| 1 | //! Tukey's method |
| 2 | //! |
| 3 | //! The original method uses two "fences" to classify the data. All the observations "inside" the |
| 4 | //! fences are considered "normal", and the rest are considered outliers. |
| 5 | //! |
| 6 | //! The fences are computed from the quartiles of the sample, according to the following formula: |
| 7 | //! |
| 8 | //! ``` ignore |
| 9 | //! // q1, q3 are the first and third quartiles |
| 10 | //! let iqr = q3 - q1; // The interquartile range |
| 11 | //! let (f1, f2) = (q1 - 1.5 * iqr, q3 + 1.5 * iqr); // the "fences" |
| 12 | //! |
| 13 | //! let is_outlier = |x| if x > f1 && x < f2 { true } else { false }; |
| 14 | //! ``` |
| 15 | //! |
| 16 | //! The classifier provided here adds two extra outer fences: |
| 17 | //! |
| 18 | //! ``` ignore |
| 19 | //! let (f3, f4) = (q1 - 3 * iqr, q3 + 3 * iqr); // the outer "fences" |
| 20 | //! ``` |
| 21 | //! |
| 22 | //! The extra fences add a sense of "severity" to the classification. Data points outside of the |
| 23 | //! outer fences are considered "severe" outliers, whereas points outside the inner fences are just |
| 24 | //! "mild" outliers, and, as the original method, everything inside the inner fences is considered |
| 25 | //! "normal" data. |
| 26 | //! |
| 27 | //! Some ASCII art for the visually oriented people: |
| 28 | //! |
| 29 | //! ``` ignore |
| 30 | //! LOW-ish NORMAL-ish HIGH-ish |
| 31 | //! x | + | o o o o o o o | + | x |
| 32 | //! f3 f1 f2 f4 |
| 33 | //! |
| 34 | //! Legend: |
| 35 | //! o: "normal" data (not an outlier) |
| 36 | //! +: "mild" outlier |
| 37 | //! x: "severe" outlier |
| 38 | //! ``` |
| 39 | |
| 40 | use std::iter::IntoIterator; |
| 41 | use std::ops::{Deref, Index}; |
| 42 | use std::slice; |
| 43 | |
| 44 | use crate::stats::float::Float; |
| 45 | use crate::stats::univariate::Sample; |
| 46 | |
| 47 | use self::Label::*; |
| 48 | |
| 49 | /// A classified/labeled sample. |
| 50 | /// |
| 51 | /// The labeled data can be accessed using the indexing operator. The order of the data points is |
| 52 | /// retained. |
| 53 | /// |
| 54 | /// NOTE: Due to limitations in the indexing traits, only the label is returned. Once the |
| 55 | /// `IndexGet` trait lands in stdlib, the indexing operation will return a `(data_point, label)` |
| 56 | /// pair. |
| 57 | #[derive(Clone, Copy)] |
| 58 | pub struct LabeledSample<'a, A> |
| 59 | where |
| 60 | A: Float, |
| 61 | { |
| 62 | fences: (A, A, A, A), |
| 63 | sample: &'a Sample<A>, |
| 64 | } |
| 65 | |
| 66 | impl<'a, A> LabeledSample<'a, A> |
| 67 | where |
| 68 | A: Float, |
| 69 | { |
| 70 | /// Returns the number of data points per label |
| 71 | /// |
| 72 | /// - Time: `O(length)` |
| 73 | #[cfg_attr (feature = "cargo-clippy" , allow(clippy::similar_names))] |
| 74 | pub fn count(&self) -> (usize, usize, usize, usize, usize) { |
| 75 | let (mut los, mut lom, mut noa, mut him, mut his) = (0, 0, 0, 0, 0); |
| 76 | |
| 77 | for (_, label) in self { |
| 78 | match label { |
| 79 | LowSevere => { |
| 80 | los += 1; |
| 81 | } |
| 82 | LowMild => { |
| 83 | lom += 1; |
| 84 | } |
| 85 | NotAnOutlier => { |
| 86 | noa += 1; |
| 87 | } |
| 88 | HighMild => { |
| 89 | him += 1; |
| 90 | } |
| 91 | HighSevere => { |
| 92 | his += 1; |
| 93 | } |
| 94 | } |
| 95 | } |
| 96 | |
| 97 | (los, lom, noa, him, his) |
| 98 | } |
| 99 | |
| 100 | /// Returns the fences used to classify the outliers |
| 101 | pub fn fences(&self) -> (A, A, A, A) { |
| 102 | self.fences |
| 103 | } |
| 104 | |
| 105 | /// Returns an iterator over the labeled data |
| 106 | pub fn iter(&self) -> Iter<'a, A> { |
| 107 | Iter { |
| 108 | fences: self.fences, |
| 109 | iter: self.sample.iter(), |
| 110 | } |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | impl<'a, A> Deref for LabeledSample<'a, A> |
| 115 | where |
| 116 | A: Float, |
| 117 | { |
| 118 | type Target = Sample<A>; |
| 119 | |
| 120 | fn deref(&self) -> &Sample<A> { |
| 121 | self.sample |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | // FIXME Use the `IndexGet` trait |
| 126 | impl<'a, A> Index<usize> for LabeledSample<'a, A> |
| 127 | where |
| 128 | A: Float, |
| 129 | { |
| 130 | type Output = Label; |
| 131 | |
| 132 | #[cfg_attr (feature = "cargo-clippy" , allow(clippy::similar_names))] |
| 133 | fn index(&self, i: usize) -> &Label { |
| 134 | static LOW_SEVERE: Label = LowSevere; |
| 135 | static LOW_MILD: Label = LowMild; |
| 136 | static HIGH_MILD: Label = HighMild; |
| 137 | static HIGH_SEVERE: Label = HighSevere; |
| 138 | static NOT_AN_OUTLIER: Label = NotAnOutlier; |
| 139 | |
| 140 | let x = self.sample[i]; |
| 141 | let (lost, lomt, himt, hist) = self.fences; |
| 142 | |
| 143 | if x < lost { |
| 144 | &LOW_SEVERE |
| 145 | } else if x > hist { |
| 146 | &HIGH_SEVERE |
| 147 | } else if x < lomt { |
| 148 | &LOW_MILD |
| 149 | } else if x > himt { |
| 150 | &HIGH_MILD |
| 151 | } else { |
| 152 | &NOT_AN_OUTLIER |
| 153 | } |
| 154 | } |
| 155 | } |
| 156 | |
| 157 | impl<'a, 'b, A> IntoIterator for &'b LabeledSample<'a, A> |
| 158 | where |
| 159 | A: Float, |
| 160 | { |
| 161 | type Item = (A, Label); |
| 162 | type IntoIter = Iter<'a, A>; |
| 163 | |
| 164 | fn into_iter(self) -> Iter<'a, A> { |
| 165 | self.iter() |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | /// Iterator over the labeled data |
| 170 | pub struct Iter<'a, A> |
| 171 | where |
| 172 | A: Float, |
| 173 | { |
| 174 | fences: (A, A, A, A), |
| 175 | iter: slice::Iter<'a, A>, |
| 176 | } |
| 177 | |
| 178 | impl<'a, A> Iterator for Iter<'a, A> |
| 179 | where |
| 180 | A: Float, |
| 181 | { |
| 182 | type Item = (A, Label); |
| 183 | |
| 184 | #[cfg_attr (feature = "cargo-clippy" , allow(clippy::similar_names))] |
| 185 | fn next(&mut self) -> Option<(A, Label)> { |
| 186 | self.iter.next().map(|&x| { |
| 187 | let (lost, lomt, himt, hist) = self.fences; |
| 188 | |
| 189 | let label = if x < lost { |
| 190 | LowSevere |
| 191 | } else if x > hist { |
| 192 | HighSevere |
| 193 | } else if x < lomt { |
| 194 | LowMild |
| 195 | } else if x > himt { |
| 196 | HighMild |
| 197 | } else { |
| 198 | NotAnOutlier |
| 199 | }; |
| 200 | |
| 201 | (x, label) |
| 202 | }) |
| 203 | } |
| 204 | |
| 205 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 206 | self.iter.size_hint() |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | /// Labels used to classify outliers |
| 211 | pub enum Label { |
| 212 | /// A "mild" outlier in the "high" spectrum |
| 213 | HighMild, |
| 214 | /// A "severe" outlier in the "high" spectrum |
| 215 | HighSevere, |
| 216 | /// A "mild" outlier in the "low" spectrum |
| 217 | LowMild, |
| 218 | /// A "severe" outlier in the "low" spectrum |
| 219 | LowSevere, |
| 220 | /// A normal data point |
| 221 | NotAnOutlier, |
| 222 | } |
| 223 | |
| 224 | impl Label { |
| 225 | /// Checks if the data point has an "unusually" high value |
| 226 | pub fn is_high(&self) -> bool { |
| 227 | matches!(*self, HighMild | HighSevere) |
| 228 | } |
| 229 | |
| 230 | /// Checks if the data point is labeled as a "mild" outlier |
| 231 | pub fn is_mild(&self) -> bool { |
| 232 | matches!(*self, HighMild | LowMild) |
| 233 | } |
| 234 | |
| 235 | /// Checks if the data point has an "unusually" low value |
| 236 | pub fn is_low(&self) -> bool { |
| 237 | matches!(*self, LowMild | LowSevere) |
| 238 | } |
| 239 | |
| 240 | /// Checks if the data point is labeled as an outlier |
| 241 | pub fn is_outlier(&self) -> bool { |
| 242 | matches!(*self, NotAnOutlier) |
| 243 | } |
| 244 | |
| 245 | /// Checks if the data point is labeled as a "severe" outlier |
| 246 | pub fn is_severe(&self) -> bool { |
| 247 | matches!(*self, HighSevere | LowSevere) |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | /// Classifies the sample, and returns a labeled sample. |
| 252 | /// |
| 253 | /// - Time: `O(N log N) where N = length` |
| 254 | pub fn classify<A>(sample: &Sample<A>) -> LabeledSample<'_, A> |
| 255 | where |
| 256 | A: Float, |
| 257 | usize: cast::From<A, Output = Result<usize, cast::Error>>, |
| 258 | { |
| 259 | let (q1, _, q3) = sample.percentiles().quartiles(); |
| 260 | let iqr = q3 - q1; |
| 261 | |
| 262 | // Mild |
| 263 | let k_m = A::cast(1.5_f32); |
| 264 | // Severe |
| 265 | let k_s = A::cast(3); |
| 266 | |
| 267 | LabeledSample { |
| 268 | fences: ( |
| 269 | q1 - k_s * iqr, |
| 270 | q1 - k_m * iqr, |
| 271 | q3 + k_m * iqr, |
| 272 | q3 + k_s * iqr, |
| 273 | ), |
| 274 | sample, |
| 275 | } |
| 276 | } |
| 277 | |