1 | use core::iter::FromIterator; |
2 | use core::ops::{Deref, RangeBounds}; |
3 | use core::{cmp, fmt, hash, mem, ptr, slice, usize}; |
4 | |
5 | use alloc::{ |
6 | alloc::{dealloc, Layout}, |
7 | borrow::Borrow, |
8 | boxed::Box, |
9 | string::String, |
10 | vec::Vec, |
11 | }; |
12 | |
13 | use crate::buf::IntoIter; |
14 | #[allow (unused)] |
15 | use crate::loom::sync::atomic::AtomicMut; |
16 | use crate::loom::sync::atomic::{AtomicPtr, AtomicUsize, Ordering}; |
17 | use crate::Buf; |
18 | |
19 | /// A cheaply cloneable and sliceable chunk of contiguous memory. |
20 | /// |
21 | /// `Bytes` is an efficient container for storing and operating on contiguous |
22 | /// slices of memory. It is intended for use primarily in networking code, but |
23 | /// could have applications elsewhere as well. |
24 | /// |
25 | /// `Bytes` values facilitate zero-copy network programming by allowing multiple |
26 | /// `Bytes` objects to point to the same underlying memory. |
27 | /// |
28 | /// `Bytes` does not have a single implementation. It is an interface, whose |
29 | /// exact behavior is implemented through dynamic dispatch in several underlying |
30 | /// implementations of `Bytes`. |
31 | /// |
32 | /// All `Bytes` implementations must fulfill the following requirements: |
33 | /// - They are cheaply cloneable and thereby shareable between an unlimited amount |
34 | /// of components, for example by modifying a reference count. |
35 | /// - Instances can be sliced to refer to a subset of the original buffer. |
36 | /// |
37 | /// ``` |
38 | /// use bytes::Bytes; |
39 | /// |
40 | /// let mut mem = Bytes::from("Hello world" ); |
41 | /// let a = mem.slice(0..5); |
42 | /// |
43 | /// assert_eq!(a, "Hello" ); |
44 | /// |
45 | /// let b = mem.split_to(6); |
46 | /// |
47 | /// assert_eq!(mem, "world" ); |
48 | /// assert_eq!(b, "Hello " ); |
49 | /// ``` |
50 | /// |
51 | /// # Memory layout |
52 | /// |
53 | /// The `Bytes` struct itself is fairly small, limited to 4 `usize` fields used |
54 | /// to track information about which segment of the underlying memory the |
55 | /// `Bytes` handle has access to. |
56 | /// |
57 | /// `Bytes` keeps both a pointer to the shared state containing the full memory |
58 | /// slice and a pointer to the start of the region visible by the handle. |
59 | /// `Bytes` also tracks the length of its view into the memory. |
60 | /// |
61 | /// # Sharing |
62 | /// |
63 | /// `Bytes` contains a vtable, which allows implementations of `Bytes` to define |
64 | /// how sharing/cloning is implemented in detail. |
65 | /// When `Bytes::clone()` is called, `Bytes` will call the vtable function for |
66 | /// cloning the backing storage in order to share it behind between multiple |
67 | /// `Bytes` instances. |
68 | /// |
69 | /// For `Bytes` implementations which refer to constant memory (e.g. created |
70 | /// via `Bytes::from_static()`) the cloning implementation will be a no-op. |
71 | /// |
72 | /// For `Bytes` implementations which point to a reference counted shared storage |
73 | /// (e.g. an `Arc<[u8]>`), sharing will be implemented by increasing the |
74 | /// reference count. |
75 | /// |
76 | /// Due to this mechanism, multiple `Bytes` instances may point to the same |
77 | /// shared memory region. |
78 | /// Each `Bytes` instance can point to different sections within that |
79 | /// memory region, and `Bytes` instances may or may not have overlapping views |
80 | /// into the memory. |
81 | /// |
82 | /// The following diagram visualizes a scenario where 2 `Bytes` instances make |
83 | /// use of an `Arc`-based backing storage, and provide access to different views: |
84 | /// |
85 | /// ```text |
86 | /// |
87 | /// Arc ptrs ┌─────────┐ |
88 | /// ________________________ / │ Bytes 2 │ |
89 | /// / └─────────┘ |
90 | /// / ┌───────────┐ | | |
91 | /// |_________/ │ Bytes 1 │ | | |
92 | /// | └───────────┘ | | |
93 | /// | | | ___/ data | tail |
94 | /// | data | tail |/ | |
95 | /// v v v v |
96 | /// ┌─────┬─────┬───────────┬───────────────┬─────┐ |
97 | /// │ Arc │ │ │ │ │ |
98 | /// └─────┴─────┴───────────┴───────────────┴─────┘ |
99 | /// ``` |
100 | pub struct Bytes { |
101 | ptr: *const u8, |
102 | len: usize, |
103 | // inlined "trait object" |
104 | data: AtomicPtr<()>, |
105 | vtable: &'static Vtable, |
106 | } |
107 | |
108 | pub(crate) struct Vtable { |
109 | /// fn(data, ptr, len) |
110 | pub clone: unsafe fn(&AtomicPtr<()>, *const u8, usize) -> Bytes, |
111 | /// fn(data, ptr, len) |
112 | /// |
113 | /// takes `Bytes` to value |
114 | pub to_vec: unsafe fn(&AtomicPtr<()>, *const u8, usize) -> Vec<u8>, |
115 | /// fn(data, ptr, len) |
116 | pub drop: unsafe fn(&mut AtomicPtr<()>, *const u8, usize), |
117 | } |
118 | |
119 | impl Bytes { |
120 | /// Creates a new empty `Bytes`. |
121 | /// |
122 | /// This will not allocate and the returned `Bytes` handle will be empty. |
123 | /// |
124 | /// # Examples |
125 | /// |
126 | /// ``` |
127 | /// use bytes::Bytes; |
128 | /// |
129 | /// let b = Bytes::new(); |
130 | /// assert_eq!(&b[..], b"" ); |
131 | /// ``` |
132 | #[inline ] |
133 | #[cfg (not(all(loom, test)))] |
134 | pub const fn new() -> Self { |
135 | // Make it a named const to work around |
136 | // "unsizing casts are not allowed in const fn" |
137 | const EMPTY: &[u8] = &[]; |
138 | Bytes::from_static(EMPTY) |
139 | } |
140 | |
141 | #[cfg (all(loom, test))] |
142 | pub fn new() -> Self { |
143 | const EMPTY: &[u8] = &[]; |
144 | Bytes::from_static(EMPTY) |
145 | } |
146 | |
147 | /// Creates a new `Bytes` from a static slice. |
148 | /// |
149 | /// The returned `Bytes` will point directly to the static slice. There is |
150 | /// no allocating or copying. |
151 | /// |
152 | /// # Examples |
153 | /// |
154 | /// ``` |
155 | /// use bytes::Bytes; |
156 | /// |
157 | /// let b = Bytes::from_static(b"hello" ); |
158 | /// assert_eq!(&b[..], b"hello" ); |
159 | /// ``` |
160 | #[inline ] |
161 | #[cfg (not(all(loom, test)))] |
162 | pub const fn from_static(bytes: &'static [u8]) -> Self { |
163 | Bytes { |
164 | ptr: bytes.as_ptr(), |
165 | len: bytes.len(), |
166 | data: AtomicPtr::new(ptr::null_mut()), |
167 | vtable: &STATIC_VTABLE, |
168 | } |
169 | } |
170 | |
171 | #[cfg (all(loom, test))] |
172 | pub fn from_static(bytes: &'static [u8]) -> Self { |
173 | Bytes { |
174 | ptr: bytes.as_ptr(), |
175 | len: bytes.len(), |
176 | data: AtomicPtr::new(ptr::null_mut()), |
177 | vtable: &STATIC_VTABLE, |
178 | } |
179 | } |
180 | |
181 | /// Returns the number of bytes contained in this `Bytes`. |
182 | /// |
183 | /// # Examples |
184 | /// |
185 | /// ``` |
186 | /// use bytes::Bytes; |
187 | /// |
188 | /// let b = Bytes::from(&b"hello" [..]); |
189 | /// assert_eq!(b.len(), 5); |
190 | /// ``` |
191 | #[inline ] |
192 | pub const fn len(&self) -> usize { |
193 | self.len |
194 | } |
195 | |
196 | /// Returns true if the `Bytes` has a length of 0. |
197 | /// |
198 | /// # Examples |
199 | /// |
200 | /// ``` |
201 | /// use bytes::Bytes; |
202 | /// |
203 | /// let b = Bytes::new(); |
204 | /// assert!(b.is_empty()); |
205 | /// ``` |
206 | #[inline ] |
207 | pub const fn is_empty(&self) -> bool { |
208 | self.len == 0 |
209 | } |
210 | |
211 | /// Creates `Bytes` instance from slice, by copying it. |
212 | pub fn copy_from_slice(data: &[u8]) -> Self { |
213 | data.to_vec().into() |
214 | } |
215 | |
216 | /// Returns a slice of self for the provided range. |
217 | /// |
218 | /// This will increment the reference count for the underlying memory and |
219 | /// return a new `Bytes` handle set to the slice. |
220 | /// |
221 | /// This operation is `O(1)`. |
222 | /// |
223 | /// # Examples |
224 | /// |
225 | /// ``` |
226 | /// use bytes::Bytes; |
227 | /// |
228 | /// let a = Bytes::from(&b"hello world" [..]); |
229 | /// let b = a.slice(2..5); |
230 | /// |
231 | /// assert_eq!(&b[..], b"llo" ); |
232 | /// ``` |
233 | /// |
234 | /// # Panics |
235 | /// |
236 | /// Requires that `begin <= end` and `end <= self.len()`, otherwise slicing |
237 | /// will panic. |
238 | pub fn slice(&self, range: impl RangeBounds<usize>) -> Self { |
239 | use core::ops::Bound; |
240 | |
241 | let len = self.len(); |
242 | |
243 | let begin = match range.start_bound() { |
244 | Bound::Included(&n) => n, |
245 | Bound::Excluded(&n) => n + 1, |
246 | Bound::Unbounded => 0, |
247 | }; |
248 | |
249 | let end = match range.end_bound() { |
250 | Bound::Included(&n) => n.checked_add(1).expect("out of range" ), |
251 | Bound::Excluded(&n) => n, |
252 | Bound::Unbounded => len, |
253 | }; |
254 | |
255 | assert!( |
256 | begin <= end, |
257 | "range start must not be greater than end: {:?} <= {:?}" , |
258 | begin, |
259 | end, |
260 | ); |
261 | assert!( |
262 | end <= len, |
263 | "range end out of bounds: {:?} <= {:?}" , |
264 | end, |
265 | len, |
266 | ); |
267 | |
268 | if end == begin { |
269 | return Bytes::new(); |
270 | } |
271 | |
272 | let mut ret = self.clone(); |
273 | |
274 | ret.len = end - begin; |
275 | ret.ptr = unsafe { ret.ptr.add(begin) }; |
276 | |
277 | ret |
278 | } |
279 | |
280 | /// Returns a slice of self that is equivalent to the given `subset`. |
281 | /// |
282 | /// When processing a `Bytes` buffer with other tools, one often gets a |
283 | /// `&[u8]` which is in fact a slice of the `Bytes`, i.e. a subset of it. |
284 | /// This function turns that `&[u8]` into another `Bytes`, as if one had |
285 | /// called `self.slice()` with the offsets that correspond to `subset`. |
286 | /// |
287 | /// This operation is `O(1)`. |
288 | /// |
289 | /// # Examples |
290 | /// |
291 | /// ``` |
292 | /// use bytes::Bytes; |
293 | /// |
294 | /// let bytes = Bytes::from(&b"012345678" [..]); |
295 | /// let as_slice = bytes.as_ref(); |
296 | /// let subset = &as_slice[2..6]; |
297 | /// let subslice = bytes.slice_ref(&subset); |
298 | /// assert_eq!(&subslice[..], b"2345" ); |
299 | /// ``` |
300 | /// |
301 | /// # Panics |
302 | /// |
303 | /// Requires that the given `sub` slice is in fact contained within the |
304 | /// `Bytes` buffer; otherwise this function will panic. |
305 | pub fn slice_ref(&self, subset: &[u8]) -> Self { |
306 | // Empty slice and empty Bytes may have their pointers reset |
307 | // so explicitly allow empty slice to be a subslice of any slice. |
308 | if subset.is_empty() { |
309 | return Bytes::new(); |
310 | } |
311 | |
312 | let bytes_p = self.as_ptr() as usize; |
313 | let bytes_len = self.len(); |
314 | |
315 | let sub_p = subset.as_ptr() as usize; |
316 | let sub_len = subset.len(); |
317 | |
318 | assert!( |
319 | sub_p >= bytes_p, |
320 | "subset pointer ({:p}) is smaller than self pointer ({:p})" , |
321 | subset.as_ptr(), |
322 | self.as_ptr(), |
323 | ); |
324 | assert!( |
325 | sub_p + sub_len <= bytes_p + bytes_len, |
326 | "subset is out of bounds: self = ({:p}, {}), subset = ({:p}, {})" , |
327 | self.as_ptr(), |
328 | bytes_len, |
329 | subset.as_ptr(), |
330 | sub_len, |
331 | ); |
332 | |
333 | let sub_offset = sub_p - bytes_p; |
334 | |
335 | self.slice(sub_offset..(sub_offset + sub_len)) |
336 | } |
337 | |
338 | /// Splits the bytes into two at the given index. |
339 | /// |
340 | /// Afterwards `self` contains elements `[0, at)`, and the returned `Bytes` |
341 | /// contains elements `[at, len)`. |
342 | /// |
343 | /// This is an `O(1)` operation that just increases the reference count and |
344 | /// sets a few indices. |
345 | /// |
346 | /// # Examples |
347 | /// |
348 | /// ``` |
349 | /// use bytes::Bytes; |
350 | /// |
351 | /// let mut a = Bytes::from(&b"hello world" [..]); |
352 | /// let b = a.split_off(5); |
353 | /// |
354 | /// assert_eq!(&a[..], b"hello" ); |
355 | /// assert_eq!(&b[..], b" world" ); |
356 | /// ``` |
357 | /// |
358 | /// # Panics |
359 | /// |
360 | /// Panics if `at > len`. |
361 | #[must_use = "consider Bytes::truncate if you don't need the other half" ] |
362 | pub fn split_off(&mut self, at: usize) -> Self { |
363 | assert!( |
364 | at <= self.len(), |
365 | "split_off out of bounds: {:?} <= {:?}" , |
366 | at, |
367 | self.len(), |
368 | ); |
369 | |
370 | if at == self.len() { |
371 | return Bytes::new(); |
372 | } |
373 | |
374 | if at == 0 { |
375 | return mem::replace(self, Bytes::new()); |
376 | } |
377 | |
378 | let mut ret = self.clone(); |
379 | |
380 | self.len = at; |
381 | |
382 | unsafe { ret.inc_start(at) }; |
383 | |
384 | ret |
385 | } |
386 | |
387 | /// Splits the bytes into two at the given index. |
388 | /// |
389 | /// Afterwards `self` contains elements `[at, len)`, and the returned |
390 | /// `Bytes` contains elements `[0, at)`. |
391 | /// |
392 | /// This is an `O(1)` operation that just increases the reference count and |
393 | /// sets a few indices. |
394 | /// |
395 | /// # Examples |
396 | /// |
397 | /// ``` |
398 | /// use bytes::Bytes; |
399 | /// |
400 | /// let mut a = Bytes::from(&b"hello world" [..]); |
401 | /// let b = a.split_to(5); |
402 | /// |
403 | /// assert_eq!(&a[..], b" world" ); |
404 | /// assert_eq!(&b[..], b"hello" ); |
405 | /// ``` |
406 | /// |
407 | /// # Panics |
408 | /// |
409 | /// Panics if `at > len`. |
410 | #[must_use = "consider Bytes::advance if you don't need the other half" ] |
411 | pub fn split_to(&mut self, at: usize) -> Self { |
412 | assert!( |
413 | at <= self.len(), |
414 | "split_to out of bounds: {:?} <= {:?}" , |
415 | at, |
416 | self.len(), |
417 | ); |
418 | |
419 | if at == self.len() { |
420 | return mem::replace(self, Bytes::new()); |
421 | } |
422 | |
423 | if at == 0 { |
424 | return Bytes::new(); |
425 | } |
426 | |
427 | let mut ret = self.clone(); |
428 | |
429 | unsafe { self.inc_start(at) }; |
430 | |
431 | ret.len = at; |
432 | ret |
433 | } |
434 | |
435 | /// Shortens the buffer, keeping the first `len` bytes and dropping the |
436 | /// rest. |
437 | /// |
438 | /// If `len` is greater than the buffer's current length, this has no |
439 | /// effect. |
440 | /// |
441 | /// The [`split_off`] method can emulate `truncate`, but this causes the |
442 | /// excess bytes to be returned instead of dropped. |
443 | /// |
444 | /// # Examples |
445 | /// |
446 | /// ``` |
447 | /// use bytes::Bytes; |
448 | /// |
449 | /// let mut buf = Bytes::from(&b"hello world" [..]); |
450 | /// buf.truncate(5); |
451 | /// assert_eq!(buf, b"hello" [..]); |
452 | /// ``` |
453 | /// |
454 | /// [`split_off`]: #method.split_off |
455 | #[inline ] |
456 | pub fn truncate(&mut self, len: usize) { |
457 | if len < self.len { |
458 | // The Vec "promotable" vtables do not store the capacity, |
459 | // so we cannot truncate while using this repr. We *have* to |
460 | // promote using `split_off` so the capacity can be stored. |
461 | if self.vtable as *const Vtable == &PROMOTABLE_EVEN_VTABLE |
462 | || self.vtable as *const Vtable == &PROMOTABLE_ODD_VTABLE |
463 | { |
464 | drop(self.split_off(len)); |
465 | } else { |
466 | self.len = len; |
467 | } |
468 | } |
469 | } |
470 | |
471 | /// Clears the buffer, removing all data. |
472 | /// |
473 | /// # Examples |
474 | /// |
475 | /// ``` |
476 | /// use bytes::Bytes; |
477 | /// |
478 | /// let mut buf = Bytes::from(&b"hello world" [..]); |
479 | /// buf.clear(); |
480 | /// assert!(buf.is_empty()); |
481 | /// ``` |
482 | #[inline ] |
483 | pub fn clear(&mut self) { |
484 | self.truncate(0); |
485 | } |
486 | |
487 | #[inline ] |
488 | pub(crate) unsafe fn with_vtable( |
489 | ptr: *const u8, |
490 | len: usize, |
491 | data: AtomicPtr<()>, |
492 | vtable: &'static Vtable, |
493 | ) -> Bytes { |
494 | Bytes { |
495 | ptr, |
496 | len, |
497 | data, |
498 | vtable, |
499 | } |
500 | } |
501 | |
502 | // private |
503 | |
504 | #[inline ] |
505 | fn as_slice(&self) -> &[u8] { |
506 | unsafe { slice::from_raw_parts(self.ptr, self.len) } |
507 | } |
508 | |
509 | #[inline ] |
510 | unsafe fn inc_start(&mut self, by: usize) { |
511 | // should already be asserted, but debug assert for tests |
512 | debug_assert!(self.len >= by, "internal: inc_start out of bounds" ); |
513 | self.len -= by; |
514 | self.ptr = self.ptr.add(by); |
515 | } |
516 | } |
517 | |
518 | // Vtable must enforce this behavior |
519 | unsafe impl Send for Bytes {} |
520 | unsafe impl Sync for Bytes {} |
521 | |
522 | impl Drop for Bytes { |
523 | #[inline ] |
524 | fn drop(&mut self) { |
525 | unsafe { (self.vtable.drop)(&mut self.data, self.ptr, self.len) } |
526 | } |
527 | } |
528 | |
529 | impl Clone for Bytes { |
530 | #[inline ] |
531 | fn clone(&self) -> Bytes { |
532 | unsafe { (self.vtable.clone)(&self.data, self.ptr, self.len) } |
533 | } |
534 | } |
535 | |
536 | impl Buf for Bytes { |
537 | #[inline ] |
538 | fn remaining(&self) -> usize { |
539 | self.len() |
540 | } |
541 | |
542 | #[inline ] |
543 | fn chunk(&self) -> &[u8] { |
544 | self.as_slice() |
545 | } |
546 | |
547 | #[inline ] |
548 | fn advance(&mut self, cnt: usize) { |
549 | assert!( |
550 | cnt <= self.len(), |
551 | "cannot advance past `remaining`: {:?} <= {:?}" , |
552 | cnt, |
553 | self.len(), |
554 | ); |
555 | |
556 | unsafe { |
557 | self.inc_start(cnt); |
558 | } |
559 | } |
560 | |
561 | fn copy_to_bytes(&mut self, len: usize) -> crate::Bytes { |
562 | if len == self.remaining() { |
563 | core::mem::replace(self, Bytes::new()) |
564 | } else { |
565 | let ret = self.slice(..len); |
566 | self.advance(len); |
567 | ret |
568 | } |
569 | } |
570 | } |
571 | |
572 | impl Deref for Bytes { |
573 | type Target = [u8]; |
574 | |
575 | #[inline ] |
576 | fn deref(&self) -> &[u8] { |
577 | self.as_slice() |
578 | } |
579 | } |
580 | |
581 | impl AsRef<[u8]> for Bytes { |
582 | #[inline ] |
583 | fn as_ref(&self) -> &[u8] { |
584 | self.as_slice() |
585 | } |
586 | } |
587 | |
588 | impl hash::Hash for Bytes { |
589 | fn hash<H>(&self, state: &mut H) |
590 | where |
591 | H: hash::Hasher, |
592 | { |
593 | self.as_slice().hash(state); |
594 | } |
595 | } |
596 | |
597 | impl Borrow<[u8]> for Bytes { |
598 | fn borrow(&self) -> &[u8] { |
599 | self.as_slice() |
600 | } |
601 | } |
602 | |
603 | impl IntoIterator for Bytes { |
604 | type Item = u8; |
605 | type IntoIter = IntoIter<Bytes>; |
606 | |
607 | fn into_iter(self) -> Self::IntoIter { |
608 | IntoIter::new(self) |
609 | } |
610 | } |
611 | |
612 | impl<'a> IntoIterator for &'a Bytes { |
613 | type Item = &'a u8; |
614 | type IntoIter = core::slice::Iter<'a, u8>; |
615 | |
616 | fn into_iter(self) -> Self::IntoIter { |
617 | self.as_slice().iter() |
618 | } |
619 | } |
620 | |
621 | impl FromIterator<u8> for Bytes { |
622 | fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self { |
623 | Vec::from_iter(into_iter).into() |
624 | } |
625 | } |
626 | |
627 | // impl Eq |
628 | |
629 | impl PartialEq for Bytes { |
630 | fn eq(&self, other: &Bytes) -> bool { |
631 | self.as_slice() == other.as_slice() |
632 | } |
633 | } |
634 | |
635 | impl PartialOrd for Bytes { |
636 | fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> { |
637 | self.as_slice().partial_cmp(other.as_slice()) |
638 | } |
639 | } |
640 | |
641 | impl Ord for Bytes { |
642 | fn cmp(&self, other: &Bytes) -> cmp::Ordering { |
643 | self.as_slice().cmp(other.as_slice()) |
644 | } |
645 | } |
646 | |
647 | impl Eq for Bytes {} |
648 | |
649 | impl PartialEq<[u8]> for Bytes { |
650 | fn eq(&self, other: &[u8]) -> bool { |
651 | self.as_slice() == other |
652 | } |
653 | } |
654 | |
655 | impl PartialOrd<[u8]> for Bytes { |
656 | fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> { |
657 | self.as_slice().partial_cmp(other) |
658 | } |
659 | } |
660 | |
661 | impl PartialEq<Bytes> for [u8] { |
662 | fn eq(&self, other: &Bytes) -> bool { |
663 | *other == *self |
664 | } |
665 | } |
666 | |
667 | impl PartialOrd<Bytes> for [u8] { |
668 | fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> { |
669 | <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other) |
670 | } |
671 | } |
672 | |
673 | impl PartialEq<str> for Bytes { |
674 | fn eq(&self, other: &str) -> bool { |
675 | self.as_slice() == other.as_bytes() |
676 | } |
677 | } |
678 | |
679 | impl PartialOrd<str> for Bytes { |
680 | fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> { |
681 | self.as_slice().partial_cmp(other.as_bytes()) |
682 | } |
683 | } |
684 | |
685 | impl PartialEq<Bytes> for str { |
686 | fn eq(&self, other: &Bytes) -> bool { |
687 | *other == *self |
688 | } |
689 | } |
690 | |
691 | impl PartialOrd<Bytes> for str { |
692 | fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> { |
693 | <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other) |
694 | } |
695 | } |
696 | |
697 | impl PartialEq<Vec<u8>> for Bytes { |
698 | fn eq(&self, other: &Vec<u8>) -> bool { |
699 | *self == other[..] |
700 | } |
701 | } |
702 | |
703 | impl PartialOrd<Vec<u8>> for Bytes { |
704 | fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> { |
705 | self.as_slice().partial_cmp(&other[..]) |
706 | } |
707 | } |
708 | |
709 | impl PartialEq<Bytes> for Vec<u8> { |
710 | fn eq(&self, other: &Bytes) -> bool { |
711 | *other == *self |
712 | } |
713 | } |
714 | |
715 | impl PartialOrd<Bytes> for Vec<u8> { |
716 | fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> { |
717 | <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other) |
718 | } |
719 | } |
720 | |
721 | impl PartialEq<String> for Bytes { |
722 | fn eq(&self, other: &String) -> bool { |
723 | *self == other[..] |
724 | } |
725 | } |
726 | |
727 | impl PartialOrd<String> for Bytes { |
728 | fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> { |
729 | self.as_slice().partial_cmp(other.as_bytes()) |
730 | } |
731 | } |
732 | |
733 | impl PartialEq<Bytes> for String { |
734 | fn eq(&self, other: &Bytes) -> bool { |
735 | *other == *self |
736 | } |
737 | } |
738 | |
739 | impl PartialOrd<Bytes> for String { |
740 | fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> { |
741 | <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other) |
742 | } |
743 | } |
744 | |
745 | impl PartialEq<Bytes> for &[u8] { |
746 | fn eq(&self, other: &Bytes) -> bool { |
747 | *other == *self |
748 | } |
749 | } |
750 | |
751 | impl PartialOrd<Bytes> for &[u8] { |
752 | fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> { |
753 | <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other) |
754 | } |
755 | } |
756 | |
757 | impl PartialEq<Bytes> for &str { |
758 | fn eq(&self, other: &Bytes) -> bool { |
759 | *other == *self |
760 | } |
761 | } |
762 | |
763 | impl PartialOrd<Bytes> for &str { |
764 | fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> { |
765 | <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other) |
766 | } |
767 | } |
768 | |
769 | impl<'a, T: ?Sized> PartialEq<&'a T> for Bytes |
770 | where |
771 | Bytes: PartialEq<T>, |
772 | { |
773 | fn eq(&self, other: &&'a T) -> bool { |
774 | *self == **other |
775 | } |
776 | } |
777 | |
778 | impl<'a, T: ?Sized> PartialOrd<&'a T> for Bytes |
779 | where |
780 | Bytes: PartialOrd<T>, |
781 | { |
782 | fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> { |
783 | self.partial_cmp(&**other) |
784 | } |
785 | } |
786 | |
787 | // impl From |
788 | |
789 | impl Default for Bytes { |
790 | #[inline ] |
791 | fn default() -> Bytes { |
792 | Bytes::new() |
793 | } |
794 | } |
795 | |
796 | impl From<&'static [u8]> for Bytes { |
797 | fn from(slice: &'static [u8]) -> Bytes { |
798 | Bytes::from_static(slice) |
799 | } |
800 | } |
801 | |
802 | impl From<&'static str> for Bytes { |
803 | fn from(slice: &'static str) -> Bytes { |
804 | Bytes::from_static(slice.as_bytes()) |
805 | } |
806 | } |
807 | |
808 | impl From<Vec<u8>> for Bytes { |
809 | fn from(vec: Vec<u8>) -> Bytes { |
810 | let mut vec = vec; |
811 | let ptr = vec.as_mut_ptr(); |
812 | let len = vec.len(); |
813 | let cap = vec.capacity(); |
814 | |
815 | // Avoid an extra allocation if possible. |
816 | if len == cap { |
817 | return Bytes::from(vec.into_boxed_slice()); |
818 | } |
819 | |
820 | let shared = Box::new(Shared { |
821 | buf: ptr, |
822 | cap, |
823 | ref_cnt: AtomicUsize::new(1), |
824 | }); |
825 | mem::forget(vec); |
826 | |
827 | let shared = Box::into_raw(shared); |
828 | // The pointer should be aligned, so this assert should |
829 | // always succeed. |
830 | debug_assert!( |
831 | 0 == (shared as usize & KIND_MASK), |
832 | "internal: Box<Shared> should have an aligned pointer" , |
833 | ); |
834 | Bytes { |
835 | ptr, |
836 | len, |
837 | data: AtomicPtr::new(shared as _), |
838 | vtable: &SHARED_VTABLE, |
839 | } |
840 | } |
841 | } |
842 | |
843 | impl From<Box<[u8]>> for Bytes { |
844 | fn from(slice: Box<[u8]>) -> Bytes { |
845 | // Box<[u8]> doesn't contain a heap allocation for empty slices, |
846 | // so the pointer isn't aligned enough for the KIND_VEC stashing to |
847 | // work. |
848 | if slice.is_empty() { |
849 | return Bytes::new(); |
850 | } |
851 | |
852 | let len = slice.len(); |
853 | let ptr = Box::into_raw(slice) as *mut u8; |
854 | |
855 | if ptr as usize & 0x1 == 0 { |
856 | let data = ptr_map(ptr, |addr| addr | KIND_VEC); |
857 | Bytes { |
858 | ptr, |
859 | len, |
860 | data: AtomicPtr::new(data.cast()), |
861 | vtable: &PROMOTABLE_EVEN_VTABLE, |
862 | } |
863 | } else { |
864 | Bytes { |
865 | ptr, |
866 | len, |
867 | data: AtomicPtr::new(ptr.cast()), |
868 | vtable: &PROMOTABLE_ODD_VTABLE, |
869 | } |
870 | } |
871 | } |
872 | } |
873 | |
874 | impl From<String> for Bytes { |
875 | fn from(s: String) -> Bytes { |
876 | Bytes::from(s.into_bytes()) |
877 | } |
878 | } |
879 | |
880 | impl From<Bytes> for Vec<u8> { |
881 | fn from(bytes: Bytes) -> Vec<u8> { |
882 | let bytes = mem::ManuallyDrop::new(bytes); |
883 | unsafe { (bytes.vtable.to_vec)(&bytes.data, bytes.ptr, bytes.len) } |
884 | } |
885 | } |
886 | |
887 | // ===== impl Vtable ===== |
888 | |
889 | impl fmt::Debug for Vtable { |
890 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
891 | f.debug_struct("Vtable" ) |
892 | .field("clone" , &(self.clone as *const ())) |
893 | .field("drop" , &(self.drop as *const ())) |
894 | .finish() |
895 | } |
896 | } |
897 | |
898 | // ===== impl StaticVtable ===== |
899 | |
900 | const STATIC_VTABLE: Vtable = Vtable { |
901 | clone: static_clone, |
902 | to_vec: static_to_vec, |
903 | drop: static_drop, |
904 | }; |
905 | |
906 | unsafe fn static_clone(_: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes { |
907 | let slice = slice::from_raw_parts(ptr, len); |
908 | Bytes::from_static(slice) |
909 | } |
910 | |
911 | unsafe fn static_to_vec(_: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> { |
912 | let slice = slice::from_raw_parts(ptr, len); |
913 | slice.to_vec() |
914 | } |
915 | |
916 | unsafe fn static_drop(_: &mut AtomicPtr<()>, _: *const u8, _: usize) { |
917 | // nothing to drop for &'static [u8] |
918 | } |
919 | |
920 | // ===== impl PromotableVtable ===== |
921 | |
922 | static PROMOTABLE_EVEN_VTABLE: Vtable = Vtable { |
923 | clone: promotable_even_clone, |
924 | to_vec: promotable_even_to_vec, |
925 | drop: promotable_even_drop, |
926 | }; |
927 | |
928 | static PROMOTABLE_ODD_VTABLE: Vtable = Vtable { |
929 | clone: promotable_odd_clone, |
930 | to_vec: promotable_odd_to_vec, |
931 | drop: promotable_odd_drop, |
932 | }; |
933 | |
934 | unsafe fn promotable_even_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes { |
935 | let shared = data.load(Ordering::Acquire); |
936 | let kind = shared as usize & KIND_MASK; |
937 | |
938 | if kind == KIND_ARC { |
939 | shallow_clone_arc(shared.cast(), ptr, len) |
940 | } else { |
941 | debug_assert_eq!(kind, KIND_VEC); |
942 | let buf = ptr_map(shared.cast(), |addr| addr & !KIND_MASK); |
943 | shallow_clone_vec(data, shared, buf, ptr, len) |
944 | } |
945 | } |
946 | |
947 | unsafe fn promotable_to_vec( |
948 | data: &AtomicPtr<()>, |
949 | ptr: *const u8, |
950 | len: usize, |
951 | f: fn(*mut ()) -> *mut u8, |
952 | ) -> Vec<u8> { |
953 | let shared = data.load(Ordering::Acquire); |
954 | let kind = shared as usize & KIND_MASK; |
955 | |
956 | if kind == KIND_ARC { |
957 | shared_to_vec_impl(shared.cast(), ptr, len) |
958 | } else { |
959 | // If Bytes holds a Vec, then the offset must be 0. |
960 | debug_assert_eq!(kind, KIND_VEC); |
961 | |
962 | let buf = f(shared); |
963 | |
964 | let cap = (ptr as usize - buf as usize) + len; |
965 | |
966 | // Copy back buffer |
967 | ptr::copy(ptr, buf, len); |
968 | |
969 | Vec::from_raw_parts(buf, len, cap) |
970 | } |
971 | } |
972 | |
973 | unsafe fn promotable_even_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> { |
974 | promotable_to_vec(data, ptr, len, |shared| { |
975 | ptr_map(shared.cast(), |addr| addr & !KIND_MASK) |
976 | }) |
977 | } |
978 | |
979 | unsafe fn promotable_even_drop(data: &mut AtomicPtr<()>, ptr: *const u8, len: usize) { |
980 | data.with_mut(|shared| { |
981 | let shared = *shared; |
982 | let kind = shared as usize & KIND_MASK; |
983 | |
984 | if kind == KIND_ARC { |
985 | release_shared(shared.cast()); |
986 | } else { |
987 | debug_assert_eq!(kind, KIND_VEC); |
988 | let buf = ptr_map(shared.cast(), |addr| addr & !KIND_MASK); |
989 | free_boxed_slice(buf, ptr, len); |
990 | } |
991 | }); |
992 | } |
993 | |
994 | unsafe fn promotable_odd_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes { |
995 | let shared = data.load(Ordering::Acquire); |
996 | let kind = shared as usize & KIND_MASK; |
997 | |
998 | if kind == KIND_ARC { |
999 | shallow_clone_arc(shared as _, ptr, len) |
1000 | } else { |
1001 | debug_assert_eq!(kind, KIND_VEC); |
1002 | shallow_clone_vec(data, shared, shared.cast(), ptr, len) |
1003 | } |
1004 | } |
1005 | |
1006 | unsafe fn promotable_odd_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> { |
1007 | promotable_to_vec(data, ptr, len, |shared| shared.cast()) |
1008 | } |
1009 | |
1010 | unsafe fn promotable_odd_drop(data: &mut AtomicPtr<()>, ptr: *const u8, len: usize) { |
1011 | data.with_mut(|shared| { |
1012 | let shared = *shared; |
1013 | let kind = shared as usize & KIND_MASK; |
1014 | |
1015 | if kind == KIND_ARC { |
1016 | release_shared(shared.cast()); |
1017 | } else { |
1018 | debug_assert_eq!(kind, KIND_VEC); |
1019 | |
1020 | free_boxed_slice(shared.cast(), ptr, len); |
1021 | } |
1022 | }); |
1023 | } |
1024 | |
1025 | unsafe fn free_boxed_slice(buf: *mut u8, offset: *const u8, len: usize) { |
1026 | let cap = (offset as usize - buf as usize) + len; |
1027 | dealloc(buf, Layout::from_size_align(cap, 1).unwrap()) |
1028 | } |
1029 | |
1030 | // ===== impl SharedVtable ===== |
1031 | |
1032 | struct Shared { |
1033 | // Holds arguments to dealloc upon Drop, but otherwise doesn't use them |
1034 | buf: *mut u8, |
1035 | cap: usize, |
1036 | ref_cnt: AtomicUsize, |
1037 | } |
1038 | |
1039 | impl Drop for Shared { |
1040 | fn drop(&mut self) { |
1041 | unsafe { dealloc(self.buf, Layout::from_size_align(self.cap, 1).unwrap()) } |
1042 | } |
1043 | } |
1044 | |
1045 | // Assert that the alignment of `Shared` is divisible by 2. |
1046 | // This is a necessary invariant since we depend on allocating `Shared` a |
1047 | // shared object to implicitly carry the `KIND_ARC` flag in its pointer. |
1048 | // This flag is set when the LSB is 0. |
1049 | const _: [(); 0 - mem::align_of::<Shared>() % 2] = []; // Assert that the alignment of `Shared` is divisible by 2. |
1050 | |
1051 | static SHARED_VTABLE: Vtable = Vtable { |
1052 | clone: shared_clone, |
1053 | to_vec: shared_to_vec, |
1054 | drop: shared_drop, |
1055 | }; |
1056 | |
1057 | const KIND_ARC: usize = 0b0; |
1058 | const KIND_VEC: usize = 0b1; |
1059 | const KIND_MASK: usize = 0b1; |
1060 | |
1061 | unsafe fn shared_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes { |
1062 | let shared = data.load(Ordering::Relaxed); |
1063 | shallow_clone_arc(shared as _, ptr, len) |
1064 | } |
1065 | |
1066 | unsafe fn shared_to_vec_impl(shared: *mut Shared, ptr: *const u8, len: usize) -> Vec<u8> { |
1067 | // Check that the ref_cnt is 1 (unique). |
1068 | // |
1069 | // If it is unique, then it is set to 0 with AcqRel fence for the same |
1070 | // reason in release_shared. |
1071 | // |
1072 | // Otherwise, we take the other branch and call release_shared. |
1073 | if (*shared) |
1074 | .ref_cnt |
1075 | .compare_exchange(1, 0, Ordering::AcqRel, Ordering::Relaxed) |
1076 | .is_ok() |
1077 | { |
1078 | let buf = (*shared).buf; |
1079 | let cap = (*shared).cap; |
1080 | |
1081 | // Deallocate Shared |
1082 | drop(Box::from_raw(shared as *mut mem::ManuallyDrop<Shared>)); |
1083 | |
1084 | // Copy back buffer |
1085 | ptr::copy(ptr, buf, len); |
1086 | |
1087 | Vec::from_raw_parts(buf, len, cap) |
1088 | } else { |
1089 | let v = slice::from_raw_parts(ptr, len).to_vec(); |
1090 | release_shared(shared); |
1091 | v |
1092 | } |
1093 | } |
1094 | |
1095 | unsafe fn shared_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> { |
1096 | shared_to_vec_impl(data.load(Ordering::Relaxed).cast(), ptr, len) |
1097 | } |
1098 | |
1099 | unsafe fn shared_drop(data: &mut AtomicPtr<()>, _ptr: *const u8, _len: usize) { |
1100 | data.with_mut(|shared| { |
1101 | release_shared(shared.cast()); |
1102 | }); |
1103 | } |
1104 | |
1105 | unsafe fn shallow_clone_arc(shared: *mut Shared, ptr: *const u8, len: usize) -> Bytes { |
1106 | let old_size = (*shared).ref_cnt.fetch_add(1, Ordering::Relaxed); |
1107 | |
1108 | if old_size > usize::MAX >> 1 { |
1109 | crate::abort(); |
1110 | } |
1111 | |
1112 | Bytes { |
1113 | ptr, |
1114 | len, |
1115 | data: AtomicPtr::new(shared as _), |
1116 | vtable: &SHARED_VTABLE, |
1117 | } |
1118 | } |
1119 | |
1120 | #[cold ] |
1121 | unsafe fn shallow_clone_vec( |
1122 | atom: &AtomicPtr<()>, |
1123 | ptr: *const (), |
1124 | buf: *mut u8, |
1125 | offset: *const u8, |
1126 | len: usize, |
1127 | ) -> Bytes { |
1128 | // If the buffer is still tracked in a `Vec<u8>`. It is time to |
1129 | // promote the vec to an `Arc`. This could potentially be called |
1130 | // concurrently, so some care must be taken. |
1131 | |
1132 | // First, allocate a new `Shared` instance containing the |
1133 | // `Vec` fields. It's important to note that `ptr`, `len`, |
1134 | // and `cap` cannot be mutated without having `&mut self`. |
1135 | // This means that these fields will not be concurrently |
1136 | // updated and since the buffer hasn't been promoted to an |
1137 | // `Arc`, those three fields still are the components of the |
1138 | // vector. |
1139 | let shared = Box::new(Shared { |
1140 | buf, |
1141 | cap: (offset as usize - buf as usize) + len, |
1142 | // Initialize refcount to 2. One for this reference, and one |
1143 | // for the new clone that will be returned from |
1144 | // `shallow_clone`. |
1145 | ref_cnt: AtomicUsize::new(2), |
1146 | }); |
1147 | |
1148 | let shared = Box::into_raw(shared); |
1149 | |
1150 | // The pointer should be aligned, so this assert should |
1151 | // always succeed. |
1152 | debug_assert!( |
1153 | 0 == (shared as usize & KIND_MASK), |
1154 | "internal: Box<Shared> should have an aligned pointer" , |
1155 | ); |
1156 | |
1157 | // Try compare & swapping the pointer into the `arc` field. |
1158 | // `Release` is used synchronize with other threads that |
1159 | // will load the `arc` field. |
1160 | // |
1161 | // If the `compare_exchange` fails, then the thread lost the |
1162 | // race to promote the buffer to shared. The `Acquire` |
1163 | // ordering will synchronize with the `compare_exchange` |
1164 | // that happened in the other thread and the `Shared` |
1165 | // pointed to by `actual` will be visible. |
1166 | match atom.compare_exchange(ptr as _, shared as _, Ordering::AcqRel, Ordering::Acquire) { |
1167 | Ok(actual) => { |
1168 | debug_assert!(actual as usize == ptr as usize); |
1169 | // The upgrade was successful, the new handle can be |
1170 | // returned. |
1171 | Bytes { |
1172 | ptr: offset, |
1173 | len, |
1174 | data: AtomicPtr::new(shared as _), |
1175 | vtable: &SHARED_VTABLE, |
1176 | } |
1177 | } |
1178 | Err(actual) => { |
1179 | // The upgrade failed, a concurrent clone happened. Release |
1180 | // the allocation that was made in this thread, it will not |
1181 | // be needed. |
1182 | let shared = Box::from_raw(shared); |
1183 | mem::forget(*shared); |
1184 | |
1185 | // Buffer already promoted to shared storage, so increment ref |
1186 | // count. |
1187 | shallow_clone_arc(actual as _, offset, len) |
1188 | } |
1189 | } |
1190 | } |
1191 | |
1192 | unsafe fn release_shared(ptr: *mut Shared) { |
1193 | // `Shared` storage... follow the drop steps from Arc. |
1194 | if (*ptr).ref_cnt.fetch_sub(1, Ordering::Release) != 1 { |
1195 | return; |
1196 | } |
1197 | |
1198 | // This fence is needed to prevent reordering of use of the data and |
1199 | // deletion of the data. Because it is marked `Release`, the decreasing |
1200 | // of the reference count synchronizes with this `Acquire` fence. This |
1201 | // means that use of the data happens before decreasing the reference |
1202 | // count, which happens before this fence, which happens before the |
1203 | // deletion of the data. |
1204 | // |
1205 | // As explained in the [Boost documentation][1], |
1206 | // |
1207 | // > It is important to enforce any possible access to the object in one |
1208 | // > thread (through an existing reference) to *happen before* deleting |
1209 | // > the object in a different thread. This is achieved by a "release" |
1210 | // > operation after dropping a reference (any access to the object |
1211 | // > through this reference must obviously happened before), and an |
1212 | // > "acquire" operation before deleting the object. |
1213 | // |
1214 | // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html) |
1215 | // |
1216 | // Thread sanitizer does not support atomic fences. Use an atomic load |
1217 | // instead. |
1218 | (*ptr).ref_cnt.load(Ordering::Acquire); |
1219 | |
1220 | // Drop the data |
1221 | drop(Box::from_raw(ptr)); |
1222 | } |
1223 | |
1224 | // Ideally we would always use this version of `ptr_map` since it is strict |
1225 | // provenance compatible, but it results in worse codegen. We will however still |
1226 | // use it on miri because it gives better diagnostics for people who test bytes |
1227 | // code with miri. |
1228 | // |
1229 | // See https://github.com/tokio-rs/bytes/pull/545 for more info. |
1230 | #[cfg (miri)] |
1231 | fn ptr_map<F>(ptr: *mut u8, f: F) -> *mut u8 |
1232 | where |
1233 | F: FnOnce(usize) -> usize, |
1234 | { |
1235 | let old_addr = ptr as usize; |
1236 | let new_addr = f(old_addr); |
1237 | let diff = new_addr.wrapping_sub(old_addr); |
1238 | ptr.wrapping_add(diff) |
1239 | } |
1240 | |
1241 | #[cfg (not(miri))] |
1242 | fn ptr_map<F>(ptr: *mut u8, f: F) -> *mut u8 |
1243 | where |
1244 | F: FnOnce(usize) -> usize, |
1245 | { |
1246 | let old_addr = ptr as usize; |
1247 | let new_addr = f(old_addr); |
1248 | new_addr as *mut u8 |
1249 | } |
1250 | |
1251 | // compile-fails |
1252 | |
1253 | /// ```compile_fail |
1254 | /// use bytes::Bytes; |
1255 | /// #[deny(unused_must_use)] |
1256 | /// { |
1257 | /// let mut b1 = Bytes::from("hello world" ); |
1258 | /// b1.split_to(6); |
1259 | /// } |
1260 | /// ``` |
1261 | fn _split_to_must_use() {} |
1262 | |
1263 | /// ```compile_fail |
1264 | /// use bytes::Bytes; |
1265 | /// #[deny(unused_must_use)] |
1266 | /// { |
1267 | /// let mut b1 = Bytes::from("hello world" ); |
1268 | /// b1.split_off(6); |
1269 | /// } |
1270 | /// ``` |
1271 | fn _split_off_must_use() {} |
1272 | |
1273 | // fuzz tests |
1274 | #[cfg (all(test, loom))] |
1275 | mod fuzz { |
1276 | use loom::sync::Arc; |
1277 | use loom::thread; |
1278 | |
1279 | use super::Bytes; |
1280 | #[test] |
1281 | fn bytes_cloning_vec() { |
1282 | loom::model(|| { |
1283 | let a = Bytes::from(b"abcdefgh" .to_vec()); |
1284 | let addr = a.as_ptr() as usize; |
1285 | |
1286 | // test the Bytes::clone is Sync by putting it in an Arc |
1287 | let a1 = Arc::new(a); |
1288 | let a2 = a1.clone(); |
1289 | |
1290 | let t1 = thread::spawn(move || { |
1291 | let b: Bytes = (*a1).clone(); |
1292 | assert_eq!(b.as_ptr() as usize, addr); |
1293 | }); |
1294 | |
1295 | let t2 = thread::spawn(move || { |
1296 | let b: Bytes = (*a2).clone(); |
1297 | assert_eq!(b.as_ptr() as usize, addr); |
1298 | }); |
1299 | |
1300 | t1.join().unwrap(); |
1301 | t2.join().unwrap(); |
1302 | }); |
1303 | } |
1304 | } |
1305 | |