1 | pub(crate) fn f32_to_bf16(value: f32) -> u16 { |
2 | // Convert to raw bytes |
3 | let x = value.to_bits(); |
4 | |
5 | // check for NaN |
6 | if x & 0x7FFF_FFFFu32 > 0x7F80_0000u32 { |
7 | // Keep high part of current mantissa but also set most significiant mantissa bit |
8 | return ((x >> 16) | 0x0040u32) as u16; |
9 | } |
10 | |
11 | // round and shift |
12 | let round_bit = 0x0000_8000u32; |
13 | if (x & round_bit) != 0 && (x & (3 * round_bit - 1)) != 0 { |
14 | (x >> 16) as u16 + 1 |
15 | } else { |
16 | (x >> 16) as u16 |
17 | } |
18 | } |
19 | |
20 | pub(crate) fn f64_to_bf16(value: f64) -> u16 { |
21 | // Convert to raw bytes, truncating the last 32-bits of mantissa; that precision will always |
22 | // be lost on half-precision. |
23 | let val = value.to_bits(); |
24 | let x = (val >> 32) as u32; |
25 | |
26 | // Extract IEEE754 components |
27 | let sign = x & 0x8000_0000u32; |
28 | let exp = x & 0x7FF0_0000u32; |
29 | let man = x & 0x000F_FFFFu32; |
30 | |
31 | // Check for all exponent bits being set, which is Infinity or NaN |
32 | if exp == 0x7FF0_0000u32 { |
33 | // Set mantissa MSB for NaN (and also keep shifted mantissa bits). |
34 | // We also have to check the last 32 bits. |
35 | let nan_bit = if man == 0 && (val as u32 == 0) { |
36 | 0 |
37 | } else { |
38 | 0x0040u32 |
39 | }; |
40 | return ((sign >> 16) | 0x7F80u32 | nan_bit | (man >> 13)) as u16; |
41 | } |
42 | |
43 | // The number is normalized, start assembling half precision version |
44 | let half_sign = sign >> 16; |
45 | // Unbias the exponent, then bias for bfloat16 precision |
46 | let unbiased_exp = ((exp >> 20) as i64) - 1023; |
47 | let half_exp = unbiased_exp + 127; |
48 | |
49 | // Check for exponent overflow, return +infinity |
50 | if half_exp >= 0xFF { |
51 | return (half_sign | 0x7F80u32) as u16; |
52 | } |
53 | |
54 | // Check for underflow |
55 | if half_exp <= 0 { |
56 | // Check mantissa for what we can do |
57 | if 7 - half_exp > 21 { |
58 | // No rounding possibility, so this is a full underflow, return signed zero |
59 | return half_sign as u16; |
60 | } |
61 | // Don't forget about hidden leading mantissa bit when assembling mantissa |
62 | let man = man | 0x0010_0000u32; |
63 | let mut half_man = man >> (14 - half_exp); |
64 | // Check for rounding |
65 | let round_bit = 1 << (13 - half_exp); |
66 | if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 { |
67 | half_man += 1; |
68 | } |
69 | // No exponent for subnormals |
70 | return (half_sign | half_man) as u16; |
71 | } |
72 | |
73 | // Rebias the exponent |
74 | let half_exp = (half_exp as u32) << 7; |
75 | let half_man = man >> 13; |
76 | // Check for rounding |
77 | let round_bit = 0x0000_1000u32; |
78 | if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 { |
79 | // Round it |
80 | ((half_sign | half_exp | half_man) + 1) as u16 |
81 | } else { |
82 | (half_sign | half_exp | half_man) as u16 |
83 | } |
84 | } |
85 | |
86 | pub(crate) fn bf16_to_f32(i: u16) -> f32 { |
87 | // If NaN, keep current mantissa but also set most significiant mantissa bit |
88 | if i & 0x7FFFu16 > 0x7F80u16 { |
89 | f32::from_bits((i as u32 | 0x0040u32) << 16) |
90 | } else { |
91 | f32::from_bits((i as u32) << 16) |
92 | } |
93 | } |
94 | |
95 | pub(crate) fn bf16_to_f64(i: u16) -> f64 { |
96 | // Check for signed zero |
97 | if i & 0x7FFFu16 == 0 { |
98 | return f64::from_bits((i as u64) << 48); |
99 | } |
100 | |
101 | let half_sign = (i & 0x8000u16) as u64; |
102 | let half_exp = (i & 0x7F80u16) as u64; |
103 | let half_man = (i & 0x007Fu16) as u64; |
104 | |
105 | // Check for an infinity or NaN when all exponent bits set |
106 | if half_exp == 0x7F80u64 { |
107 | // Check for signed infinity if mantissa is zero |
108 | if half_man == 0 { |
109 | return f64::from_bits((half_sign << 48) | 0x7FF0_0000_0000_0000u64); |
110 | } else { |
111 | // NaN, keep current mantissa but also set most significiant mantissa bit |
112 | return f64::from_bits((half_sign << 48) | 0x7FF8_0000_0000_0000u64 | (half_man << 45)); |
113 | } |
114 | } |
115 | |
116 | // Calculate double-precision components with adjusted exponent |
117 | let sign = half_sign << 48; |
118 | // Unbias exponent |
119 | let unbiased_exp = ((half_exp as i64) >> 7) - 127; |
120 | |
121 | // Check for subnormals, which will be normalized by adjusting exponent |
122 | if half_exp == 0 { |
123 | // Calculate how much to adjust the exponent by |
124 | let e = (half_man as u16).leading_zeros() - 9; |
125 | |
126 | // Rebias and adjust exponent |
127 | let exp = ((1023 - 127 - e) as u64) << 52; |
128 | let man = (half_man << (46 + e)) & 0xF_FFFF_FFFF_FFFFu64; |
129 | return f64::from_bits(sign | exp | man); |
130 | } |
131 | // Rebias exponent for a normalized normal |
132 | let exp = ((unbiased_exp + 1023) as u64) << 52; |
133 | let man = (half_man & 0x007Fu64) << 45; |
134 | f64::from_bits(sign | exp | man) |
135 | } |
136 | |