| 1 | //! Regression analysis |
| 2 | |
| 3 | use crate::stats::bivariate::Data; |
| 4 | use crate::stats::float::Float; |
| 5 | |
| 6 | /// A straight line that passes through the origin `y = m * x` |
| 7 | #[derive(Clone, Copy)] |
| 8 | pub struct Slope<A>(pub A) |
| 9 | where |
| 10 | A: Float; |
| 11 | |
| 12 | impl<A> Slope<A> |
| 13 | where |
| 14 | A: Float, |
| 15 | { |
| 16 | /// Fits the data to a straight line that passes through the origin using ordinary least |
| 17 | /// squares |
| 18 | /// |
| 19 | /// - Time: `O(length)` |
| 20 | pub fn fit(data: &Data<'_, A, A>) -> Slope<A> { |
| 21 | let xs = data.0; |
| 22 | let ys = data.1; |
| 23 | |
| 24 | let xy = crate::stats::dot(xs, ys); |
| 25 | let x2 = crate::stats::dot(xs, xs); |
| 26 | |
| 27 | Slope(xy / x2) |
| 28 | } |
| 29 | |
| 30 | /// Computes the goodness of fit (coefficient of determination) for this data set |
| 31 | /// |
| 32 | /// - Time: `O(length)` |
| 33 | pub fn r_squared(&self, data: &Data<'_, A, A>) -> A { |
| 34 | let _0 = A::cast(0); |
| 35 | let _1 = A::cast(1); |
| 36 | let m = self.0; |
| 37 | let xs = data.0; |
| 38 | let ys = data.1; |
| 39 | |
| 40 | let n = A::cast(xs.len()); |
| 41 | let y_bar = crate::stats::sum(ys) / n; |
| 42 | |
| 43 | let mut ss_res = _0; |
| 44 | let mut ss_tot = _0; |
| 45 | |
| 46 | for (&x, &y) in data.iter() { |
| 47 | ss_res = ss_res + (y - m * x).powi(2); |
| 48 | ss_tot = ss_res + (y - y_bar).powi(2); |
| 49 | } |
| 50 | |
| 51 | _1 - ss_res / ss_tot |
| 52 | } |
| 53 | } |
| 54 | |