| 1 | use super::*; |
| 2 | use crate::estimate::Estimate; |
| 3 | use crate::estimate::Statistic; |
| 4 | use crate::measurement::ValueFormatter; |
| 5 | use crate::report::{BenchmarkId, MeasurementData, ReportContext}; |
| 6 | use crate::stats::Distribution; |
| 7 | |
| 8 | fn abs_distribution( |
| 9 | id: &BenchmarkId, |
| 10 | context: &ReportContext, |
| 11 | formatter: &dyn ValueFormatter, |
| 12 | statistic: Statistic, |
| 13 | distribution: &Distribution<f64>, |
| 14 | estimate: &Estimate, |
| 15 | size: Option<(u32, u32)>, |
| 16 | ) { |
| 17 | let ci = &estimate.confidence_interval; |
| 18 | let typical = ci.upper_bound; |
| 19 | let mut ci_values = [ci.lower_bound, ci.upper_bound, estimate.point_estimate]; |
| 20 | let unit = formatter.scale_values(typical, &mut ci_values); |
| 21 | let (lb, ub, point) = (ci_values[0], ci_values[1], ci_values[2]); |
| 22 | |
| 23 | let start = lb - (ub - lb) / 9.; |
| 24 | let end = ub + (ub - lb) / 9.; |
| 25 | let mut scaled_xs: Vec<f64> = distribution.iter().cloned().collect(); |
| 26 | let _ = formatter.scale_values(typical, &mut scaled_xs); |
| 27 | let scaled_xs_sample = Sample::new(&scaled_xs); |
| 28 | let (kde_xs, ys) = kde::sweep(scaled_xs_sample, KDE_POINTS, Some((start, end))); |
| 29 | |
| 30 | // interpolate between two points of the KDE sweep to find the Y position at the point estimate. |
| 31 | let n_point = kde_xs |
| 32 | .iter() |
| 33 | .position(|&x| x >= point) |
| 34 | .unwrap_or(kde_xs.len() - 1) |
| 35 | .max(1); // Must be at least the second element or this will panic |
| 36 | let slope = (ys[n_point] - ys[n_point - 1]) / (kde_xs[n_point] - kde_xs[n_point - 1]); |
| 37 | let y_point = ys[n_point - 1] + (slope * (point - kde_xs[n_point - 1])); |
| 38 | |
| 39 | let start = kde_xs |
| 40 | .iter() |
| 41 | .enumerate() |
| 42 | .find(|&(_, &x)| x >= lb) |
| 43 | .unwrap() |
| 44 | .0; |
| 45 | let end = kde_xs |
| 46 | .iter() |
| 47 | .enumerate() |
| 48 | .rev() |
| 49 | .find(|&(_, &x)| x <= ub) |
| 50 | .unwrap() |
| 51 | .0; |
| 52 | let len = end - start; |
| 53 | |
| 54 | let kde_xs_sample = Sample::new(&kde_xs); |
| 55 | |
| 56 | let path = context.report_path(id, &format!("{}.svg" , statistic)); |
| 57 | let root_area = SVGBackend::new(&path, size.unwrap_or(SIZE)).into_drawing_area(); |
| 58 | |
| 59 | let x_range = plotters::data::fitting_range(kde_xs_sample.iter()); |
| 60 | let mut y_range = plotters::data::fitting_range(ys.iter()); |
| 61 | |
| 62 | y_range.end *= 1.1; |
| 63 | |
| 64 | let mut chart = ChartBuilder::on(&root_area) |
| 65 | .margin((5).percent()) |
| 66 | .caption( |
| 67 | format!("{}:{}" , id.as_title(), statistic), |
| 68 | (DEFAULT_FONT, 20), |
| 69 | ) |
| 70 | .set_label_area_size(LabelAreaPosition::Left, (5).percent_width().min(60)) |
| 71 | .set_label_area_size(LabelAreaPosition::Bottom, (5).percent_height().min(40)) |
| 72 | .build_cartesian_2d(x_range, y_range) |
| 73 | .unwrap(); |
| 74 | |
| 75 | chart |
| 76 | .configure_mesh() |
| 77 | .disable_mesh() |
| 78 | .x_desc(format!("Average time ({})" , unit)) |
| 79 | .y_desc("Density (a.u.)" ) |
| 80 | .x_label_formatter(&|&v| pretty_print_float(v, true)) |
| 81 | .y_label_formatter(&|&v| pretty_print_float(v, true)) |
| 82 | .draw() |
| 83 | .unwrap(); |
| 84 | |
| 85 | chart |
| 86 | .draw_series(LineSeries::new( |
| 87 | kde_xs.iter().zip(ys.iter()).map(|(&x, &y)| (x, y)), |
| 88 | DARK_BLUE, |
| 89 | )) |
| 90 | .unwrap() |
| 91 | .label("Bootstrap distribution" ) |
| 92 | .legend(|(x, y)| PathElement::new(vec![(x, y), (x + 20, y)], DARK_BLUE)); |
| 93 | |
| 94 | chart |
| 95 | .draw_series(AreaSeries::new( |
| 96 | kde_xs |
| 97 | .iter() |
| 98 | .zip(ys.iter()) |
| 99 | .skip(start) |
| 100 | .take(len) |
| 101 | .map(|(&x, &y)| (x, y)), |
| 102 | 0.0, |
| 103 | DARK_BLUE.mix(0.25).filled().stroke_width(3), |
| 104 | )) |
| 105 | .unwrap() |
| 106 | .label("Confidence interval" ) |
| 107 | .legend(|(x, y)| { |
| 108 | Rectangle::new([(x, y - 5), (x + 20, y + 5)], DARK_BLUE.mix(0.25).filled()) |
| 109 | }); |
| 110 | |
| 111 | chart |
| 112 | .draw_series(std::iter::once(PathElement::new( |
| 113 | vec![(point, 0.0), (point, y_point)], |
| 114 | DARK_BLUE.filled().stroke_width(3), |
| 115 | ))) |
| 116 | .unwrap() |
| 117 | .label("Point estimate" ) |
| 118 | .legend(|(x, y)| PathElement::new(vec![(x, y), (x + 20, y)], DARK_BLUE)); |
| 119 | |
| 120 | chart |
| 121 | .configure_series_labels() |
| 122 | .position(SeriesLabelPosition::UpperRight) |
| 123 | .draw() |
| 124 | .unwrap(); |
| 125 | } |
| 126 | |
| 127 | pub(crate) fn abs_distributions( |
| 128 | id: &BenchmarkId, |
| 129 | context: &ReportContext, |
| 130 | formatter: &dyn ValueFormatter, |
| 131 | measurements: &MeasurementData<'_>, |
| 132 | size: Option<(u32, u32)>, |
| 133 | ) { |
| 134 | crate::plot::REPORT_STATS |
| 135 | .iter() |
| 136 | .filter_map(|stat| { |
| 137 | measurements.distributions.get(*stat).and_then(|dist| { |
| 138 | measurements |
| 139 | .absolute_estimates |
| 140 | .get(*stat) |
| 141 | .map(|est| (*stat, dist, est)) |
| 142 | }) |
| 143 | }) |
| 144 | .for_each(|(statistic, distribution, estimate)| { |
| 145 | abs_distribution( |
| 146 | id, |
| 147 | context, |
| 148 | formatter, |
| 149 | statistic, |
| 150 | distribution, |
| 151 | estimate, |
| 152 | size, |
| 153 | ) |
| 154 | }) |
| 155 | } |
| 156 | |
| 157 | fn rel_distribution( |
| 158 | id: &BenchmarkId, |
| 159 | context: &ReportContext, |
| 160 | statistic: Statistic, |
| 161 | distribution: &Distribution<f64>, |
| 162 | estimate: &Estimate, |
| 163 | noise_threshold: f64, |
| 164 | size: Option<(u32, u32)>, |
| 165 | ) { |
| 166 | let ci = &estimate.confidence_interval; |
| 167 | let (lb, ub) = (ci.lower_bound, ci.upper_bound); |
| 168 | |
| 169 | let start = lb - (ub - lb) / 9.; |
| 170 | let end = ub + (ub - lb) / 9.; |
| 171 | let (xs, ys) = kde::sweep(distribution, KDE_POINTS, Some((start, end))); |
| 172 | let xs_ = Sample::new(&xs); |
| 173 | |
| 174 | // interpolate between two points of the KDE sweep to find the Y position at the point estimate. |
| 175 | let point = estimate.point_estimate; |
| 176 | let n_point = xs |
| 177 | .iter() |
| 178 | .position(|&x| x >= point) |
| 179 | .unwrap_or(ys.len() - 1) |
| 180 | .max(1); |
| 181 | let slope = (ys[n_point] - ys[n_point - 1]) / (xs[n_point] - xs[n_point - 1]); |
| 182 | let y_point = ys[n_point - 1] + (slope * (point - xs[n_point - 1])); |
| 183 | |
| 184 | let start = xs.iter().enumerate().find(|&(_, &x)| x >= lb).unwrap().0; |
| 185 | let end = xs |
| 186 | .iter() |
| 187 | .enumerate() |
| 188 | .rev() |
| 189 | .find(|&(_, &x)| x <= ub) |
| 190 | .unwrap() |
| 191 | .0; |
| 192 | let len = end - start; |
| 193 | |
| 194 | let x_min = xs_.min(); |
| 195 | let x_max = xs_.max(); |
| 196 | |
| 197 | let (fc_start, fc_end) = if noise_threshold < x_min || -noise_threshold > x_max { |
| 198 | let middle = (x_min + x_max) / 2.; |
| 199 | |
| 200 | (middle, middle) |
| 201 | } else { |
| 202 | ( |
| 203 | if -noise_threshold < x_min { |
| 204 | x_min |
| 205 | } else { |
| 206 | -noise_threshold |
| 207 | }, |
| 208 | if noise_threshold > x_max { |
| 209 | x_max |
| 210 | } else { |
| 211 | noise_threshold |
| 212 | }, |
| 213 | ) |
| 214 | }; |
| 215 | let y_range = plotters::data::fitting_range(ys.iter()); |
| 216 | let path = context.report_path(id, &format!("change/{}.svg" , statistic)); |
| 217 | let root_area = SVGBackend::new(&path, size.unwrap_or(SIZE)).into_drawing_area(); |
| 218 | |
| 219 | let mut chart = ChartBuilder::on(&root_area) |
| 220 | .margin((5).percent()) |
| 221 | .caption( |
| 222 | format!("{}:{}" , id.as_title(), statistic), |
| 223 | (DEFAULT_FONT, 20), |
| 224 | ) |
| 225 | .set_label_area_size(LabelAreaPosition::Left, (5).percent_width().min(60)) |
| 226 | .set_label_area_size(LabelAreaPosition::Bottom, (5).percent_height().min(40)) |
| 227 | .build_cartesian_2d(x_min..x_max, y_range.clone()) |
| 228 | .unwrap(); |
| 229 | |
| 230 | chart |
| 231 | .configure_mesh() |
| 232 | .disable_mesh() |
| 233 | .x_desc("Relative change (%)" ) |
| 234 | .y_desc("Density (a.u.)" ) |
| 235 | .x_label_formatter(&|&v| pretty_print_float(v, true)) |
| 236 | .y_label_formatter(&|&v| pretty_print_float(v, true)) |
| 237 | .draw() |
| 238 | .unwrap(); |
| 239 | |
| 240 | chart |
| 241 | .draw_series(LineSeries::new( |
| 242 | xs.iter().zip(ys.iter()).map(|(x, y)| (*x, *y)), |
| 243 | DARK_BLUE, |
| 244 | )) |
| 245 | .unwrap() |
| 246 | .label("Bootstrap distribution" ) |
| 247 | .legend(|(x, y)| PathElement::new(vec![(x, y), (x + 20, y)], DARK_BLUE)); |
| 248 | |
| 249 | chart |
| 250 | .draw_series(AreaSeries::new( |
| 251 | xs.iter() |
| 252 | .zip(ys.iter()) |
| 253 | .skip(start) |
| 254 | .take(len) |
| 255 | .map(|(x, y)| (*x, *y)), |
| 256 | 0.0, |
| 257 | DARK_BLUE.mix(0.25).filled().stroke_width(3), |
| 258 | )) |
| 259 | .unwrap() |
| 260 | .label("Confidence interval" ) |
| 261 | .legend(|(x, y)| { |
| 262 | Rectangle::new([(x, y - 5), (x + 20, y + 5)], DARK_BLUE.mix(0.25).filled()) |
| 263 | }); |
| 264 | |
| 265 | chart |
| 266 | .draw_series(std::iter::once(PathElement::new( |
| 267 | vec![(point, 0.0), (point, y_point)], |
| 268 | DARK_BLUE.filled().stroke_width(3), |
| 269 | ))) |
| 270 | .unwrap() |
| 271 | .label("Point estimate" ) |
| 272 | .legend(|(x, y)| PathElement::new(vec![(x, y), (x + 20, y)], DARK_BLUE)); |
| 273 | |
| 274 | chart |
| 275 | .draw_series(std::iter::once(Rectangle::new( |
| 276 | [(fc_start, y_range.start), (fc_end, y_range.end)], |
| 277 | DARK_RED.mix(0.1).filled(), |
| 278 | ))) |
| 279 | .unwrap() |
| 280 | .label("Noise threshold" ) |
| 281 | .legend(|(x, y)| { |
| 282 | Rectangle::new([(x, y - 5), (x + 20, y + 5)], DARK_RED.mix(0.25).filled()) |
| 283 | }); |
| 284 | chart |
| 285 | .configure_series_labels() |
| 286 | .position(SeriesLabelPosition::UpperRight) |
| 287 | .draw() |
| 288 | .unwrap(); |
| 289 | } |
| 290 | |
| 291 | pub(crate) fn rel_distributions( |
| 292 | id: &BenchmarkId, |
| 293 | context: &ReportContext, |
| 294 | _measurements: &MeasurementData<'_>, |
| 295 | comparison: &ComparisonData, |
| 296 | size: Option<(u32, u32)>, |
| 297 | ) { |
| 298 | crate::plot::CHANGE_STATS.iter().for_each(|&statistic| { |
| 299 | rel_distribution( |
| 300 | id, |
| 301 | context, |
| 302 | statistic, |
| 303 | comparison.relative_distributions.get(statistic), |
| 304 | comparison.relative_estimates.get(statistic), |
| 305 | comparison.noise_threshold, |
| 306 | size, |
| 307 | ) |
| 308 | }); |
| 309 | } |
| 310 | |