1 | // NOTE: The descriptions for each of the vector methods on the traits below |
2 | // are pretty inscrutable. For this reason, there are tests for every method |
3 | // on for every trait impl below. If you're confused about what an op does, |
4 | // consult its test. (They probably should be doc tests, but I couldn't figure |
5 | // out how to write them in a non-annoying way.) |
6 | |
7 | use core::{ |
8 | fmt::Debug, |
9 | panic::{RefUnwindSafe, UnwindSafe}, |
10 | }; |
11 | |
12 | /// A trait for describing vector operations used by vectorized searchers. |
13 | /// |
14 | /// The trait is highly constrained to low level vector operations needed for |
15 | /// the specific algorithms used in this crate. In general, it was invented |
16 | /// mostly to be generic over x86's __m128i and __m256i types. At time of |
17 | /// writing, it also supports wasm and aarch64 128-bit vector types as well. |
18 | /// |
19 | /// # Safety |
20 | /// |
21 | /// All methods are not safe since they are intended to be implemented using |
22 | /// vendor intrinsics, which are also not safe. Callers must ensure that |
23 | /// the appropriate target features are enabled in the calling function, |
24 | /// and that the current CPU supports them. All implementations should |
25 | /// avoid marking the routines with `#[target_feature]` and instead mark |
26 | /// them as `#[inline(always)]` to ensure they get appropriately inlined. |
27 | /// (`inline(always)` cannot be used with target_feature.) |
28 | pub(crate) trait Vector: |
29 | Copy + Debug + Send + Sync + UnwindSafe + RefUnwindSafe |
30 | { |
31 | /// The number of bits in the vector. |
32 | const BITS: usize; |
33 | /// The number of bytes in the vector. That is, this is the size of the |
34 | /// vector in memory. |
35 | const BYTES: usize; |
36 | |
37 | /// Create a vector with 8-bit lanes with the given byte repeated into each |
38 | /// lane. |
39 | /// |
40 | /// # Safety |
41 | /// |
42 | /// Callers must ensure that this is okay to call in the current target for |
43 | /// the current CPU. |
44 | unsafe fn splat(byte: u8) -> Self; |
45 | |
46 | /// Read a vector-size number of bytes from the given pointer. The pointer |
47 | /// does not need to be aligned. |
48 | /// |
49 | /// # Safety |
50 | /// |
51 | /// Callers must ensure that this is okay to call in the current target for |
52 | /// the current CPU. |
53 | /// |
54 | /// Callers must guarantee that at least `BYTES` bytes are readable from |
55 | /// `data`. |
56 | unsafe fn load_unaligned(data: *const u8) -> Self; |
57 | |
58 | /// Returns true if and only if this vector has zero in all of its lanes. |
59 | /// |
60 | /// # Safety |
61 | /// |
62 | /// Callers must ensure that this is okay to call in the current target for |
63 | /// the current CPU. |
64 | unsafe fn is_zero(self) -> bool; |
65 | |
66 | /// Do an 8-bit pairwise equality check. If lane `i` is equal in this |
67 | /// vector and the one given, then lane `i` in the resulting vector is set |
68 | /// to `0xFF`. Otherwise, it is set to `0x00`. |
69 | /// |
70 | /// # Safety |
71 | /// |
72 | /// Callers must ensure that this is okay to call in the current target for |
73 | /// the current CPU. |
74 | unsafe fn cmpeq(self, vector2: Self) -> Self; |
75 | |
76 | /// Perform a bitwise 'and' of this vector and the one given and return |
77 | /// the result. |
78 | /// |
79 | /// # Safety |
80 | /// |
81 | /// Callers must ensure that this is okay to call in the current target for |
82 | /// the current CPU. |
83 | unsafe fn and(self, vector2: Self) -> Self; |
84 | |
85 | /// Perform a bitwise 'or' of this vector and the one given and return |
86 | /// the result. |
87 | /// |
88 | /// # Safety |
89 | /// |
90 | /// Callers must ensure that this is okay to call in the current target for |
91 | /// the current CPU. |
92 | unsafe fn or(self, vector2: Self) -> Self; |
93 | |
94 | /// Shift each 8-bit lane in this vector to the right by the number of |
95 | /// bits indictated by the `BITS` type parameter. |
96 | /// |
97 | /// # Safety |
98 | /// |
99 | /// Callers must ensure that this is okay to call in the current target for |
100 | /// the current CPU. |
101 | unsafe fn shift_8bit_lane_right<const BITS: i32>(self) -> Self; |
102 | |
103 | /// Shift this vector to the left by one byte and shift the most |
104 | /// significant byte of `vector2` into the least significant position of |
105 | /// this vector. |
106 | /// |
107 | /// Stated differently, this behaves as if `self` and `vector2` were |
108 | /// concatenated into a `2 * Self::BITS` temporary buffer and then shifted |
109 | /// right by `Self::BYTES - 1` bytes. |
110 | /// |
111 | /// With respect to the Teddy algorithm, `vector2` is usually a previous |
112 | /// `Self::BYTES` chunk from the haystack and `self` is the chunk |
113 | /// immediately following it. This permits combining the last two bytes |
114 | /// from the previous chunk (`vector2`) with the first `Self::BYTES - 1` |
115 | /// bytes from the current chunk. This permits aligning the result of |
116 | /// various shuffles so that they can be and-ed together and a possible |
117 | /// candidate discovered. |
118 | /// |
119 | /// # Safety |
120 | /// |
121 | /// Callers must ensure that this is okay to call in the current target for |
122 | /// the current CPU. |
123 | unsafe fn shift_in_one_byte(self, vector2: Self) -> Self; |
124 | |
125 | /// Shift this vector to the left by two bytes and shift the two most |
126 | /// significant bytes of `vector2` into the least significant position of |
127 | /// this vector. |
128 | /// |
129 | /// Stated differently, this behaves as if `self` and `vector2` were |
130 | /// concatenated into a `2 * Self::BITS` temporary buffer and then shifted |
131 | /// right by `Self::BYTES - 2` bytes. |
132 | /// |
133 | /// With respect to the Teddy algorithm, `vector2` is usually a previous |
134 | /// `Self::BYTES` chunk from the haystack and `self` is the chunk |
135 | /// immediately following it. This permits combining the last two bytes |
136 | /// from the previous chunk (`vector2`) with the first `Self::BYTES - 2` |
137 | /// bytes from the current chunk. This permits aligning the result of |
138 | /// various shuffles so that they can be and-ed together and a possible |
139 | /// candidate discovered. |
140 | /// |
141 | /// # Safety |
142 | /// |
143 | /// Callers must ensure that this is okay to call in the current target for |
144 | /// the current CPU. |
145 | unsafe fn shift_in_two_bytes(self, vector2: Self) -> Self; |
146 | |
147 | /// Shift this vector to the left by three bytes and shift the three most |
148 | /// significant bytes of `vector2` into the least significant position of |
149 | /// this vector. |
150 | /// |
151 | /// Stated differently, this behaves as if `self` and `vector2` were |
152 | /// concatenated into a `2 * Self::BITS` temporary buffer and then shifted |
153 | /// right by `Self::BYTES - 3` bytes. |
154 | /// |
155 | /// With respect to the Teddy algorithm, `vector2` is usually a previous |
156 | /// `Self::BYTES` chunk from the haystack and `self` is the chunk |
157 | /// immediately following it. This permits combining the last three bytes |
158 | /// from the previous chunk (`vector2`) with the first `Self::BYTES - 3` |
159 | /// bytes from the current chunk. This permits aligning the result of |
160 | /// various shuffles so that they can be and-ed together and a possible |
161 | /// candidate discovered. |
162 | /// |
163 | /// # Safety |
164 | /// |
165 | /// Callers must ensure that this is okay to call in the current target for |
166 | /// the current CPU. |
167 | unsafe fn shift_in_three_bytes(self, vector2: Self) -> Self; |
168 | |
169 | /// Shuffles the bytes in this vector according to the indices in each of |
170 | /// the corresponding lanes in `indices`. |
171 | /// |
172 | /// If `i` is the index of corresponding lanes, `A` is this vector, `B` is |
173 | /// indices and `C` is the resulting vector, then `C = A[B[i]]`. |
174 | /// |
175 | /// # Safety |
176 | /// |
177 | /// Callers must ensure that this is okay to call in the current target for |
178 | /// the current CPU. |
179 | unsafe fn shuffle_bytes(self, indices: Self) -> Self; |
180 | |
181 | /// Call the provided function for each 64-bit lane in this vector. The |
182 | /// given function is provided the lane index and lane value as a `u64`. |
183 | /// |
184 | /// If `f` returns `Some`, then iteration over the lanes is stopped and the |
185 | /// value is returned. Otherwise, this returns `None`. |
186 | /// |
187 | /// # Notes |
188 | /// |
189 | /// Conceptually it would be nice if we could have a |
190 | /// `unpack64(self) -> [u64; BITS / 64]` method, but defining that is |
191 | /// tricky given Rust's [current support for const generics][support]. |
192 | /// And even if we could, it would be tricky to write generic code over |
193 | /// it. (Not impossible. We could introduce another layer that requires |
194 | /// `AsRef<[u64]>` or something.) |
195 | /// |
196 | /// [support]: https://github.com/rust-lang/rust/issues/60551 |
197 | /// |
198 | /// # Safety |
199 | /// |
200 | /// Callers must ensure that this is okay to call in the current target for |
201 | /// the current CPU. |
202 | unsafe fn for_each_64bit_lane<T>( |
203 | self, |
204 | f: impl FnMut(usize, u64) -> Option<T>, |
205 | ) -> Option<T>; |
206 | } |
207 | |
208 | /// This trait extends the `Vector` trait with additional operations to support |
209 | /// Fat Teddy. |
210 | /// |
211 | /// Fat Teddy uses 16 buckets instead of 8, but reads half as many bytes (as |
212 | /// the vector size) instead of the full size of a vector per iteration. For |
213 | /// example, when using a 256-bit vector, Slim Teddy reads 32 bytes at a timr |
214 | /// but Fat Teddy reads 16 bytes at a time. |
215 | /// |
216 | /// Fat Teddy is useful when searching for a large number of literals. |
217 | /// The extra number of buckets spreads the literals out more and reduces |
218 | /// verification time. |
219 | /// |
220 | /// Currently we only implement this for AVX on x86_64. It would be nice to |
221 | /// implement this for SSE on x86_64 and NEON on aarch64, with the latter two |
222 | /// only reading 8 bytes at a time. It's not clear how well it would work, but |
223 | /// there are some tricky things to figure out in terms of implementation. The |
224 | /// `half_shift_in_{one,two,three}_bytes` methods in particular are probably |
225 | /// the trickiest of the bunch. For AVX2, these are implemented by taking |
226 | /// advantage of the fact that `_mm256_alignr_epi8` operates on each 128-bit |
227 | /// half instead of the full 256-bit vector. (Where as `_mm_alignr_epi8` |
228 | /// operates on the full 128-bit vector and not on each 64-bit half.) I didn't |
229 | /// do a careful survey of NEON to see if it could easily support these |
230 | /// operations. |
231 | pub(crate) trait FatVector: Vector { |
232 | type Half: Vector; |
233 | |
234 | /// Read a half-vector-size number of bytes from the given pointer, and |
235 | /// broadcast it across both halfs of a full vector. The pointer does not |
236 | /// need to be aligned. |
237 | /// |
238 | /// # Safety |
239 | /// |
240 | /// Callers must ensure that this is okay to call in the current target for |
241 | /// the current CPU. |
242 | /// |
243 | /// Callers must guarantee that at least `Self::HALF::BYTES` bytes are |
244 | /// readable from `data`. |
245 | unsafe fn load_half_unaligned(data: *const u8) -> Self; |
246 | |
247 | /// Like `Vector::shift_in_one_byte`, except this is done for each half |
248 | /// of the vector instead. |
249 | /// |
250 | /// # Safety |
251 | /// |
252 | /// Callers must ensure that this is okay to call in the current target for |
253 | /// the current CPU. |
254 | unsafe fn half_shift_in_one_byte(self, vector2: Self) -> Self; |
255 | |
256 | /// Like `Vector::shift_in_two_bytes`, except this is done for each half |
257 | /// of the vector instead. |
258 | /// |
259 | /// # Safety |
260 | /// |
261 | /// Callers must ensure that this is okay to call in the current target for |
262 | /// the current CPU. |
263 | unsafe fn half_shift_in_two_bytes(self, vector2: Self) -> Self; |
264 | |
265 | /// Like `Vector::shift_in_two_bytes`, except this is done for each half |
266 | /// of the vector instead. |
267 | /// |
268 | /// # Safety |
269 | /// |
270 | /// Callers must ensure that this is okay to call in the current target for |
271 | /// the current CPU. |
272 | unsafe fn half_shift_in_three_bytes(self, vector2: Self) -> Self; |
273 | |
274 | /// Swap the 128-bit lanes in this vector. |
275 | /// |
276 | /// # Safety |
277 | /// |
278 | /// Callers must ensure that this is okay to call in the current target for |
279 | /// the current CPU. |
280 | unsafe fn swap_halves(self) -> Self; |
281 | |
282 | /// Unpack and interleave the 8-bit lanes from the low 128 bits of each |
283 | /// vector and return the result. |
284 | /// |
285 | /// # Safety |
286 | /// |
287 | /// Callers must ensure that this is okay to call in the current target for |
288 | /// the current CPU. |
289 | unsafe fn interleave_low_8bit_lanes(self, vector2: Self) -> Self; |
290 | |
291 | /// Unpack and interleave the 8-bit lanes from the high 128 bits of each |
292 | /// vector and return the result. |
293 | /// |
294 | /// # Safety |
295 | /// |
296 | /// Callers must ensure that this is okay to call in the current target for |
297 | /// the current CPU. |
298 | unsafe fn interleave_high_8bit_lanes(self, vector2: Self) -> Self; |
299 | |
300 | /// Call the provided function for each 64-bit lane in the lower half |
301 | /// of this vector and then in the other vector. The given function is |
302 | /// provided the lane index and lane value as a `u64`. (The high 128-bits |
303 | /// of each vector are ignored.) |
304 | /// |
305 | /// If `f` returns `Some`, then iteration over the lanes is stopped and the |
306 | /// value is returned. Otherwise, this returns `None`. |
307 | /// |
308 | /// # Safety |
309 | /// |
310 | /// Callers must ensure that this is okay to call in the current target for |
311 | /// the current CPU. |
312 | unsafe fn for_each_low_64bit_lane<T>( |
313 | self, |
314 | vector2: Self, |
315 | f: impl FnMut(usize, u64) -> Option<T>, |
316 | ) -> Option<T>; |
317 | } |
318 | |
319 | #[cfg (all(target_arch = "x86_64" , target_feature = "sse2" ))] |
320 | mod x86_64_ssse3 { |
321 | use core::arch::x86_64::*; |
322 | |
323 | use crate::util::int::{I32, I8}; |
324 | |
325 | use super::Vector; |
326 | |
327 | impl Vector for __m128i { |
328 | const BITS: usize = 128; |
329 | const BYTES: usize = 16; |
330 | |
331 | #[inline (always)] |
332 | unsafe fn splat(byte: u8) -> __m128i { |
333 | _mm_set1_epi8(i8::from_bits(byte)) |
334 | } |
335 | |
336 | #[inline (always)] |
337 | unsafe fn load_unaligned(data: *const u8) -> __m128i { |
338 | _mm_loadu_si128(data.cast::<__m128i>()) |
339 | } |
340 | |
341 | #[inline (always)] |
342 | unsafe fn is_zero(self) -> bool { |
343 | let cmp = self.cmpeq(Self::splat(0)); |
344 | _mm_movemask_epi8(cmp).to_bits() == 0xFFFF |
345 | } |
346 | |
347 | #[inline (always)] |
348 | unsafe fn cmpeq(self, vector2: Self) -> __m128i { |
349 | _mm_cmpeq_epi8(self, vector2) |
350 | } |
351 | |
352 | #[inline (always)] |
353 | unsafe fn and(self, vector2: Self) -> __m128i { |
354 | _mm_and_si128(self, vector2) |
355 | } |
356 | |
357 | #[inline (always)] |
358 | unsafe fn or(self, vector2: Self) -> __m128i { |
359 | _mm_or_si128(self, vector2) |
360 | } |
361 | |
362 | #[inline (always)] |
363 | unsafe fn shift_8bit_lane_right<const BITS: i32>(self) -> Self { |
364 | // Apparently there is no _mm_srli_epi8, so we emulate it by |
365 | // shifting 16-bit integers and masking out the high nybble of each |
366 | // 8-bit lane (since that nybble will contain bits from the low |
367 | // nybble of the previous lane). |
368 | let lomask = Self::splat(0xF); |
369 | _mm_srli_epi16(self, BITS).and(lomask) |
370 | } |
371 | |
372 | #[inline (always)] |
373 | unsafe fn shift_in_one_byte(self, vector2: Self) -> Self { |
374 | _mm_alignr_epi8(self, vector2, 15) |
375 | } |
376 | |
377 | #[inline (always)] |
378 | unsafe fn shift_in_two_bytes(self, vector2: Self) -> Self { |
379 | _mm_alignr_epi8(self, vector2, 14) |
380 | } |
381 | |
382 | #[inline (always)] |
383 | unsafe fn shift_in_three_bytes(self, vector2: Self) -> Self { |
384 | _mm_alignr_epi8(self, vector2, 13) |
385 | } |
386 | |
387 | #[inline (always)] |
388 | unsafe fn shuffle_bytes(self, indices: Self) -> Self { |
389 | _mm_shuffle_epi8(self, indices) |
390 | } |
391 | |
392 | #[inline (always)] |
393 | unsafe fn for_each_64bit_lane<T>( |
394 | self, |
395 | mut f: impl FnMut(usize, u64) -> Option<T>, |
396 | ) -> Option<T> { |
397 | // We could just use _mm_extract_epi64 here, but that requires |
398 | // SSE 4.1. It isn't necessarily a problem to just require SSE 4.1, |
399 | // but everything else works with SSSE3 so we stick to that subset. |
400 | let lanes: [u64; 2] = core::mem::transmute(self); |
401 | if let Some(t) = f(0, lanes[0]) { |
402 | return Some(t); |
403 | } |
404 | if let Some(t) = f(1, lanes[1]) { |
405 | return Some(t); |
406 | } |
407 | None |
408 | } |
409 | } |
410 | } |
411 | |
412 | #[cfg (all(target_arch = "x86_64" , target_feature = "sse2" ))] |
413 | mod x86_64_avx2 { |
414 | use core::arch::x86_64::*; |
415 | |
416 | use crate::util::int::{I32, I64, I8}; |
417 | |
418 | use super::{FatVector, Vector}; |
419 | |
420 | impl Vector for __m256i { |
421 | const BITS: usize = 256; |
422 | const BYTES: usize = 32; |
423 | |
424 | #[inline (always)] |
425 | unsafe fn splat(byte: u8) -> __m256i { |
426 | _mm256_set1_epi8(i8::from_bits(byte)) |
427 | } |
428 | |
429 | #[inline (always)] |
430 | unsafe fn load_unaligned(data: *const u8) -> __m256i { |
431 | _mm256_loadu_si256(data.cast::<__m256i>()) |
432 | } |
433 | |
434 | #[inline (always)] |
435 | unsafe fn is_zero(self) -> bool { |
436 | let cmp = self.cmpeq(Self::splat(0)); |
437 | _mm256_movemask_epi8(cmp).to_bits() == 0xFFFFFFFF |
438 | } |
439 | |
440 | #[inline (always)] |
441 | unsafe fn cmpeq(self, vector2: Self) -> __m256i { |
442 | _mm256_cmpeq_epi8(self, vector2) |
443 | } |
444 | |
445 | #[inline (always)] |
446 | unsafe fn and(self, vector2: Self) -> __m256i { |
447 | _mm256_and_si256(self, vector2) |
448 | } |
449 | |
450 | #[inline (always)] |
451 | unsafe fn or(self, vector2: Self) -> __m256i { |
452 | _mm256_or_si256(self, vector2) |
453 | } |
454 | |
455 | #[inline (always)] |
456 | unsafe fn shift_8bit_lane_right<const BITS: i32>(self) -> Self { |
457 | let lomask = Self::splat(0xF); |
458 | _mm256_srli_epi16(self, BITS).and(lomask) |
459 | } |
460 | |
461 | #[inline (always)] |
462 | unsafe fn shift_in_one_byte(self, vector2: Self) -> Self { |
463 | // Credit goes to jneem for figuring this out: |
464 | // https://github.com/jneem/teddy/blob/9ab5e899ad6ef6911aecd3cf1033f1abe6e1f66c/src/x86/teddy_simd.rs#L145-L184 |
465 | // |
466 | // TL;DR avx2's PALIGNR instruction is actually just two 128-bit |
467 | // PALIGNR instructions, which is not what we want, so we need to |
468 | // do some extra shuffling. |
469 | let v = _mm256_permute2x128_si256(vector2, self, 0x21); |
470 | _mm256_alignr_epi8(self, v, 15) |
471 | } |
472 | |
473 | #[inline (always)] |
474 | unsafe fn shift_in_two_bytes(self, vector2: Self) -> Self { |
475 | // Credit goes to jneem for figuring this out: |
476 | // https://github.com/jneem/teddy/blob/9ab5e899ad6ef6911aecd3cf1033f1abe6e1f66c/src/x86/teddy_simd.rs#L145-L184 |
477 | // |
478 | // TL;DR avx2's PALIGNR instruction is actually just two 128-bit |
479 | // PALIGNR instructions, which is not what we want, so we need to |
480 | // do some extra shuffling. |
481 | let v = _mm256_permute2x128_si256(vector2, self, 0x21); |
482 | _mm256_alignr_epi8(self, v, 14) |
483 | } |
484 | |
485 | #[inline (always)] |
486 | unsafe fn shift_in_three_bytes(self, vector2: Self) -> Self { |
487 | // Credit goes to jneem for figuring this out: |
488 | // https://github.com/jneem/teddy/blob/9ab5e899ad6ef6911aecd3cf1033f1abe6e1f66c/src/x86/teddy_simd.rs#L145-L184 |
489 | // |
490 | // TL;DR avx2's PALIGNR instruction is actually just two 128-bit |
491 | // PALIGNR instructions, which is not what we want, so we need to |
492 | // do some extra shuffling. |
493 | let v = _mm256_permute2x128_si256(vector2, self, 0x21); |
494 | _mm256_alignr_epi8(self, v, 13) |
495 | } |
496 | |
497 | #[inline (always)] |
498 | unsafe fn shuffle_bytes(self, indices: Self) -> Self { |
499 | _mm256_shuffle_epi8(self, indices) |
500 | } |
501 | |
502 | #[inline (always)] |
503 | unsafe fn for_each_64bit_lane<T>( |
504 | self, |
505 | mut f: impl FnMut(usize, u64) -> Option<T>, |
506 | ) -> Option<T> { |
507 | // NOTE: At one point in the past, I used transmute to this to |
508 | // get a [u64; 4], but it turned out to lead to worse codegen IIRC. |
509 | // I've tried it more recently, and it looks like that's no longer |
510 | // the case. But since there's no difference, we stick with the |
511 | // slightly more complicated but transmute-free version. |
512 | let lane = _mm256_extract_epi64(self, 0).to_bits(); |
513 | if let Some(t) = f(0, lane) { |
514 | return Some(t); |
515 | } |
516 | let lane = _mm256_extract_epi64(self, 1).to_bits(); |
517 | if let Some(t) = f(1, lane) { |
518 | return Some(t); |
519 | } |
520 | let lane = _mm256_extract_epi64(self, 2).to_bits(); |
521 | if let Some(t) = f(2, lane) { |
522 | return Some(t); |
523 | } |
524 | let lane = _mm256_extract_epi64(self, 3).to_bits(); |
525 | if let Some(t) = f(3, lane) { |
526 | return Some(t); |
527 | } |
528 | None |
529 | } |
530 | } |
531 | |
532 | impl FatVector for __m256i { |
533 | type Half = __m128i; |
534 | |
535 | #[inline (always)] |
536 | unsafe fn load_half_unaligned(data: *const u8) -> Self { |
537 | let half = Self::Half::load_unaligned(data); |
538 | _mm256_broadcastsi128_si256(half) |
539 | } |
540 | |
541 | #[inline (always)] |
542 | unsafe fn half_shift_in_one_byte(self, vector2: Self) -> Self { |
543 | _mm256_alignr_epi8(self, vector2, 15) |
544 | } |
545 | |
546 | #[inline (always)] |
547 | unsafe fn half_shift_in_two_bytes(self, vector2: Self) -> Self { |
548 | _mm256_alignr_epi8(self, vector2, 14) |
549 | } |
550 | |
551 | #[inline (always)] |
552 | unsafe fn half_shift_in_three_bytes(self, vector2: Self) -> Self { |
553 | _mm256_alignr_epi8(self, vector2, 13) |
554 | } |
555 | |
556 | #[inline (always)] |
557 | unsafe fn swap_halves(self) -> Self { |
558 | _mm256_permute4x64_epi64(self, 0x4E) |
559 | } |
560 | |
561 | #[inline (always)] |
562 | unsafe fn interleave_low_8bit_lanes(self, vector2: Self) -> Self { |
563 | _mm256_unpacklo_epi8(self, vector2) |
564 | } |
565 | |
566 | #[inline (always)] |
567 | unsafe fn interleave_high_8bit_lanes(self, vector2: Self) -> Self { |
568 | _mm256_unpackhi_epi8(self, vector2) |
569 | } |
570 | |
571 | #[inline (always)] |
572 | unsafe fn for_each_low_64bit_lane<T>( |
573 | self, |
574 | vector2: Self, |
575 | mut f: impl FnMut(usize, u64) -> Option<T>, |
576 | ) -> Option<T> { |
577 | let lane = _mm256_extract_epi64(self, 0).to_bits(); |
578 | if let Some(t) = f(0, lane) { |
579 | return Some(t); |
580 | } |
581 | let lane = _mm256_extract_epi64(self, 1).to_bits(); |
582 | if let Some(t) = f(1, lane) { |
583 | return Some(t); |
584 | } |
585 | let lane = _mm256_extract_epi64(vector2, 0).to_bits(); |
586 | if let Some(t) = f(2, lane) { |
587 | return Some(t); |
588 | } |
589 | let lane = _mm256_extract_epi64(vector2, 1).to_bits(); |
590 | if let Some(t) = f(3, lane) { |
591 | return Some(t); |
592 | } |
593 | None |
594 | } |
595 | } |
596 | } |
597 | |
598 | #[cfg (target_arch = "aarch64" )] |
599 | mod aarch64_neon { |
600 | use core::arch::aarch64::*; |
601 | |
602 | use super::Vector; |
603 | |
604 | impl Vector for uint8x16_t { |
605 | const BITS: usize = 128; |
606 | const BYTES: usize = 16; |
607 | |
608 | #[inline (always)] |
609 | unsafe fn splat(byte: u8) -> uint8x16_t { |
610 | vdupq_n_u8(byte) |
611 | } |
612 | |
613 | #[inline (always)] |
614 | unsafe fn load_unaligned(data: *const u8) -> uint8x16_t { |
615 | vld1q_u8(data) |
616 | } |
617 | |
618 | #[inline (always)] |
619 | unsafe fn is_zero(self) -> bool { |
620 | // Could also use vmaxvq_u8. |
621 | // ... I tried that and couldn't observe any meaningful difference |
622 | // in benchmarks. |
623 | let maxes = vreinterpretq_u64_u8(vpmaxq_u8(self, self)); |
624 | vgetq_lane_u64(maxes, 0) == 0 |
625 | } |
626 | |
627 | #[inline (always)] |
628 | unsafe fn cmpeq(self, vector2: Self) -> uint8x16_t { |
629 | vceqq_u8(self, vector2) |
630 | } |
631 | |
632 | #[inline (always)] |
633 | unsafe fn and(self, vector2: Self) -> uint8x16_t { |
634 | vandq_u8(self, vector2) |
635 | } |
636 | |
637 | #[inline (always)] |
638 | unsafe fn or(self, vector2: Self) -> uint8x16_t { |
639 | vorrq_u8(self, vector2) |
640 | } |
641 | |
642 | #[inline (always)] |
643 | unsafe fn shift_8bit_lane_right<const BITS: i32>(self) -> Self { |
644 | debug_assert!(BITS <= 7); |
645 | vshrq_n_u8(self, BITS) |
646 | } |
647 | |
648 | #[inline (always)] |
649 | unsafe fn shift_in_one_byte(self, vector2: Self) -> Self { |
650 | vextq_u8(vector2, self, 15) |
651 | } |
652 | |
653 | #[inline (always)] |
654 | unsafe fn shift_in_two_bytes(self, vector2: Self) -> Self { |
655 | vextq_u8(vector2, self, 14) |
656 | } |
657 | |
658 | #[inline (always)] |
659 | unsafe fn shift_in_three_bytes(self, vector2: Self) -> Self { |
660 | vextq_u8(vector2, self, 13) |
661 | } |
662 | |
663 | #[inline (always)] |
664 | unsafe fn shuffle_bytes(self, indices: Self) -> Self { |
665 | vqtbl1q_u8(self, indices) |
666 | } |
667 | |
668 | #[inline (always)] |
669 | unsafe fn for_each_64bit_lane<T>( |
670 | self, |
671 | mut f: impl FnMut(usize, u64) -> Option<T>, |
672 | ) -> Option<T> { |
673 | let this = vreinterpretq_u64_u8(self); |
674 | let lane = vgetq_lane_u64(this, 0); |
675 | if let Some(t) = f(0, lane) { |
676 | return Some(t); |
677 | } |
678 | let lane = vgetq_lane_u64(this, 1); |
679 | if let Some(t) = f(1, lane) { |
680 | return Some(t); |
681 | } |
682 | None |
683 | } |
684 | } |
685 | } |
686 | |
687 | #[cfg (all(test, target_arch = "x86_64" , target_feature = "sse2" ))] |
688 | mod tests_x86_64_ssse3 { |
689 | use core::arch::x86_64::*; |
690 | |
691 | use crate::util::int::{I32, U32}; |
692 | |
693 | use super::*; |
694 | |
695 | fn is_runnable() -> bool { |
696 | std::is_x86_feature_detected!("ssse3" ) |
697 | } |
698 | |
699 | #[target_feature (enable = "ssse3" )] |
700 | unsafe fn load(lanes: [u8; 16]) -> __m128i { |
701 | __m128i::load_unaligned(&lanes as *const u8) |
702 | } |
703 | |
704 | #[target_feature (enable = "ssse3" )] |
705 | unsafe fn unload(v: __m128i) -> [u8; 16] { |
706 | [ |
707 | _mm_extract_epi8(v, 0).to_bits().low_u8(), |
708 | _mm_extract_epi8(v, 1).to_bits().low_u8(), |
709 | _mm_extract_epi8(v, 2).to_bits().low_u8(), |
710 | _mm_extract_epi8(v, 3).to_bits().low_u8(), |
711 | _mm_extract_epi8(v, 4).to_bits().low_u8(), |
712 | _mm_extract_epi8(v, 5).to_bits().low_u8(), |
713 | _mm_extract_epi8(v, 6).to_bits().low_u8(), |
714 | _mm_extract_epi8(v, 7).to_bits().low_u8(), |
715 | _mm_extract_epi8(v, 8).to_bits().low_u8(), |
716 | _mm_extract_epi8(v, 9).to_bits().low_u8(), |
717 | _mm_extract_epi8(v, 10).to_bits().low_u8(), |
718 | _mm_extract_epi8(v, 11).to_bits().low_u8(), |
719 | _mm_extract_epi8(v, 12).to_bits().low_u8(), |
720 | _mm_extract_epi8(v, 13).to_bits().low_u8(), |
721 | _mm_extract_epi8(v, 14).to_bits().low_u8(), |
722 | _mm_extract_epi8(v, 15).to_bits().low_u8(), |
723 | ] |
724 | } |
725 | |
726 | #[test] |
727 | fn vector_splat() { |
728 | #[target_feature (enable = "ssse3" )] |
729 | unsafe fn test() { |
730 | let v = __m128i::splat(0xAF); |
731 | assert_eq!( |
732 | unload(v), |
733 | [ |
734 | 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, |
735 | 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF |
736 | ] |
737 | ); |
738 | } |
739 | if !is_runnable() { |
740 | return; |
741 | } |
742 | unsafe { test() } |
743 | } |
744 | |
745 | #[test] |
746 | fn vector_is_zero() { |
747 | #[target_feature (enable = "ssse3" )] |
748 | unsafe fn test() { |
749 | let v = load([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
750 | assert!(!v.is_zero()); |
751 | let v = load([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
752 | assert!(v.is_zero()); |
753 | } |
754 | if !is_runnable() { |
755 | return; |
756 | } |
757 | unsafe { test() } |
758 | } |
759 | |
760 | #[test] |
761 | fn vector_cmpeq() { |
762 | #[target_feature (enable = "ssse3" )] |
763 | unsafe fn test() { |
764 | let v1 = |
765 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1]); |
766 | let v2 = |
767 | load([16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]); |
768 | assert_eq!( |
769 | unload(v1.cmpeq(v2)), |
770 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF] |
771 | ); |
772 | } |
773 | if !is_runnable() { |
774 | return; |
775 | } |
776 | unsafe { test() } |
777 | } |
778 | |
779 | #[test] |
780 | fn vector_and() { |
781 | #[target_feature (enable = "ssse3" )] |
782 | unsafe fn test() { |
783 | let v1 = |
784 | load([0, 0, 0, 0, 0, 0b1001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
785 | let v2 = |
786 | load([0, 0, 0, 0, 0, 0b1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
787 | assert_eq!( |
788 | unload(v1.and(v2)), |
789 | [0, 0, 0, 0, 0, 0b1000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
790 | ); |
791 | } |
792 | if !is_runnable() { |
793 | return; |
794 | } |
795 | unsafe { test() } |
796 | } |
797 | |
798 | #[test] |
799 | fn vector_or() { |
800 | #[target_feature (enable = "ssse3" )] |
801 | unsafe fn test() { |
802 | let v1 = |
803 | load([0, 0, 0, 0, 0, 0b1001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
804 | let v2 = |
805 | load([0, 0, 0, 0, 0, 0b1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
806 | assert_eq!( |
807 | unload(v1.or(v2)), |
808 | [0, 0, 0, 0, 0, 0b1011, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
809 | ); |
810 | } |
811 | if !is_runnable() { |
812 | return; |
813 | } |
814 | unsafe { test() } |
815 | } |
816 | |
817 | #[test] |
818 | fn vector_shift_8bit_lane_right() { |
819 | #[target_feature (enable = "ssse3" )] |
820 | unsafe fn test() { |
821 | let v = load([ |
822 | 0, 0, 0, 0, 0b1011, 0b0101, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
823 | ]); |
824 | assert_eq!( |
825 | unload(v.shift_8bit_lane_right::<2>()), |
826 | [0, 0, 0, 0, 0b0010, 0b0001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
827 | ); |
828 | } |
829 | if !is_runnable() { |
830 | return; |
831 | } |
832 | unsafe { test() } |
833 | } |
834 | |
835 | #[test] |
836 | fn vector_shift_in_one_byte() { |
837 | #[target_feature (enable = "ssse3" )] |
838 | unsafe fn test() { |
839 | let v1 = |
840 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
841 | let v2 = load([ |
842 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
843 | ]); |
844 | assert_eq!( |
845 | unload(v1.shift_in_one_byte(v2)), |
846 | [32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], |
847 | ); |
848 | } |
849 | if !is_runnable() { |
850 | return; |
851 | } |
852 | unsafe { test() } |
853 | } |
854 | |
855 | #[test] |
856 | fn vector_shift_in_two_bytes() { |
857 | #[target_feature (enable = "ssse3" )] |
858 | unsafe fn test() { |
859 | let v1 = |
860 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
861 | let v2 = load([ |
862 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
863 | ]); |
864 | assert_eq!( |
865 | unload(v1.shift_in_two_bytes(v2)), |
866 | [31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], |
867 | ); |
868 | } |
869 | if !is_runnable() { |
870 | return; |
871 | } |
872 | unsafe { test() } |
873 | } |
874 | |
875 | #[test] |
876 | fn vector_shift_in_three_bytes() { |
877 | #[target_feature (enable = "ssse3" )] |
878 | unsafe fn test() { |
879 | let v1 = |
880 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
881 | let v2 = load([ |
882 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
883 | ]); |
884 | assert_eq!( |
885 | unload(v1.shift_in_three_bytes(v2)), |
886 | [30, 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], |
887 | ); |
888 | } |
889 | if !is_runnable() { |
890 | return; |
891 | } |
892 | unsafe { test() } |
893 | } |
894 | |
895 | #[test] |
896 | fn vector_shuffle_bytes() { |
897 | #[target_feature (enable = "ssse3" )] |
898 | unsafe fn test() { |
899 | let v1 = |
900 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
901 | let v2 = |
902 | load([0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12]); |
903 | assert_eq!( |
904 | unload(v1.shuffle_bytes(v2)), |
905 | [1, 1, 1, 1, 5, 5, 5, 5, 9, 9, 9, 9, 13, 13, 13, 13], |
906 | ); |
907 | } |
908 | if !is_runnable() { |
909 | return; |
910 | } |
911 | unsafe { test() } |
912 | } |
913 | |
914 | #[test] |
915 | fn vector_for_each_64bit_lane() { |
916 | #[target_feature (enable = "ssse3" )] |
917 | unsafe fn test() { |
918 | let v = load([ |
919 | 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, |
920 | 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, |
921 | ]); |
922 | let mut lanes = [0u64; 2]; |
923 | v.for_each_64bit_lane(|i, lane| { |
924 | lanes[i] = lane; |
925 | None::<()> |
926 | }); |
927 | assert_eq!(lanes, [0x0807060504030201, 0x100F0E0D0C0B0A09],); |
928 | } |
929 | if !is_runnable() { |
930 | return; |
931 | } |
932 | unsafe { test() } |
933 | } |
934 | } |
935 | |
936 | #[cfg (all(test, target_arch = "x86_64" , target_feature = "sse2" ))] |
937 | mod tests_x86_64_avx2 { |
938 | use core::arch::x86_64::*; |
939 | |
940 | use crate::util::int::{I32, U32}; |
941 | |
942 | use super::*; |
943 | |
944 | fn is_runnable() -> bool { |
945 | std::is_x86_feature_detected!("avx2" ) |
946 | } |
947 | |
948 | #[target_feature (enable = "avx2" )] |
949 | unsafe fn load(lanes: [u8; 32]) -> __m256i { |
950 | __m256i::load_unaligned(&lanes as *const u8) |
951 | } |
952 | |
953 | #[target_feature (enable = "avx2" )] |
954 | unsafe fn load_half(lanes: [u8; 16]) -> __m256i { |
955 | __m256i::load_half_unaligned(&lanes as *const u8) |
956 | } |
957 | |
958 | #[target_feature (enable = "avx2" )] |
959 | unsafe fn unload(v: __m256i) -> [u8; 32] { |
960 | [ |
961 | _mm256_extract_epi8(v, 0).to_bits().low_u8(), |
962 | _mm256_extract_epi8(v, 1).to_bits().low_u8(), |
963 | _mm256_extract_epi8(v, 2).to_bits().low_u8(), |
964 | _mm256_extract_epi8(v, 3).to_bits().low_u8(), |
965 | _mm256_extract_epi8(v, 4).to_bits().low_u8(), |
966 | _mm256_extract_epi8(v, 5).to_bits().low_u8(), |
967 | _mm256_extract_epi8(v, 6).to_bits().low_u8(), |
968 | _mm256_extract_epi8(v, 7).to_bits().low_u8(), |
969 | _mm256_extract_epi8(v, 8).to_bits().low_u8(), |
970 | _mm256_extract_epi8(v, 9).to_bits().low_u8(), |
971 | _mm256_extract_epi8(v, 10).to_bits().low_u8(), |
972 | _mm256_extract_epi8(v, 11).to_bits().low_u8(), |
973 | _mm256_extract_epi8(v, 12).to_bits().low_u8(), |
974 | _mm256_extract_epi8(v, 13).to_bits().low_u8(), |
975 | _mm256_extract_epi8(v, 14).to_bits().low_u8(), |
976 | _mm256_extract_epi8(v, 15).to_bits().low_u8(), |
977 | _mm256_extract_epi8(v, 16).to_bits().low_u8(), |
978 | _mm256_extract_epi8(v, 17).to_bits().low_u8(), |
979 | _mm256_extract_epi8(v, 18).to_bits().low_u8(), |
980 | _mm256_extract_epi8(v, 19).to_bits().low_u8(), |
981 | _mm256_extract_epi8(v, 20).to_bits().low_u8(), |
982 | _mm256_extract_epi8(v, 21).to_bits().low_u8(), |
983 | _mm256_extract_epi8(v, 22).to_bits().low_u8(), |
984 | _mm256_extract_epi8(v, 23).to_bits().low_u8(), |
985 | _mm256_extract_epi8(v, 24).to_bits().low_u8(), |
986 | _mm256_extract_epi8(v, 25).to_bits().low_u8(), |
987 | _mm256_extract_epi8(v, 26).to_bits().low_u8(), |
988 | _mm256_extract_epi8(v, 27).to_bits().low_u8(), |
989 | _mm256_extract_epi8(v, 28).to_bits().low_u8(), |
990 | _mm256_extract_epi8(v, 29).to_bits().low_u8(), |
991 | _mm256_extract_epi8(v, 30).to_bits().low_u8(), |
992 | _mm256_extract_epi8(v, 31).to_bits().low_u8(), |
993 | ] |
994 | } |
995 | |
996 | #[test] |
997 | fn vector_splat() { |
998 | #[target_feature (enable = "avx2" )] |
999 | unsafe fn test() { |
1000 | let v = __m256i::splat(0xAF); |
1001 | assert_eq!( |
1002 | unload(v), |
1003 | [ |
1004 | 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, |
1005 | 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, |
1006 | 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, |
1007 | 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, |
1008 | ] |
1009 | ); |
1010 | } |
1011 | if !is_runnable() { |
1012 | return; |
1013 | } |
1014 | unsafe { test() } |
1015 | } |
1016 | |
1017 | #[test] |
1018 | fn vector_is_zero() { |
1019 | #[target_feature (enable = "avx2" )] |
1020 | unsafe fn test() { |
1021 | let v = load([ |
1022 | 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1023 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1024 | ]); |
1025 | assert!(!v.is_zero()); |
1026 | let v = load([ |
1027 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1028 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1029 | ]); |
1030 | assert!(v.is_zero()); |
1031 | } |
1032 | if !is_runnable() { |
1033 | return; |
1034 | } |
1035 | unsafe { test() } |
1036 | } |
1037 | |
1038 | #[test] |
1039 | fn vector_cmpeq() { |
1040 | #[target_feature (enable = "avx2" )] |
1041 | unsafe fn test() { |
1042 | let v1 = load([ |
1043 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, |
1044 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, |
1045 | ]); |
1046 | let v2 = load([ |
1047 | 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, |
1048 | 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, |
1049 | ]); |
1050 | assert_eq!( |
1051 | unload(v1.cmpeq(v2)), |
1052 | [ |
1053 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1054 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF |
1055 | ] |
1056 | ); |
1057 | } |
1058 | if !is_runnable() { |
1059 | return; |
1060 | } |
1061 | unsafe { test() } |
1062 | } |
1063 | |
1064 | #[test] |
1065 | fn vector_and() { |
1066 | #[target_feature (enable = "avx2" )] |
1067 | unsafe fn test() { |
1068 | let v1 = load([ |
1069 | 0, 0, 0, 0, 0, 0b1001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1070 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1071 | ]); |
1072 | let v2 = load([ |
1073 | 0, 0, 0, 0, 0, 0b1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1074 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1075 | ]); |
1076 | assert_eq!( |
1077 | unload(v1.and(v2)), |
1078 | [ |
1079 | 0, 0, 0, 0, 0, 0b1000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1080 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1081 | ] |
1082 | ); |
1083 | } |
1084 | if !is_runnable() { |
1085 | return; |
1086 | } |
1087 | unsafe { test() } |
1088 | } |
1089 | |
1090 | #[test] |
1091 | fn vector_or() { |
1092 | #[target_feature (enable = "avx2" )] |
1093 | unsafe fn test() { |
1094 | let v1 = load([ |
1095 | 0, 0, 0, 0, 0, 0b1001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1096 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1097 | ]); |
1098 | let v2 = load([ |
1099 | 0, 0, 0, 0, 0, 0b1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1100 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1101 | ]); |
1102 | assert_eq!( |
1103 | unload(v1.or(v2)), |
1104 | [ |
1105 | 0, 0, 0, 0, 0, 0b1011, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1106 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1107 | ] |
1108 | ); |
1109 | } |
1110 | if !is_runnable() { |
1111 | return; |
1112 | } |
1113 | unsafe { test() } |
1114 | } |
1115 | |
1116 | #[test] |
1117 | fn vector_shift_8bit_lane_right() { |
1118 | #[target_feature (enable = "avx2" )] |
1119 | unsafe fn test() { |
1120 | let v = load([ |
1121 | 0, 0, 0, 0, 0b1011, 0b0101, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1122 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1123 | ]); |
1124 | assert_eq!( |
1125 | unload(v.shift_8bit_lane_right::<2>()), |
1126 | [ |
1127 | 0, 0, 0, 0, 0b0010, 0b0001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1128 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1129 | ] |
1130 | ); |
1131 | } |
1132 | if !is_runnable() { |
1133 | return; |
1134 | } |
1135 | unsafe { test() } |
1136 | } |
1137 | |
1138 | #[test] |
1139 | fn vector_shift_in_one_byte() { |
1140 | #[target_feature (enable = "avx2" )] |
1141 | unsafe fn test() { |
1142 | let v1 = load([ |
1143 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, |
1144 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1145 | ]); |
1146 | let v2 = load([ |
1147 | 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
1148 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, |
1149 | 63, 64, |
1150 | ]); |
1151 | assert_eq!( |
1152 | unload(v1.shift_in_one_byte(v2)), |
1153 | [ |
1154 | 64, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, |
1155 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, |
1156 | 31, |
1157 | ], |
1158 | ); |
1159 | } |
1160 | if !is_runnable() { |
1161 | return; |
1162 | } |
1163 | unsafe { test() } |
1164 | } |
1165 | |
1166 | #[test] |
1167 | fn vector_shift_in_two_bytes() { |
1168 | #[target_feature (enable = "avx2" )] |
1169 | unsafe fn test() { |
1170 | let v1 = load([ |
1171 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, |
1172 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1173 | ]); |
1174 | let v2 = load([ |
1175 | 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
1176 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, |
1177 | 63, 64, |
1178 | ]); |
1179 | assert_eq!( |
1180 | unload(v1.shift_in_two_bytes(v2)), |
1181 | [ |
1182 | 63, 64, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
1183 | 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, |
1184 | 30, |
1185 | ], |
1186 | ); |
1187 | } |
1188 | if !is_runnable() { |
1189 | return; |
1190 | } |
1191 | unsafe { test() } |
1192 | } |
1193 | |
1194 | #[test] |
1195 | fn vector_shift_in_three_bytes() { |
1196 | #[target_feature (enable = "avx2" )] |
1197 | unsafe fn test() { |
1198 | let v1 = load([ |
1199 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, |
1200 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1201 | ]); |
1202 | let v2 = load([ |
1203 | 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
1204 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, |
1205 | 63, 64, |
1206 | ]); |
1207 | assert_eq!( |
1208 | unload(v1.shift_in_three_bytes(v2)), |
1209 | [ |
1210 | 62, 63, 64, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, |
1211 | 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, |
1212 | 29, |
1213 | ], |
1214 | ); |
1215 | } |
1216 | if !is_runnable() { |
1217 | return; |
1218 | } |
1219 | unsafe { test() } |
1220 | } |
1221 | |
1222 | #[test] |
1223 | fn vector_shuffle_bytes() { |
1224 | #[target_feature (enable = "avx2" )] |
1225 | unsafe fn test() { |
1226 | let v1 = load([ |
1227 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, |
1228 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1229 | ]); |
1230 | let v2 = load([ |
1231 | 0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, |
1232 | 16, 16, 20, 20, 20, 20, 24, 24, 24, 24, 28, 28, 28, 28, |
1233 | ]); |
1234 | assert_eq!( |
1235 | unload(v1.shuffle_bytes(v2)), |
1236 | [ |
1237 | 1, 1, 1, 1, 5, 5, 5, 5, 9, 9, 9, 9, 13, 13, 13, 13, 17, |
1238 | 17, 17, 17, 21, 21, 21, 21, 25, 25, 25, 25, 29, 29, 29, |
1239 | 29 |
1240 | ], |
1241 | ); |
1242 | } |
1243 | if !is_runnable() { |
1244 | return; |
1245 | } |
1246 | unsafe { test() } |
1247 | } |
1248 | |
1249 | #[test] |
1250 | fn vector_for_each_64bit_lane() { |
1251 | #[target_feature (enable = "avx2" )] |
1252 | unsafe fn test() { |
1253 | let v = load([ |
1254 | 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, |
1255 | 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, |
1256 | 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, |
1257 | 0x1F, 0x20, |
1258 | ]); |
1259 | let mut lanes = [0u64; 4]; |
1260 | v.for_each_64bit_lane(|i, lane| { |
1261 | lanes[i] = lane; |
1262 | None::<()> |
1263 | }); |
1264 | assert_eq!( |
1265 | lanes, |
1266 | [ |
1267 | 0x0807060504030201, |
1268 | 0x100F0E0D0C0B0A09, |
1269 | 0x1817161514131211, |
1270 | 0x201F1E1D1C1B1A19 |
1271 | ] |
1272 | ); |
1273 | } |
1274 | if !is_runnable() { |
1275 | return; |
1276 | } |
1277 | unsafe { test() } |
1278 | } |
1279 | |
1280 | #[test] |
1281 | fn fat_vector_half_shift_in_one_byte() { |
1282 | #[target_feature (enable = "avx2" )] |
1283 | unsafe fn test() { |
1284 | let v1 = load_half([ |
1285 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, |
1286 | ]); |
1287 | let v2 = load_half([ |
1288 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1289 | ]); |
1290 | assert_eq!( |
1291 | unload(v1.half_shift_in_one_byte(v2)), |
1292 | [ |
1293 | 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, |
1294 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 |
1295 | ], |
1296 | ); |
1297 | } |
1298 | if !is_runnable() { |
1299 | return; |
1300 | } |
1301 | unsafe { test() } |
1302 | } |
1303 | |
1304 | #[test] |
1305 | fn fat_vector_half_shift_in_two_bytes() { |
1306 | #[target_feature (enable = "avx2" )] |
1307 | unsafe fn test() { |
1308 | let v1 = load_half([ |
1309 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, |
1310 | ]); |
1311 | let v2 = load_half([ |
1312 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1313 | ]); |
1314 | assert_eq!( |
1315 | unload(v1.half_shift_in_two_bytes(v2)), |
1316 | [ |
1317 | 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 31, |
1318 | 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, |
1319 | ], |
1320 | ); |
1321 | } |
1322 | if !is_runnable() { |
1323 | return; |
1324 | } |
1325 | unsafe { test() } |
1326 | } |
1327 | |
1328 | #[test] |
1329 | fn fat_vector_half_shift_in_three_bytes() { |
1330 | #[target_feature (enable = "avx2" )] |
1331 | unsafe fn test() { |
1332 | let v1 = load_half([ |
1333 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, |
1334 | ]); |
1335 | let v2 = load_half([ |
1336 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1337 | ]); |
1338 | assert_eq!( |
1339 | unload(v1.half_shift_in_three_bytes(v2)), |
1340 | [ |
1341 | 30, 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 30, |
1342 | 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, |
1343 | ], |
1344 | ); |
1345 | } |
1346 | if !is_runnable() { |
1347 | return; |
1348 | } |
1349 | unsafe { test() } |
1350 | } |
1351 | |
1352 | #[test] |
1353 | fn fat_vector_swap_halves() { |
1354 | #[target_feature (enable = "avx2" )] |
1355 | unsafe fn test() { |
1356 | let v = load([ |
1357 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, |
1358 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1359 | ]); |
1360 | assert_eq!( |
1361 | unload(v.swap_halves()), |
1362 | [ |
1363 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, |
1364 | 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
1365 | 16, |
1366 | ], |
1367 | ); |
1368 | } |
1369 | if !is_runnable() { |
1370 | return; |
1371 | } |
1372 | unsafe { test() } |
1373 | } |
1374 | |
1375 | #[test] |
1376 | fn fat_vector_interleave_low_8bit_lanes() { |
1377 | #[target_feature (enable = "avx2" )] |
1378 | unsafe fn test() { |
1379 | let v1 = load([ |
1380 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, |
1381 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1382 | ]); |
1383 | let v2 = load([ |
1384 | 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
1385 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, |
1386 | 63, 64, |
1387 | ]); |
1388 | assert_eq!( |
1389 | unload(v1.interleave_low_8bit_lanes(v2)), |
1390 | [ |
1391 | 1, 33, 2, 34, 3, 35, 4, 36, 5, 37, 6, 38, 7, 39, 8, 40, |
1392 | 17, 49, 18, 50, 19, 51, 20, 52, 21, 53, 22, 54, 23, 55, |
1393 | 24, 56, |
1394 | ], |
1395 | ); |
1396 | } |
1397 | if !is_runnable() { |
1398 | return; |
1399 | } |
1400 | unsafe { test() } |
1401 | } |
1402 | |
1403 | #[test] |
1404 | fn fat_vector_interleave_high_8bit_lanes() { |
1405 | #[target_feature (enable = "avx2" )] |
1406 | unsafe fn test() { |
1407 | let v1 = load([ |
1408 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, |
1409 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1410 | ]); |
1411 | let v2 = load([ |
1412 | 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
1413 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, |
1414 | 63, 64, |
1415 | ]); |
1416 | assert_eq!( |
1417 | unload(v1.interleave_high_8bit_lanes(v2)), |
1418 | [ |
1419 | 9, 41, 10, 42, 11, 43, 12, 44, 13, 45, 14, 46, 15, 47, 16, |
1420 | 48, 25, 57, 26, 58, 27, 59, 28, 60, 29, 61, 30, 62, 31, |
1421 | 63, 32, 64, |
1422 | ], |
1423 | ); |
1424 | } |
1425 | if !is_runnable() { |
1426 | return; |
1427 | } |
1428 | unsafe { test() } |
1429 | } |
1430 | |
1431 | #[test] |
1432 | fn fat_vector_for_each_low_64bit_lane() { |
1433 | #[target_feature (enable = "avx2" )] |
1434 | unsafe fn test() { |
1435 | let v1 = load([ |
1436 | 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, |
1437 | 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, |
1438 | 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, |
1439 | 0x1F, 0x20, |
1440 | ]); |
1441 | let v2 = load([ |
1442 | 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, |
1443 | 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, |
1444 | 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, |
1445 | 0x3F, 0x40, |
1446 | ]); |
1447 | let mut lanes = [0u64; 4]; |
1448 | v1.for_each_low_64bit_lane(v2, |i, lane| { |
1449 | lanes[i] = lane; |
1450 | None::<()> |
1451 | }); |
1452 | assert_eq!( |
1453 | lanes, |
1454 | [ |
1455 | 0x0807060504030201, |
1456 | 0x100F0E0D0C0B0A09, |
1457 | 0x2827262524232221, |
1458 | 0x302F2E2D2C2B2A29 |
1459 | ] |
1460 | ); |
1461 | } |
1462 | if !is_runnable() { |
1463 | return; |
1464 | } |
1465 | unsafe { test() } |
1466 | } |
1467 | } |
1468 | |
1469 | #[cfg (all(test, target_arch = "aarch64" , target_feature = "neon" ))] |
1470 | mod tests_aarch64_neon { |
1471 | use core::arch::aarch64::*; |
1472 | |
1473 | use super::*; |
1474 | |
1475 | #[target_feature (enable = "neon" )] |
1476 | unsafe fn load(lanes: [u8; 16]) -> uint8x16_t { |
1477 | uint8x16_t::load_unaligned(&lanes as *const u8) |
1478 | } |
1479 | |
1480 | #[target_feature (enable = "neon" )] |
1481 | unsafe fn unload(v: uint8x16_t) -> [u8; 16] { |
1482 | [ |
1483 | vgetq_lane_u8(v, 0), |
1484 | vgetq_lane_u8(v, 1), |
1485 | vgetq_lane_u8(v, 2), |
1486 | vgetq_lane_u8(v, 3), |
1487 | vgetq_lane_u8(v, 4), |
1488 | vgetq_lane_u8(v, 5), |
1489 | vgetq_lane_u8(v, 6), |
1490 | vgetq_lane_u8(v, 7), |
1491 | vgetq_lane_u8(v, 8), |
1492 | vgetq_lane_u8(v, 9), |
1493 | vgetq_lane_u8(v, 10), |
1494 | vgetq_lane_u8(v, 11), |
1495 | vgetq_lane_u8(v, 12), |
1496 | vgetq_lane_u8(v, 13), |
1497 | vgetq_lane_u8(v, 14), |
1498 | vgetq_lane_u8(v, 15), |
1499 | ] |
1500 | } |
1501 | |
1502 | // Example functions. These don't test the Vector traits, but rather, |
1503 | // specific NEON instructions. They are basically little experiments I |
1504 | // wrote to figure out what an instruction does since their descriptions |
1505 | // are so dense. I decided to keep the experiments around as example tests |
1506 | // in case there' useful. |
1507 | |
1508 | #[test] |
1509 | fn example_vmaxvq_u8_non_zero() { |
1510 | #[target_feature (enable = "neon" )] |
1511 | unsafe fn example() { |
1512 | let v = load([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
1513 | assert_eq!(vmaxvq_u8(v), 1); |
1514 | } |
1515 | unsafe { example() } |
1516 | } |
1517 | |
1518 | #[test] |
1519 | fn example_vmaxvq_u8_zero() { |
1520 | #[target_feature (enable = "neon" )] |
1521 | unsafe fn example() { |
1522 | let v = load([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
1523 | assert_eq!(vmaxvq_u8(v), 0); |
1524 | } |
1525 | unsafe { example() } |
1526 | } |
1527 | |
1528 | #[test] |
1529 | fn example_vpmaxq_u8_non_zero() { |
1530 | #[target_feature (enable = "neon" )] |
1531 | unsafe fn example() { |
1532 | let v = load([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
1533 | let r = vpmaxq_u8(v, v); |
1534 | assert_eq!( |
1535 | unload(r), |
1536 | [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] |
1537 | ); |
1538 | } |
1539 | unsafe { example() } |
1540 | } |
1541 | |
1542 | #[test] |
1543 | fn example_vpmaxq_u8_self() { |
1544 | #[target_feature (enable = "neon" )] |
1545 | unsafe fn example() { |
1546 | let v = |
1547 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
1548 | let r = vpmaxq_u8(v, v); |
1549 | assert_eq!( |
1550 | unload(r), |
1551 | [2, 4, 6, 8, 10, 12, 14, 16, 2, 4, 6, 8, 10, 12, 14, 16] |
1552 | ); |
1553 | } |
1554 | unsafe { example() } |
1555 | } |
1556 | |
1557 | #[test] |
1558 | fn example_vpmaxq_u8_other() { |
1559 | #[target_feature (enable = "neon" )] |
1560 | unsafe fn example() { |
1561 | let v1 = |
1562 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
1563 | let v2 = load([ |
1564 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1565 | ]); |
1566 | let r = vpmaxq_u8(v1, v2); |
1567 | assert_eq!( |
1568 | unload(r), |
1569 | [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32] |
1570 | ); |
1571 | } |
1572 | unsafe { example() } |
1573 | } |
1574 | |
1575 | // Now we test the actual methods on the Vector trait. |
1576 | |
1577 | #[test] |
1578 | fn vector_splat() { |
1579 | #[target_feature (enable = "neon" )] |
1580 | unsafe fn test() { |
1581 | let v = uint8x16_t::splat(0xAF); |
1582 | assert_eq!( |
1583 | unload(v), |
1584 | [ |
1585 | 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, |
1586 | 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF |
1587 | ] |
1588 | ); |
1589 | } |
1590 | unsafe { test() } |
1591 | } |
1592 | |
1593 | #[test] |
1594 | fn vector_is_zero() { |
1595 | #[target_feature (enable = "neon" )] |
1596 | unsafe fn test() { |
1597 | let v = load([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
1598 | assert!(!v.is_zero()); |
1599 | let v = load([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
1600 | assert!(v.is_zero()); |
1601 | } |
1602 | unsafe { test() } |
1603 | } |
1604 | |
1605 | #[test] |
1606 | fn vector_cmpeq() { |
1607 | #[target_feature (enable = "neon" )] |
1608 | unsafe fn test() { |
1609 | let v1 = |
1610 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1]); |
1611 | let v2 = |
1612 | load([16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]); |
1613 | assert_eq!( |
1614 | unload(v1.cmpeq(v2)), |
1615 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF] |
1616 | ); |
1617 | } |
1618 | unsafe { test() } |
1619 | } |
1620 | |
1621 | #[test] |
1622 | fn vector_and() { |
1623 | #[target_feature (enable = "neon" )] |
1624 | unsafe fn test() { |
1625 | let v1 = |
1626 | load([0, 0, 0, 0, 0, 0b1001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
1627 | let v2 = |
1628 | load([0, 0, 0, 0, 0, 0b1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
1629 | assert_eq!( |
1630 | unload(v1.and(v2)), |
1631 | [0, 0, 0, 0, 0, 0b1000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
1632 | ); |
1633 | } |
1634 | unsafe { test() } |
1635 | } |
1636 | |
1637 | #[test] |
1638 | fn vector_or() { |
1639 | #[target_feature (enable = "neon" )] |
1640 | unsafe fn test() { |
1641 | let v1 = |
1642 | load([0, 0, 0, 0, 0, 0b1001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
1643 | let v2 = |
1644 | load([0, 0, 0, 0, 0, 0b1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
1645 | assert_eq!( |
1646 | unload(v1.or(v2)), |
1647 | [0, 0, 0, 0, 0, 0b1011, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
1648 | ); |
1649 | } |
1650 | unsafe { test() } |
1651 | } |
1652 | |
1653 | #[test] |
1654 | fn vector_shift_8bit_lane_right() { |
1655 | #[target_feature (enable = "neon" )] |
1656 | unsafe fn test() { |
1657 | let v = load([ |
1658 | 0, 0, 0, 0, 0b1011, 0b0101, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1659 | ]); |
1660 | assert_eq!( |
1661 | unload(v.shift_8bit_lane_right::<2>()), |
1662 | [0, 0, 0, 0, 0b0010, 0b0001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
1663 | ); |
1664 | } |
1665 | unsafe { test() } |
1666 | } |
1667 | |
1668 | #[test] |
1669 | fn vector_shift_in_one_byte() { |
1670 | #[target_feature (enable = "neon" )] |
1671 | unsafe fn test() { |
1672 | let v1 = |
1673 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
1674 | let v2 = load([ |
1675 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1676 | ]); |
1677 | assert_eq!( |
1678 | unload(v1.shift_in_one_byte(v2)), |
1679 | [32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], |
1680 | ); |
1681 | } |
1682 | unsafe { test() } |
1683 | } |
1684 | |
1685 | #[test] |
1686 | fn vector_shift_in_two_bytes() { |
1687 | #[target_feature (enable = "neon" )] |
1688 | unsafe fn test() { |
1689 | let v1 = |
1690 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
1691 | let v2 = load([ |
1692 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1693 | ]); |
1694 | assert_eq!( |
1695 | unload(v1.shift_in_two_bytes(v2)), |
1696 | [31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], |
1697 | ); |
1698 | } |
1699 | unsafe { test() } |
1700 | } |
1701 | |
1702 | #[test] |
1703 | fn vector_shift_in_three_bytes() { |
1704 | #[target_feature (enable = "neon" )] |
1705 | unsafe fn test() { |
1706 | let v1 = |
1707 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
1708 | let v2 = load([ |
1709 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1710 | ]); |
1711 | assert_eq!( |
1712 | unload(v1.shift_in_three_bytes(v2)), |
1713 | [30, 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], |
1714 | ); |
1715 | } |
1716 | unsafe { test() } |
1717 | } |
1718 | |
1719 | #[test] |
1720 | fn vector_shuffle_bytes() { |
1721 | #[target_feature (enable = "neon" )] |
1722 | unsafe fn test() { |
1723 | let v1 = |
1724 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
1725 | let v2 = |
1726 | load([0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12]); |
1727 | assert_eq!( |
1728 | unload(v1.shuffle_bytes(v2)), |
1729 | [1, 1, 1, 1, 5, 5, 5, 5, 9, 9, 9, 9, 13, 13, 13, 13], |
1730 | ); |
1731 | } |
1732 | unsafe { test() } |
1733 | } |
1734 | |
1735 | #[test] |
1736 | fn vector_for_each_64bit_lane() { |
1737 | #[target_feature (enable = "neon" )] |
1738 | unsafe fn test() { |
1739 | let v = load([ |
1740 | 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, |
1741 | 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, |
1742 | ]); |
1743 | let mut lanes = [0u64; 2]; |
1744 | v.for_each_64bit_lane(|i, lane| { |
1745 | lanes[i] = lane; |
1746 | None::<()> |
1747 | }); |
1748 | assert_eq!(lanes, [0x0807060504030201, 0x100F0E0D0C0B0A09],); |
1749 | } |
1750 | unsafe { test() } |
1751 | } |
1752 | } |
1753 | |