> Result<bool, DecodeErrors> |
| 498 | where |
| 499 | T: ZReaderTrait |
| 500 | { |
| 501 | let bit = (1 << self.successive_low) as i16; |
| 502 | |
| 503 | let mut k = self.spec_start; |
| 504 | let (mut symbol, mut r); |
| 505 | |
| 506 | if self.eob_run == 0 { |
| 507 | 'no_eob: loop { |
| 508 | // Decode a coefficient from the bit stream |
| 509 | self.refill(reader)?; |
| 510 | |
| 511 | symbol = self.peek_bits::<HUFF_LOOKAHEAD>(); |
| 512 | symbol = table.lookup[symbol as usize]; |
| 513 | |
| 514 | decode_huff!(self, symbol, table); |
| 515 | |
| 516 | r = symbol >> 4; |
| 517 | symbol &= 15; |
| 518 | |
| 519 | if symbol == 0 { |
| 520 | if r != 15 { |
| 521 | // EOB run is 2^r + bits |
| 522 | self.eob_run = 1 << r; |
| 523 | self.eob_run += self.get_bits(r as u8); |
| 524 | // EOB runs are handled by the eob logic |
| 525 | break 'no_eob; |
| 526 | } |
| 527 | } else { |
| 528 | if symbol != 1 { |
| 529 | return Err(DecodeErrors::HuffmanDecode( |
| 530 | "Bad Huffman code, corrupt JPEG?" .to_string() |
| 531 | )); |
| 532 | } |
| 533 | // get sign bit |
| 534 | // We assume we have enough bits, which should be correct for sane images |
| 535 | // since we refill by 32 above |
| 536 | if self.get_bit() == 1 { |
| 537 | symbol = i32::from(bit); |
| 538 | } else { |
| 539 | symbol = i32::from(-bit); |
| 540 | } |
| 541 | } |
| 542 | |
| 543 | // Advance over already nonzero coefficients appending |
| 544 | // correction bits to the non-zeroes. |
| 545 | // A correction bit is 1 if the absolute value of the coefficient must be increased |
| 546 | |
| 547 | if k <= self.spec_end { |
| 548 | 'advance_nonzero: loop { |
| 549 | let coefficient = &mut block[UN_ZIGZAG[k as usize & 63] & 63]; |
| 550 | |
| 551 | if *coefficient != 0 { |
| 552 | if self.get_bit() == 1 && (*coefficient & bit) == 0 { |
| 553 | if *coefficient >= 0 { |
| 554 | *coefficient += bit; |
| 555 | } else { |
| 556 | *coefficient -= bit; |
| 557 | } |
| 558 | } |
| 559 | |
| 560 | if self.bits_left < 1 { |
| 561 | self.refill(reader)?; |
| 562 | } |
| 563 | } else { |
| 564 | r -= 1; |
| 565 | |
| 566 | if r < 0 { |
| 567 | // reached target zero coefficient. |
| 568 | break 'advance_nonzero; |
| 569 | } |
| 570 | }; |
| 571 | |
| 572 | if k == self.spec_end { |
| 573 | break 'advance_nonzero; |
| 574 | } |
| 575 | |
| 576 | k += 1; |
| 577 | } |
| 578 | } |
| 579 | |
| 580 | if symbol != 0 { |
| 581 | let pos = UN_ZIGZAG[k as usize & 63]; |
| 582 | // output new non-zero coefficient. |
| 583 | block[pos & 63] = symbol as i16; |
| 584 | } |
| 585 | |
| 586 | k += 1; |
| 587 | |
| 588 | if k > self.spec_end { |
| 589 | break 'no_eob; |
| 590 | } |
| 591 | } |
| 592 | } |
| 593 | if self.eob_run > 0 { |
| 594 | // only run if block does not consists of purely zeroes |
| 595 | if &block[1..] != &[0; 63] { |
| 596 | self.refill(reader)?; |
| 597 | |
| 598 | while k <= self.spec_end { |
| 599 | let coefficient = &mut block[UN_ZIGZAG[k as usize & 63] & 63]; |
| 600 | |
| 601 | if *coefficient != 0 && self.get_bit() == 1 { |
| 602 | // check if we already modified it, if so do nothing, otherwise |
| 603 | // append the correction bit. |
| 604 | if (*coefficient & bit) == 0 { |
| 605 | if *coefficient >= 0 { |
| 606 | *coefficient = coefficient.wrapping_add(bit); |
| 607 | } else { |
| 608 | *coefficient = coefficient.wrapping_sub(bit); |
| 609 | } |
| 610 | } |
| 611 | } |
| 612 | if self.bits_left < 1 { |
| 613 | // refill at the last possible moment |
| 614 | self.refill(reader)?; |
| 615 | } |
| 616 | k += 1; |
| 617 | } |
| 618 | } |
| 619 | // count a block completed in EOB run |
| 620 | self.eob_run -= 1; |
| 621 | } |
| 622 | return Ok(true); |
| 623 | } |
| 624 | |
| 625 | pub fn update_progressive_params(&mut self, ah: u8, al: u8, spec_start: u8, spec_end: u8) { |
| 626 | self.successive_high = ah; |
| 627 | self.successive_low = al; |
| 628 | self.spec_start = spec_start; |
| 629 | self.spec_end = spec_end; |
| 630 | } |
| 631 | |
| 632 | /// Reset the stream if we have a restart marker |
| 633 | /// |
| 634 | /// Restart markers indicate drop those bits in the stream and zero out |
| 635 | /// everything |
| 636 | #[cold ] |
| 637 | pub fn reset(&mut self) { |
| 638 | self.bits_left = 0; |
| 639 | self.marker = None; |
| 640 | self.buffer = 0; |
| 641 | self.aligned_buffer = 0; |
| 642 | self.eob_run = 0; |
| 643 | } |
| 644 | } |
| 645 | |
| 646 | /// Do the equivalent of JPEG HUFF_EXTEND |
| 647 | #[inline (always)] |
| 648 | fn huff_extend(x: i32, s: i32) -> i32 { |
| 649 | // if x<s return x else return x+offset[s] where offset[s] = ( (-1<<s)+1) |
| 650 | (x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((-1) << (s)) + 1)) |
| 651 | } |
| 652 | |
| 653 | fn has_zero(v: u32) -> bool { |
| 654 | // Retrieved from Stanford bithacks |
| 655 | // @ https://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord |
| 656 | return !((((v & 0x7F7F_7F7F) + 0x7F7F_7F7F) | v) | 0x7F7F_7F7F) != 0; |
| 657 | } |
| 658 | |
| 659 | fn has_byte(b: u32, val: u8) -> bool { |
| 660 | // Retrieved from Stanford bithacks |
| 661 | // @ https://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord |
| 662 | has_zero(b ^ ((!0_u32 / 255) * u32::from(val))) |
| 663 | } |
| 664 | |