| 1 | use std::iter::IntoIterator;
|
| 2 | use std::time::Duration;
|
| 3 | use std::time::Instant;
|
| 4 |
|
| 5 | use crate::black_box;
|
| 6 | use crate::measurement::{Measurement, WallTime};
|
| 7 | use crate::BatchSize;
|
| 8 |
|
| 9 | #[cfg (feature = "async" )]
|
| 10 | use std::future::Future;
|
| 11 |
|
| 12 | #[cfg (feature = "async" )]
|
| 13 | use crate::async_executor::AsyncExecutor;
|
| 14 |
|
| 15 | // ================================== MAINTENANCE NOTE =============================================
|
| 16 | // Any changes made to either Bencher or AsyncBencher will have to be replicated to the other!
|
| 17 | // ================================== MAINTENANCE NOTE =============================================
|
| 18 |
|
| 19 | /// Timer struct used to iterate a benchmarked function and measure the runtime.
|
| 20 | ///
|
| 21 | /// This struct provides different timing loops as methods. Each timing loop provides a different
|
| 22 | /// way to time a routine and each has advantages and disadvantages.
|
| 23 | ///
|
| 24 | /// * If you want to do the iteration and measurement yourself (eg. passing the iteration count
|
| 25 | /// to a separate process), use `iter_custom`.
|
| 26 | /// * If your routine requires no per-iteration setup and returns a value with an expensive `drop`
|
| 27 | /// method, use `iter_with_large_drop`.
|
| 28 | /// * If your routine requires some per-iteration setup that shouldn't be timed, use `iter_batched`
|
| 29 | /// or `iter_batched_ref`. See [`BatchSize`](enum.BatchSize.html) for a discussion of batch sizes.
|
| 30 | /// If the setup value implements `Drop` and you don't want to include the `drop` time in the
|
| 31 | /// measurement, use `iter_batched_ref`, otherwise use `iter_batched`. These methods are also
|
| 32 | /// suitable for benchmarking routines which return a value with an expensive `drop` method,
|
| 33 | /// but are more complex than `iter_with_large_drop`.
|
| 34 | /// * Otherwise, use `iter`.
|
| 35 | pub struct Bencher<'a, M: Measurement = WallTime> {
|
| 36 | pub(crate) iterated: bool, // Have we iterated this benchmark?
|
| 37 | pub(crate) iters: u64, // Number of times to iterate this benchmark
|
| 38 | pub(crate) value: M::Value, // The measured value
|
| 39 | pub(crate) measurement: &'a M, // Reference to the measurement object
|
| 40 | pub(crate) elapsed_time: Duration, // How much time did it take to perform the iteration? Used for the warmup period.
|
| 41 | }
|
| 42 | impl<'a, M: Measurement> Bencher<'a, M> {
|
| 43 | /// Times a `routine` by executing it many times and timing the total elapsed time.
|
| 44 | ///
|
| 45 | /// Prefer this timing loop when `routine` returns a value that doesn't have a destructor.
|
| 46 | ///
|
| 47 | /// # Timing model
|
| 48 | ///
|
| 49 | /// Note that the `Bencher` also times the time required to destroy the output of `routine()`.
|
| 50 | /// Therefore prefer this timing loop when the runtime of `mem::drop(O)` is negligible compared
|
| 51 | /// to the runtime of the `routine`.
|
| 52 | ///
|
| 53 | /// ```text
|
| 54 | /// elapsed = Instant::now + iters * (routine + mem::drop(O) + Range::next)
|
| 55 | /// ```
|
| 56 | ///
|
| 57 | /// # Example
|
| 58 | ///
|
| 59 | /// ```rust
|
| 60 | /// #[macro_use] extern crate criterion;
|
| 61 | ///
|
| 62 | /// use criterion::*;
|
| 63 | ///
|
| 64 | /// // The function to benchmark
|
| 65 | /// fn foo() {
|
| 66 | /// // ...
|
| 67 | /// }
|
| 68 | ///
|
| 69 | /// fn bench(c: &mut Criterion) {
|
| 70 | /// c.bench_function("iter" , move |b| {
|
| 71 | /// b.iter(|| foo())
|
| 72 | /// });
|
| 73 | /// }
|
| 74 | ///
|
| 75 | /// criterion_group!(benches, bench);
|
| 76 | /// criterion_main!(benches);
|
| 77 | /// ```
|
| 78 | ///
|
| 79 | #[inline (never)]
|
| 80 | pub fn iter<O, R>(&mut self, mut routine: R)
|
| 81 | where
|
| 82 | R: FnMut() -> O,
|
| 83 | {
|
| 84 | self.iterated = true;
|
| 85 | let time_start = Instant::now();
|
| 86 | let start = self.measurement.start();
|
| 87 | for _ in 0..self.iters {
|
| 88 | black_box(routine());
|
| 89 | }
|
| 90 | self.value = self.measurement.end(start);
|
| 91 | self.elapsed_time = time_start.elapsed();
|
| 92 | }
|
| 93 |
|
| 94 | /// Times a `routine` by executing it many times and relying on `routine` to measure its own execution time.
|
| 95 | ///
|
| 96 | /// Prefer this timing loop in cases where `routine` has to do its own measurements to
|
| 97 | /// get accurate timing information (for example in multi-threaded scenarios where you spawn
|
| 98 | /// and coordinate with multiple threads).
|
| 99 | ///
|
| 100 | /// # Timing model
|
| 101 | /// Custom, the timing model is whatever is returned as the Duration from `routine`.
|
| 102 | ///
|
| 103 | /// # Example
|
| 104 | /// ```rust
|
| 105 | /// #[macro_use] extern crate criterion;
|
| 106 | /// use criterion::*;
|
| 107 | /// use criterion::black_box;
|
| 108 | /// use std::time::Instant;
|
| 109 | ///
|
| 110 | /// fn foo() {
|
| 111 | /// // ...
|
| 112 | /// }
|
| 113 | ///
|
| 114 | /// fn bench(c: &mut Criterion) {
|
| 115 | /// c.bench_function("iter" , move |b| {
|
| 116 | /// b.iter_custom(|iters| {
|
| 117 | /// let start = Instant::now();
|
| 118 | /// for _i in 0..iters {
|
| 119 | /// black_box(foo());
|
| 120 | /// }
|
| 121 | /// start.elapsed()
|
| 122 | /// })
|
| 123 | /// });
|
| 124 | /// }
|
| 125 | ///
|
| 126 | /// criterion_group!(benches, bench);
|
| 127 | /// criterion_main!(benches);
|
| 128 | /// ```
|
| 129 | ///
|
| 130 | #[inline (never)]
|
| 131 | pub fn iter_custom<R>(&mut self, mut routine: R)
|
| 132 | where
|
| 133 | R: FnMut(u64) -> M::Value,
|
| 134 | {
|
| 135 | self.iterated = true;
|
| 136 | let time_start = Instant::now();
|
| 137 | self.value = routine(self.iters);
|
| 138 | self.elapsed_time = time_start.elapsed();
|
| 139 | }
|
| 140 |
|
| 141 | #[doc (hidden)]
|
| 142 | pub fn iter_with_setup<I, O, S, R>(&mut self, setup: S, routine: R)
|
| 143 | where
|
| 144 | S: FnMut() -> I,
|
| 145 | R: FnMut(I) -> O,
|
| 146 | {
|
| 147 | self.iter_batched(setup, routine, BatchSize::PerIteration);
|
| 148 | }
|
| 149 |
|
| 150 | /// Times a `routine` by collecting its output on each iteration. This avoids timing the
|
| 151 | /// destructor of the value returned by `routine`.
|
| 152 | ///
|
| 153 | /// WARNING: This requires `O(iters * mem::size_of::<O>())` of memory, and `iters` is not under the
|
| 154 | /// control of the caller. If this causes out-of-memory errors, use `iter_batched` instead.
|
| 155 | ///
|
| 156 | /// # Timing model
|
| 157 | ///
|
| 158 | /// ``` text
|
| 159 | /// elapsed = Instant::now + iters * (routine) + Iterator::collect::<Vec<_>>
|
| 160 | /// ```
|
| 161 | ///
|
| 162 | /// # Example
|
| 163 | ///
|
| 164 | /// ```rust
|
| 165 | /// #[macro_use] extern crate criterion;
|
| 166 | ///
|
| 167 | /// use criterion::*;
|
| 168 | ///
|
| 169 | /// fn create_vector() -> Vec<u64> {
|
| 170 | /// # vec![]
|
| 171 | /// // ...
|
| 172 | /// }
|
| 173 | ///
|
| 174 | /// fn bench(c: &mut Criterion) {
|
| 175 | /// c.bench_function("with_drop" , move |b| {
|
| 176 | /// // This will avoid timing the Vec::drop.
|
| 177 | /// b.iter_with_large_drop(|| create_vector())
|
| 178 | /// });
|
| 179 | /// }
|
| 180 | ///
|
| 181 | /// criterion_group!(benches, bench);
|
| 182 | /// criterion_main!(benches);
|
| 183 | /// ```
|
| 184 | ///
|
| 185 | pub fn iter_with_large_drop<O, R>(&mut self, mut routine: R)
|
| 186 | where
|
| 187 | R: FnMut() -> O,
|
| 188 | {
|
| 189 | self.iter_batched(|| (), |_| routine(), BatchSize::SmallInput);
|
| 190 | }
|
| 191 |
|
| 192 | /// Times a `routine` that requires some input by generating a batch of input, then timing the
|
| 193 | /// iteration of the benchmark over the input. See [`BatchSize`](enum.BatchSize.html) for
|
| 194 | /// details on choosing the batch size. Use this when the routine must consume its input.
|
| 195 | ///
|
| 196 | /// For example, use this loop to benchmark sorting algorithms, because they require unsorted
|
| 197 | /// data on each iteration.
|
| 198 | ///
|
| 199 | /// # Timing model
|
| 200 | ///
|
| 201 | /// ```text
|
| 202 | /// elapsed = (Instant::now * num_batches) + (iters * (routine + O::drop)) + Vec::extend
|
| 203 | /// ```
|
| 204 | ///
|
| 205 | /// # Example
|
| 206 | ///
|
| 207 | /// ```rust
|
| 208 | /// #[macro_use] extern crate criterion;
|
| 209 | ///
|
| 210 | /// use criterion::*;
|
| 211 | ///
|
| 212 | /// fn create_scrambled_data() -> Vec<u64> {
|
| 213 | /// # vec![]
|
| 214 | /// // ...
|
| 215 | /// }
|
| 216 | ///
|
| 217 | /// // The sorting algorithm to test
|
| 218 | /// fn sort(data: &mut [u64]) {
|
| 219 | /// // ...
|
| 220 | /// }
|
| 221 | ///
|
| 222 | /// fn bench(c: &mut Criterion) {
|
| 223 | /// let data = create_scrambled_data();
|
| 224 | ///
|
| 225 | /// c.bench_function("with_setup" , move |b| {
|
| 226 | /// // This will avoid timing the to_vec call.
|
| 227 | /// b.iter_batched(|| data.clone(), |mut data| sort(&mut data), BatchSize::SmallInput)
|
| 228 | /// });
|
| 229 | /// }
|
| 230 | ///
|
| 231 | /// criterion_group!(benches, bench);
|
| 232 | /// criterion_main!(benches);
|
| 233 | /// ```
|
| 234 | ///
|
| 235 | #[inline (never)]
|
| 236 | pub fn iter_batched<I, O, S, R>(&mut self, mut setup: S, mut routine: R, size: BatchSize)
|
| 237 | where
|
| 238 | S: FnMut() -> I,
|
| 239 | R: FnMut(I) -> O,
|
| 240 | {
|
| 241 | self.iterated = true;
|
| 242 | let batch_size = size.iters_per_batch(self.iters);
|
| 243 | assert!(batch_size != 0, "Batch size must not be zero." );
|
| 244 | let time_start = Instant::now();
|
| 245 | self.value = self.measurement.zero();
|
| 246 |
|
| 247 | if batch_size == 1 {
|
| 248 | for _ in 0..self.iters {
|
| 249 | let input = black_box(setup());
|
| 250 |
|
| 251 | let start = self.measurement.start();
|
| 252 | let output = routine(input);
|
| 253 | let end = self.measurement.end(start);
|
| 254 | self.value = self.measurement.add(&self.value, &end);
|
| 255 |
|
| 256 | drop(black_box(output));
|
| 257 | }
|
| 258 | } else {
|
| 259 | let mut iteration_counter = 0;
|
| 260 |
|
| 261 | while iteration_counter < self.iters {
|
| 262 | let batch_size = ::std::cmp::min(batch_size, self.iters - iteration_counter);
|
| 263 |
|
| 264 | let inputs = black_box((0..batch_size).map(|_| setup()).collect::<Vec<_>>());
|
| 265 | let mut outputs = Vec::with_capacity(batch_size as usize);
|
| 266 |
|
| 267 | let start = self.measurement.start();
|
| 268 | outputs.extend(inputs.into_iter().map(&mut routine));
|
| 269 | let end = self.measurement.end(start);
|
| 270 | self.value = self.measurement.add(&self.value, &end);
|
| 271 |
|
| 272 | black_box(outputs);
|
| 273 |
|
| 274 | iteration_counter += batch_size;
|
| 275 | }
|
| 276 | }
|
| 277 |
|
| 278 | self.elapsed_time = time_start.elapsed();
|
| 279 | }
|
| 280 |
|
| 281 | /// Times a `routine` that requires some input by generating a batch of input, then timing the
|
| 282 | /// iteration of the benchmark over the input. See [`BatchSize`](enum.BatchSize.html) for
|
| 283 | /// details on choosing the batch size. Use this when the routine should accept the input by
|
| 284 | /// mutable reference.
|
| 285 | ///
|
| 286 | /// For example, use this loop to benchmark sorting algorithms, because they require unsorted
|
| 287 | /// data on each iteration.
|
| 288 | ///
|
| 289 | /// # Timing model
|
| 290 | ///
|
| 291 | /// ```text
|
| 292 | /// elapsed = (Instant::now * num_batches) + (iters * routine) + Vec::extend
|
| 293 | /// ```
|
| 294 | ///
|
| 295 | /// # Example
|
| 296 | ///
|
| 297 | /// ```rust
|
| 298 | /// #[macro_use] extern crate criterion;
|
| 299 | ///
|
| 300 | /// use criterion::*;
|
| 301 | ///
|
| 302 | /// fn create_scrambled_data() -> Vec<u64> {
|
| 303 | /// # vec![]
|
| 304 | /// // ...
|
| 305 | /// }
|
| 306 | ///
|
| 307 | /// // The sorting algorithm to test
|
| 308 | /// fn sort(data: &mut [u64]) {
|
| 309 | /// // ...
|
| 310 | /// }
|
| 311 | ///
|
| 312 | /// fn bench(c: &mut Criterion) {
|
| 313 | /// let data = create_scrambled_data();
|
| 314 | ///
|
| 315 | /// c.bench_function("with_setup" , move |b| {
|
| 316 | /// // This will avoid timing the to_vec call.
|
| 317 | /// b.iter_batched(|| data.clone(), |mut data| sort(&mut data), BatchSize::SmallInput)
|
| 318 | /// });
|
| 319 | /// }
|
| 320 | ///
|
| 321 | /// criterion_group!(benches, bench);
|
| 322 | /// criterion_main!(benches);
|
| 323 | /// ```
|
| 324 | ///
|
| 325 | #[inline (never)]
|
| 326 | pub fn iter_batched_ref<I, O, S, R>(&mut self, mut setup: S, mut routine: R, size: BatchSize)
|
| 327 | where
|
| 328 | S: FnMut() -> I,
|
| 329 | R: FnMut(&mut I) -> O,
|
| 330 | {
|
| 331 | self.iterated = true;
|
| 332 | let batch_size = size.iters_per_batch(self.iters);
|
| 333 | assert!(batch_size != 0, "Batch size must not be zero." );
|
| 334 | let time_start = Instant::now();
|
| 335 | self.value = self.measurement.zero();
|
| 336 |
|
| 337 | if batch_size == 1 {
|
| 338 | for _ in 0..self.iters {
|
| 339 | let mut input = black_box(setup());
|
| 340 |
|
| 341 | let start = self.measurement.start();
|
| 342 | let output = routine(&mut input);
|
| 343 | let end = self.measurement.end(start);
|
| 344 | self.value = self.measurement.add(&self.value, &end);
|
| 345 |
|
| 346 | drop(black_box(output));
|
| 347 | drop(black_box(input));
|
| 348 | }
|
| 349 | } else {
|
| 350 | let mut iteration_counter = 0;
|
| 351 |
|
| 352 | while iteration_counter < self.iters {
|
| 353 | let batch_size = ::std::cmp::min(batch_size, self.iters - iteration_counter);
|
| 354 |
|
| 355 | let mut inputs = black_box((0..batch_size).map(|_| setup()).collect::<Vec<_>>());
|
| 356 | let mut outputs = Vec::with_capacity(batch_size as usize);
|
| 357 |
|
| 358 | let start = self.measurement.start();
|
| 359 | outputs.extend(inputs.iter_mut().map(&mut routine));
|
| 360 | let end = self.measurement.end(start);
|
| 361 | self.value = self.measurement.add(&self.value, &end);
|
| 362 |
|
| 363 | black_box(outputs);
|
| 364 |
|
| 365 | iteration_counter += batch_size;
|
| 366 | }
|
| 367 | }
|
| 368 | self.elapsed_time = time_start.elapsed();
|
| 369 | }
|
| 370 |
|
| 371 | // Benchmarks must actually call one of the iter methods. This causes benchmarks to fail loudly
|
| 372 | // if they don't.
|
| 373 | pub(crate) fn assert_iterated(&mut self) {
|
| 374 | assert!(
|
| 375 | self.iterated,
|
| 376 | "Benchmark function must call Bencher::iter or related method."
|
| 377 | );
|
| 378 | self.iterated = false;
|
| 379 | }
|
| 380 |
|
| 381 | /// Convert this bencher into an AsyncBencher, which enables async/await support.
|
| 382 | #[cfg (feature = "async" )]
|
| 383 | pub fn to_async<'b, A: AsyncExecutor>(&'b mut self, runner: A) -> AsyncBencher<'a, 'b, A, M> {
|
| 384 | AsyncBencher { b: self, runner }
|
| 385 | }
|
| 386 | }
|
| 387 |
|
| 388 | /// Async/await variant of the Bencher struct.
|
| 389 | #[cfg (feature = "async" )]
|
| 390 | pub struct AsyncBencher<'a, 'b, A: AsyncExecutor, M: Measurement = WallTime> {
|
| 391 | b: &'b mut Bencher<'a, M>,
|
| 392 | runner: A,
|
| 393 | }
|
| 394 | #[cfg (feature = "async" )]
|
| 395 | impl<'a, 'b, A: AsyncExecutor, M: Measurement> AsyncBencher<'a, 'b, A, M> {
|
| 396 | /// Times a `routine` by executing it many times and timing the total elapsed time.
|
| 397 | ///
|
| 398 | /// Prefer this timing loop when `routine` returns a value that doesn't have a destructor.
|
| 399 | ///
|
| 400 | /// # Timing model
|
| 401 | ///
|
| 402 | /// Note that the `AsyncBencher` also times the time required to destroy the output of `routine()`.
|
| 403 | /// Therefore prefer this timing loop when the runtime of `mem::drop(O)` is negligible compared
|
| 404 | /// to the runtime of the `routine`.
|
| 405 | ///
|
| 406 | /// ```text
|
| 407 | /// elapsed = Instant::now + iters * (routine + mem::drop(O) + Range::next)
|
| 408 | /// ```
|
| 409 | ///
|
| 410 | /// # Example
|
| 411 | ///
|
| 412 | /// ```rust
|
| 413 | /// #[macro_use] extern crate criterion;
|
| 414 | ///
|
| 415 | /// use criterion::*;
|
| 416 | /// use criterion::async_executor::FuturesExecutor;
|
| 417 | ///
|
| 418 | /// // The function to benchmark
|
| 419 | /// async fn foo() {
|
| 420 | /// // ...
|
| 421 | /// }
|
| 422 | ///
|
| 423 | /// fn bench(c: &mut Criterion) {
|
| 424 | /// c.bench_function("iter", move |b| {
|
| 425 | /// b.to_async(FuturesExecutor).iter(|| async { foo().await } )
|
| 426 | /// });
|
| 427 | /// }
|
| 428 | ///
|
| 429 | /// criterion_group!(benches, bench);
|
| 430 | /// criterion_main!(benches);
|
| 431 | /// ```
|
| 432 | ///
|
| 433 | #[inline (never)]
|
| 434 | pub fn iter<O, R, F>(&mut self, mut routine: R)
|
| 435 | where
|
| 436 | R: FnMut() -> F,
|
| 437 | F: Future<Output = O>,
|
| 438 | {
|
| 439 | let AsyncBencher { b, runner } = self;
|
| 440 | runner.block_on(async {
|
| 441 | b.iterated = true;
|
| 442 | let time_start = Instant::now();
|
| 443 | let start = b.measurement.start();
|
| 444 | for _ in 0..b.iters {
|
| 445 | black_box(routine().await);
|
| 446 | }
|
| 447 | b.value = b.measurement.end(start);
|
| 448 | b.elapsed_time = time_start.elapsed();
|
| 449 | });
|
| 450 | }
|
| 451 |
|
| 452 | /// Times a `routine` by executing it many times and relying on `routine` to measure its own execution time.
|
| 453 | ///
|
| 454 | /// Prefer this timing loop in cases where `routine` has to do its own measurements to
|
| 455 | /// get accurate timing information (for example in multi-threaded scenarios where you spawn
|
| 456 | /// and coordinate with multiple threads).
|
| 457 | ///
|
| 458 | /// # Timing model
|
| 459 | /// Custom, the timing model is whatever is returned as the Duration from `routine`.
|
| 460 | ///
|
| 461 | /// # Example
|
| 462 | /// ```rust
|
| 463 | /// #[macro_use] extern crate criterion;
|
| 464 | /// use criterion::*;
|
| 465 | /// use criterion::black_box;
|
| 466 | /// use criterion::async_executor::FuturesExecutor;
|
| 467 | /// use std::time::Instant;
|
| 468 | ///
|
| 469 | /// async fn foo() {
|
| 470 | /// // ...
|
| 471 | /// }
|
| 472 | ///
|
| 473 | /// fn bench(c: &mut Criterion) {
|
| 474 | /// c.bench_function("iter", move |b| {
|
| 475 | /// b.to_async(FuturesExecutor).iter_custom(|iters| {
|
| 476 | /// async move {
|
| 477 | /// let start = Instant::now();
|
| 478 | /// for _i in 0..iters {
|
| 479 | /// black_box(foo().await);
|
| 480 | /// }
|
| 481 | /// start.elapsed()
|
| 482 | /// }
|
| 483 | /// })
|
| 484 | /// });
|
| 485 | /// }
|
| 486 | ///
|
| 487 | /// criterion_group!(benches, bench);
|
| 488 | /// criterion_main!(benches);
|
| 489 | /// ```
|
| 490 | ///
|
| 491 | #[inline (never)]
|
| 492 | pub fn iter_custom<R, F>(&mut self, mut routine: R)
|
| 493 | where
|
| 494 | R: FnMut(u64) -> F,
|
| 495 | F: Future<Output = M::Value>,
|
| 496 | {
|
| 497 | let AsyncBencher { b, runner } = self;
|
| 498 | runner.block_on(async {
|
| 499 | b.iterated = true;
|
| 500 | let time_start = Instant::now();
|
| 501 | b.value = routine(b.iters).await;
|
| 502 | b.elapsed_time = time_start.elapsed();
|
| 503 | })
|
| 504 | }
|
| 505 |
|
| 506 | #[doc (hidden)]
|
| 507 | pub fn iter_with_setup<I, O, S, R, F>(&mut self, setup: S, routine: R)
|
| 508 | where
|
| 509 | S: FnMut() -> I,
|
| 510 | R: FnMut(I) -> F,
|
| 511 | F: Future<Output = O>,
|
| 512 | {
|
| 513 | self.iter_batched(setup, routine, BatchSize::PerIteration);
|
| 514 | }
|
| 515 |
|
| 516 | /// Times a `routine` by collecting its output on each iteration. This avoids timing the
|
| 517 | /// destructor of the value returned by `routine`.
|
| 518 | ///
|
| 519 | /// WARNING: This requires `O(iters * mem::size_of::<O>())` of memory, and `iters` is not under the
|
| 520 | /// control of the caller. If this causes out-of-memory errors, use `iter_batched` instead.
|
| 521 | ///
|
| 522 | /// # Timing model
|
| 523 | ///
|
| 524 | /// ``` text
|
| 525 | /// elapsed = Instant::now + iters * (routine) + Iterator::collect::<Vec<_>>
|
| 526 | /// ```
|
| 527 | ///
|
| 528 | /// # Example
|
| 529 | ///
|
| 530 | /// ```rust
|
| 531 | /// #[macro_use] extern crate criterion;
|
| 532 | ///
|
| 533 | /// use criterion::*;
|
| 534 | /// use criterion::async_executor::FuturesExecutor;
|
| 535 | ///
|
| 536 | /// async fn create_vector() -> Vec<u64> {
|
| 537 | /// # vec![]
|
| 538 | /// // ...
|
| 539 | /// }
|
| 540 | ///
|
| 541 | /// fn bench(c: &mut Criterion) {
|
| 542 | /// c.bench_function("with_drop", move |b| {
|
| 543 | /// // This will avoid timing the Vec::drop.
|
| 544 | /// b.to_async(FuturesExecutor).iter_with_large_drop(|| async { create_vector().await })
|
| 545 | /// });
|
| 546 | /// }
|
| 547 | ///
|
| 548 | /// criterion_group!(benches, bench);
|
| 549 | /// criterion_main!(benches);
|
| 550 | /// ```
|
| 551 | ///
|
| 552 | pub fn iter_with_large_drop<O, R, F>(&mut self, mut routine: R)
|
| 553 | where
|
| 554 | R: FnMut() -> F,
|
| 555 | F: Future<Output = O>,
|
| 556 | {
|
| 557 | self.iter_batched(|| (), |_| routine(), BatchSize::SmallInput);
|
| 558 | }
|
| 559 |
|
| 560 | #[doc (hidden)]
|
| 561 | pub fn iter_with_large_setup<I, O, S, R, F>(&mut self, setup: S, routine: R)
|
| 562 | where
|
| 563 | S: FnMut() -> I,
|
| 564 | R: FnMut(I) -> F,
|
| 565 | F: Future<Output = O>,
|
| 566 | {
|
| 567 | self.iter_batched(setup, routine, BatchSize::NumBatches(1));
|
| 568 | }
|
| 569 |
|
| 570 | /// Times a `routine` that requires some input by generating a batch of input, then timing the
|
| 571 | /// iteration of the benchmark over the input. See [`BatchSize`](enum.BatchSize.html) for
|
| 572 | /// details on choosing the batch size. Use this when the routine must consume its input.
|
| 573 | ///
|
| 574 | /// For example, use this loop to benchmark sorting algorithms, because they require unsorted
|
| 575 | /// data on each iteration.
|
| 576 | ///
|
| 577 | /// # Timing model
|
| 578 | ///
|
| 579 | /// ```text
|
| 580 | /// elapsed = (Instant::now * num_batches) + (iters * (routine + O::drop)) + Vec::extend
|
| 581 | /// ```
|
| 582 | ///
|
| 583 | /// # Example
|
| 584 | ///
|
| 585 | /// ```rust
|
| 586 | /// #[macro_use] extern crate criterion;
|
| 587 | ///
|
| 588 | /// use criterion::*;
|
| 589 | /// use criterion::async_executor::FuturesExecutor;
|
| 590 | ///
|
| 591 | /// fn create_scrambled_data() -> Vec<u64> {
|
| 592 | /// # vec![]
|
| 593 | /// // ...
|
| 594 | /// }
|
| 595 | ///
|
| 596 | /// // The sorting algorithm to test
|
| 597 | /// async fn sort(data: &mut [u64]) {
|
| 598 | /// // ...
|
| 599 | /// }
|
| 600 | ///
|
| 601 | /// fn bench(c: &mut Criterion) {
|
| 602 | /// let data = create_scrambled_data();
|
| 603 | ///
|
| 604 | /// c.bench_function("with_setup", move |b| {
|
| 605 | /// // This will avoid timing the to_vec call.
|
| 606 | /// b.iter_batched(|| data.clone(), |mut data| async move { sort(&mut data).await }, BatchSize::SmallInput)
|
| 607 | /// });
|
| 608 | /// }
|
| 609 | ///
|
| 610 | /// criterion_group!(benches, bench);
|
| 611 | /// criterion_main!(benches);
|
| 612 | /// ```
|
| 613 | ///
|
| 614 | #[inline (never)]
|
| 615 | pub fn iter_batched<I, O, S, R, F>(&mut self, mut setup: S, mut routine: R, size: BatchSize)
|
| 616 | where
|
| 617 | S: FnMut() -> I,
|
| 618 | R: FnMut(I) -> F,
|
| 619 | F: Future<Output = O>,
|
| 620 | {
|
| 621 | let AsyncBencher { b, runner } = self;
|
| 622 | runner.block_on(async {
|
| 623 | b.iterated = true;
|
| 624 | let batch_size = size.iters_per_batch(b.iters);
|
| 625 | assert!(batch_size != 0, "Batch size must not be zero." );
|
| 626 | let time_start = Instant::now();
|
| 627 | b.value = b.measurement.zero();
|
| 628 |
|
| 629 | if batch_size == 1 {
|
| 630 | for _ in 0..b.iters {
|
| 631 | let input = black_box(setup());
|
| 632 |
|
| 633 | let start = b.measurement.start();
|
| 634 | let output = routine(input).await;
|
| 635 | let end = b.measurement.end(start);
|
| 636 | b.value = b.measurement.add(&b.value, &end);
|
| 637 |
|
| 638 | drop(black_box(output));
|
| 639 | }
|
| 640 | } else {
|
| 641 | let mut iteration_counter = 0;
|
| 642 |
|
| 643 | while iteration_counter < b.iters {
|
| 644 | let batch_size = ::std::cmp::min(batch_size, b.iters - iteration_counter);
|
| 645 |
|
| 646 | let inputs = black_box((0..batch_size).map(|_| setup()).collect::<Vec<_>>());
|
| 647 | let mut outputs = Vec::with_capacity(batch_size as usize);
|
| 648 |
|
| 649 | let start = b.measurement.start();
|
| 650 | // Can't use .extend here like the sync version does
|
| 651 | for input in inputs {
|
| 652 | outputs.push(routine(input).await);
|
| 653 | }
|
| 654 | let end = b.measurement.end(start);
|
| 655 | b.value = b.measurement.add(&b.value, &end);
|
| 656 |
|
| 657 | black_box(outputs);
|
| 658 |
|
| 659 | iteration_counter += batch_size;
|
| 660 | }
|
| 661 | }
|
| 662 |
|
| 663 | b.elapsed_time = time_start.elapsed();
|
| 664 | })
|
| 665 | }
|
| 666 |
|
| 667 | /// Times a `routine` that requires some input by generating a batch of input, then timing the
|
| 668 | /// iteration of the benchmark over the input. See [`BatchSize`](enum.BatchSize.html) for
|
| 669 | /// details on choosing the batch size. Use this when the routine should accept the input by
|
| 670 | /// mutable reference.
|
| 671 | ///
|
| 672 | /// For example, use this loop to benchmark sorting algorithms, because they require unsorted
|
| 673 | /// data on each iteration.
|
| 674 | ///
|
| 675 | /// # Timing model
|
| 676 | ///
|
| 677 | /// ```text
|
| 678 | /// elapsed = (Instant::now * num_batches) + (iters * routine) + Vec::extend
|
| 679 | /// ```
|
| 680 | ///
|
| 681 | /// # Example
|
| 682 | ///
|
| 683 | /// ```rust
|
| 684 | /// #[macro_use] extern crate criterion;
|
| 685 | ///
|
| 686 | /// use criterion::*;
|
| 687 | /// use criterion::async_executor::FuturesExecutor;
|
| 688 | ///
|
| 689 | /// fn create_scrambled_data() -> Vec<u64> {
|
| 690 | /// # vec![]
|
| 691 | /// // ...
|
| 692 | /// }
|
| 693 | ///
|
| 694 | /// // The sorting algorithm to test
|
| 695 | /// async fn sort(data: &mut [u64]) {
|
| 696 | /// // ...
|
| 697 | /// }
|
| 698 | ///
|
| 699 | /// fn bench(c: &mut Criterion) {
|
| 700 | /// let data = create_scrambled_data();
|
| 701 | ///
|
| 702 | /// c.bench_function("with_setup", move |b| {
|
| 703 | /// // This will avoid timing the to_vec call.
|
| 704 | /// b.iter_batched(|| data.clone(), |mut data| async move { sort(&mut data).await }, BatchSize::SmallInput)
|
| 705 | /// });
|
| 706 | /// }
|
| 707 | ///
|
| 708 | /// criterion_group!(benches, bench);
|
| 709 | /// criterion_main!(benches);
|
| 710 | /// ```
|
| 711 | ///
|
| 712 | #[inline (never)]
|
| 713 | pub fn iter_batched_ref<I, O, S, R, F>(&mut self, mut setup: S, mut routine: R, size: BatchSize)
|
| 714 | where
|
| 715 | S: FnMut() -> I,
|
| 716 | R: FnMut(&mut I) -> F,
|
| 717 | F: Future<Output = O>,
|
| 718 | {
|
| 719 | let AsyncBencher { b, runner } = self;
|
| 720 | runner.block_on(async {
|
| 721 | b.iterated = true;
|
| 722 | let batch_size = size.iters_per_batch(b.iters);
|
| 723 | assert!(batch_size != 0, "Batch size must not be zero." );
|
| 724 | let time_start = Instant::now();
|
| 725 | b.value = b.measurement.zero();
|
| 726 |
|
| 727 | if batch_size == 1 {
|
| 728 | for _ in 0..b.iters {
|
| 729 | let mut input = black_box(setup());
|
| 730 |
|
| 731 | let start = b.measurement.start();
|
| 732 | let output = routine(&mut input).await;
|
| 733 | let end = b.measurement.end(start);
|
| 734 | b.value = b.measurement.add(&b.value, &end);
|
| 735 |
|
| 736 | drop(black_box(output));
|
| 737 | drop(black_box(input));
|
| 738 | }
|
| 739 | } else {
|
| 740 | let mut iteration_counter = 0;
|
| 741 |
|
| 742 | while iteration_counter < b.iters {
|
| 743 | let batch_size = ::std::cmp::min(batch_size, b.iters - iteration_counter);
|
| 744 |
|
| 745 | let inputs = black_box((0..batch_size).map(|_| setup()).collect::<Vec<_>>());
|
| 746 | let mut outputs = Vec::with_capacity(batch_size as usize);
|
| 747 |
|
| 748 | let start = b.measurement.start();
|
| 749 | // Can't use .extend here like the sync version does
|
| 750 | for mut input in inputs {
|
| 751 | outputs.push(routine(&mut input).await);
|
| 752 | }
|
| 753 | let end = b.measurement.end(start);
|
| 754 | b.value = b.measurement.add(&b.value, &end);
|
| 755 |
|
| 756 | black_box(outputs);
|
| 757 |
|
| 758 | iteration_counter += batch_size;
|
| 759 | }
|
| 760 | }
|
| 761 | b.elapsed_time = time_start.elapsed();
|
| 762 | });
|
| 763 | }
|
| 764 | }
|
| 765 | |