| 1 | #[cfg (feature = "bytemuck" )] |
| 2 | use bytemuck::{Pod, Zeroable}; |
| 3 | use core::{ |
| 4 | cmp::Ordering, |
| 5 | fmt::{ |
| 6 | Binary, Debug, Display, Error, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex, |
| 7 | }, |
| 8 | iter::{Product, Sum}, |
| 9 | num::{FpCategory, ParseFloatError}, |
| 10 | ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign}, |
| 11 | str::FromStr, |
| 12 | }; |
| 13 | #[cfg (feature = "serde" )] |
| 14 | use serde::{Deserialize, Serialize}; |
| 15 | #[cfg (feature = "zerocopy" )] |
| 16 | use zerocopy::{AsBytes, FromBytes}; |
| 17 | |
| 18 | pub(crate) mod convert; |
| 19 | |
| 20 | /// A 16-bit floating point type implementing the IEEE 754-2008 standard [`binary16`] a.k.a `half` |
| 21 | /// format. |
| 22 | /// |
| 23 | /// This 16-bit floating point type is intended for efficient storage where the full range and |
| 24 | /// precision of a larger floating point value is not required. Because [`f16`] is primarily for |
| 25 | /// efficient storage, floating point operations such as addition, multiplication, etc. are not |
| 26 | /// implemented. Operations should be performed with [`f32`] or higher-precision types and converted |
| 27 | /// to/from [`f16`] as necessary. |
| 28 | /// |
| 29 | /// [`binary16`]: https://en.wikipedia.org/wiki/Half-precision_floating-point_format |
| 30 | #[allow (non_camel_case_types)] |
| 31 | #[derive(Clone, Copy, Default)] |
| 32 | #[repr (transparent)] |
| 33 | #[cfg_attr (feature = "serde" , derive(Serialize, Deserialize))] |
| 34 | #[cfg_attr (feature = "bytemuck" , derive(Zeroable, Pod))] |
| 35 | #[cfg_attr (feature = "zerocopy" , derive(AsBytes, FromBytes))] |
| 36 | pub struct f16(u16); |
| 37 | |
| 38 | #[doc (hidden)] |
| 39 | #[deprecated ( |
| 40 | since = "1.4.0" , |
| 41 | note = "all constants moved to associated constants of `f16`" |
| 42 | )] |
| 43 | pub mod consts { |
| 44 | use super::f16; |
| 45 | |
| 46 | #[deprecated (since = "1.4.0" , note = "moved to `f16::DIGITS`" )] |
| 47 | pub const DIGITS: u32 = f16::DIGITS; |
| 48 | #[deprecated (since = "1.4.0" , note = "moved to `f16::EPSILON`" )] |
| 49 | pub const EPSILON: f16 = f16::EPSILON; |
| 50 | #[deprecated (since = "1.4.0" , note = "moved to `f16::INFINITY`" )] |
| 51 | pub const INFINITY: f16 = f16::INFINITY; |
| 52 | #[deprecated (since = "1.4.0" , note = "moved to `f16::MANTISSA_DIGITS`" )] |
| 53 | pub const MANTISSA_DIGITS: u32 = f16::MANTISSA_DIGITS; |
| 54 | #[deprecated (since = "1.4.0" , note = "moved to `f16::MAX`" )] |
| 55 | pub const MAX: f16 = f16::MAX; |
| 56 | #[deprecated (since = "1.4.0" , note = "moved to `f16::MAX_10_EXP`" )] |
| 57 | pub const MAX_10_EXP: i32 = f16::MAX_10_EXP; |
| 58 | #[deprecated (since = "1.4.0" , note = "moved to `f16::MAX_EXP`" )] |
| 59 | pub const MAX_EXP: i32 = f16::MAX_EXP; |
| 60 | #[deprecated (since = "1.4.0" , note = "moved to `f16::MIN`" )] |
| 61 | pub const MIN: f16 = f16::MIN; |
| 62 | #[deprecated (since = "1.4.0" , note = "moved to `f16::MIN_10_EXP`" )] |
| 63 | pub const MIN_10_EXP: i32 = f16::MIN_10_EXP; |
| 64 | #[deprecated (since = "1.4.0" , note = "moved to `f16::MIN_EXP`" )] |
| 65 | pub const MIN_EXP: i32 = f16::MIN_EXP; |
| 66 | #[deprecated (since = "1.4.0" , note = "moved to `f16::MIN_POSITIVE`" )] |
| 67 | pub const MIN_POSITIVE: f16 = f16::MIN_POSITIVE; |
| 68 | #[deprecated (since = "1.4.0" , note = "moved to `f16::NAN`" )] |
| 69 | pub const NAN: f16 = f16::NAN; |
| 70 | #[deprecated (since = "1.4.0" , note = "moved to `f16::NEG_INFINITY`" )] |
| 71 | pub const NEG_INFINITY: f16 = f16::NEG_INFINITY; |
| 72 | #[deprecated (since = "1.4.0" , note = "moved to `f16::RADIX`" )] |
| 73 | pub const RADIX: u32 = f16::RADIX; |
| 74 | |
| 75 | #[deprecated (since = "1.4.0" , note = "moved to `f16::MIN_POSITIVE_SUBNORMAL`" )] |
| 76 | pub const MIN_POSITIVE_SUBNORMAL: f16 = f16::MIN_POSITIVE_SUBNORMAL; |
| 77 | #[deprecated (since = "1.4.0" , note = "moved to `f16::MAX_SUBNORMAL`" )] |
| 78 | pub const MAX_SUBNORMAL: f16 = f16::MAX_SUBNORMAL; |
| 79 | |
| 80 | #[deprecated (since = "1.4.0" , note = "moved to `f16::ONE`" )] |
| 81 | pub const ONE: f16 = f16::ONE; |
| 82 | #[deprecated (since = "1.4.0" , note = "moved to `f16::ZERO`" )] |
| 83 | pub const ZERO: f16 = f16::ZERO; |
| 84 | #[deprecated (since = "1.4.0" , note = "moved to `f16::NEG_ZERO`" )] |
| 85 | pub const NEG_ZERO: f16 = f16::NEG_ZERO; |
| 86 | |
| 87 | #[deprecated (since = "1.4.0" , note = "moved to `f16::E`" )] |
| 88 | pub const E: f16 = f16::E; |
| 89 | #[deprecated (since = "1.4.0" , note = "moved to `f16::PI`" )] |
| 90 | pub const PI: f16 = f16::PI; |
| 91 | #[deprecated (since = "1.4.0" , note = "moved to `f16::FRAC_1_PI`" )] |
| 92 | pub const FRAC_1_PI: f16 = f16::FRAC_1_PI; |
| 93 | #[deprecated (since = "1.4.0" , note = "moved to `f16::FRAC_1_SQRT_2`" )] |
| 94 | pub const FRAC_1_SQRT_2: f16 = f16::FRAC_1_SQRT_2; |
| 95 | #[deprecated (since = "1.4.0" , note = "moved to `f16::FRAC_2_PI`" )] |
| 96 | pub const FRAC_2_PI: f16 = f16::FRAC_2_PI; |
| 97 | #[deprecated (since = "1.4.0" , note = "moved to `f16::FRAC_2_SQRT_PI`" )] |
| 98 | pub const FRAC_2_SQRT_PI: f16 = f16::FRAC_2_SQRT_PI; |
| 99 | #[deprecated (since = "1.4.0" , note = "moved to `f16::FRAC_PI_2`" )] |
| 100 | pub const FRAC_PI_2: f16 = f16::FRAC_PI_2; |
| 101 | #[deprecated (since = "1.4.0" , note = "moved to `f16::FRAC_PI_3`" )] |
| 102 | pub const FRAC_PI_3: f16 = f16::FRAC_PI_3; |
| 103 | #[deprecated (since = "1.4.0" , note = "moved to `f16::FRAC_PI_4`" )] |
| 104 | pub const FRAC_PI_4: f16 = f16::FRAC_PI_4; |
| 105 | #[deprecated (since = "1.4.0" , note = "moved to `f16::FRAC_PI_6`" )] |
| 106 | pub const FRAC_PI_6: f16 = f16::FRAC_PI_6; |
| 107 | #[deprecated (since = "1.4.0" , note = "moved to `f16::FRAC_PI_8`" )] |
| 108 | pub const FRAC_PI_8: f16 = f16::FRAC_PI_8; |
| 109 | #[deprecated (since = "1.4.0" , note = "moved to `f16::LN_10`" )] |
| 110 | pub const LN_10: f16 = f16::LN_10; |
| 111 | #[deprecated (since = "1.4.0" , note = "moved to `f16::LN_2`" )] |
| 112 | pub const LN_2: f16 = f16::LN_2; |
| 113 | #[deprecated (since = "1.4.0" , note = "moved to `f16::LOG10_E`" )] |
| 114 | pub const LOG10_E: f16 = f16::LOG10_E; |
| 115 | #[deprecated (since = "1.4.0" , note = "moved to `f16::LOG2_E`" )] |
| 116 | pub const LOG2_E: f16 = f16::LOG2_E; |
| 117 | #[deprecated (since = "1.4.0" , note = "moved to `f16::SQRT_2`" )] |
| 118 | pub const SQRT_2: f16 = f16::SQRT_2; |
| 119 | } |
| 120 | |
| 121 | impl f16 { |
| 122 | /// Constructs a 16-bit floating point value from the raw bits. |
| 123 | #[inline ] |
| 124 | pub const fn from_bits(bits: u16) -> f16 { |
| 125 | f16(bits) |
| 126 | } |
| 127 | |
| 128 | /// Constructs a 16-bit floating point value from a 32-bit floating point value. |
| 129 | /// |
| 130 | /// If the 32-bit value is to large to fit in 16-bits, ±∞ will result. NaN values are |
| 131 | /// preserved. 32-bit subnormal values are too tiny to be represented in 16-bits and result in |
| 132 | /// ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals |
| 133 | /// or ±0. All other values are truncated and rounded to the nearest representable 16-bit |
| 134 | /// value. |
| 135 | #[inline ] |
| 136 | pub fn from_f32(value: f32) -> f16 { |
| 137 | f16(convert::f32_to_f16(value)) |
| 138 | } |
| 139 | |
| 140 | /// Constructs a 16-bit floating point value from a 64-bit floating point value. |
| 141 | /// |
| 142 | /// If the 64-bit value is to large to fit in 16-bits, ±∞ will result. NaN values are |
| 143 | /// preserved. 64-bit subnormal values are too tiny to be represented in 16-bits and result in |
| 144 | /// ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals |
| 145 | /// or ±0. All other values are truncated and rounded to the nearest representable 16-bit |
| 146 | /// value. |
| 147 | #[inline ] |
| 148 | pub fn from_f64(value: f64) -> f16 { |
| 149 | f16(convert::f64_to_f16(value)) |
| 150 | } |
| 151 | |
| 152 | /// Converts a [`f16`] into the underlying bit representation. |
| 153 | #[inline ] |
| 154 | pub const fn to_bits(self) -> u16 { |
| 155 | self.0 |
| 156 | } |
| 157 | |
| 158 | /// Returns the memory representation of the underlying bit representation as a byte array in |
| 159 | /// little-endian byte order. |
| 160 | /// |
| 161 | /// # Examples |
| 162 | /// |
| 163 | /// ```rust |
| 164 | /// # use half::prelude::*; |
| 165 | /// let bytes = f16::from_f32(12.5).to_le_bytes(); |
| 166 | /// assert_eq!(bytes, [0x40, 0x4A]); |
| 167 | /// ``` |
| 168 | #[inline ] |
| 169 | pub const fn to_le_bytes(self) -> [u8; 2] { |
| 170 | self.0.to_le_bytes() |
| 171 | } |
| 172 | |
| 173 | /// Returns the memory representation of the underlying bit representation as a byte array in |
| 174 | /// big-endian (network) byte order. |
| 175 | /// |
| 176 | /// # Examples |
| 177 | /// |
| 178 | /// ```rust |
| 179 | /// # use half::prelude::*; |
| 180 | /// let bytes = f16::from_f32(12.5).to_be_bytes(); |
| 181 | /// assert_eq!(bytes, [0x4A, 0x40]); |
| 182 | /// ``` |
| 183 | #[inline ] |
| 184 | pub const fn to_be_bytes(self) -> [u8; 2] { |
| 185 | self.0.to_be_bytes() |
| 186 | } |
| 187 | |
| 188 | /// Returns the memory representation of the underlying bit representation as a byte array in |
| 189 | /// native byte order. |
| 190 | /// |
| 191 | /// As the target platform's native endianness is used, portable code should use |
| 192 | /// [`to_be_bytes`][Self::to_be_bytes] or [`to_le_bytes`][Self::to_le_bytes], as appropriate, |
| 193 | /// instead. |
| 194 | /// |
| 195 | /// # Examples |
| 196 | /// |
| 197 | /// ```rust |
| 198 | /// # use half::prelude::*; |
| 199 | /// let bytes = f16::from_f32(12.5).to_ne_bytes(); |
| 200 | /// assert_eq!(bytes, if cfg!(target_endian = "big" ) { |
| 201 | /// [0x4A, 0x40] |
| 202 | /// } else { |
| 203 | /// [0x40, 0x4A] |
| 204 | /// }); |
| 205 | /// ``` |
| 206 | #[inline ] |
| 207 | pub const fn to_ne_bytes(self) -> [u8; 2] { |
| 208 | self.0.to_ne_bytes() |
| 209 | } |
| 210 | |
| 211 | /// Creates a floating point value from its representation as a byte array in little endian. |
| 212 | /// |
| 213 | /// # Examples |
| 214 | /// |
| 215 | /// ```rust |
| 216 | /// # use half::prelude::*; |
| 217 | /// let value = f16::from_le_bytes([0x40, 0x4A]); |
| 218 | /// assert_eq!(value, f16::from_f32(12.5)); |
| 219 | /// ``` |
| 220 | #[inline ] |
| 221 | pub const fn from_le_bytes(bytes: [u8; 2]) -> f16 { |
| 222 | f16::from_bits(u16::from_le_bytes(bytes)) |
| 223 | } |
| 224 | |
| 225 | /// Creates a floating point value from its representation as a byte array in big endian. |
| 226 | /// |
| 227 | /// # Examples |
| 228 | /// |
| 229 | /// ```rust |
| 230 | /// # use half::prelude::*; |
| 231 | /// let value = f16::from_be_bytes([0x4A, 0x40]); |
| 232 | /// assert_eq!(value, f16::from_f32(12.5)); |
| 233 | /// ``` |
| 234 | #[inline ] |
| 235 | pub const fn from_be_bytes(bytes: [u8; 2]) -> f16 { |
| 236 | f16::from_bits(u16::from_be_bytes(bytes)) |
| 237 | } |
| 238 | |
| 239 | /// Creates a floating point value from its representation as a byte array in native endian. |
| 240 | /// |
| 241 | /// As the target platform's native endianness is used, portable code likely wants to use |
| 242 | /// [`from_be_bytes`][Self::from_be_bytes] or [`from_le_bytes`][Self::from_le_bytes], as |
| 243 | /// appropriate instead. |
| 244 | /// |
| 245 | /// # Examples |
| 246 | /// |
| 247 | /// ```rust |
| 248 | /// # use half::prelude::*; |
| 249 | /// let value = f16::from_ne_bytes(if cfg!(target_endian = "big" ) { |
| 250 | /// [0x4A, 0x40] |
| 251 | /// } else { |
| 252 | /// [0x40, 0x4A] |
| 253 | /// }); |
| 254 | /// assert_eq!(value, f16::from_f32(12.5)); |
| 255 | /// ``` |
| 256 | #[inline ] |
| 257 | pub const fn from_ne_bytes(bytes: [u8; 2]) -> f16 { |
| 258 | f16::from_bits(u16::from_ne_bytes(bytes)) |
| 259 | } |
| 260 | |
| 261 | #[doc (hidden)] |
| 262 | #[deprecated (since = "1.2.0" , note = "renamed to `to_bits`" )] |
| 263 | #[inline ] |
| 264 | pub fn as_bits(self) -> u16 { |
| 265 | self.to_bits() |
| 266 | } |
| 267 | |
| 268 | /// Converts a [`f16`] value into a `f32` value. |
| 269 | /// |
| 270 | /// This conversion is lossless as all 16-bit floating point values can be represented exactly |
| 271 | /// in 32-bit floating point. |
| 272 | #[inline ] |
| 273 | pub fn to_f32(self) -> f32 { |
| 274 | convert::f16_to_f32(self.0) |
| 275 | } |
| 276 | |
| 277 | /// Converts a [`f16`] value into a `f64` value. |
| 278 | /// |
| 279 | /// This conversion is lossless as all 16-bit floating point values can be represented exactly |
| 280 | /// in 64-bit floating point. |
| 281 | #[inline ] |
| 282 | pub fn to_f64(self) -> f64 { |
| 283 | convert::f16_to_f64(self.0) |
| 284 | } |
| 285 | |
| 286 | /// Returns `true` if this value is `NaN` and `false` otherwise. |
| 287 | /// |
| 288 | /// # Examples |
| 289 | /// |
| 290 | /// ```rust |
| 291 | /// # use half::prelude::*; |
| 292 | /// |
| 293 | /// let nan = f16::NAN; |
| 294 | /// let f = f16::from_f32(7.0_f32); |
| 295 | /// |
| 296 | /// assert!(nan.is_nan()); |
| 297 | /// assert!(!f.is_nan()); |
| 298 | /// ``` |
| 299 | #[inline ] |
| 300 | pub const fn is_nan(self) -> bool { |
| 301 | self.0 & 0x7FFFu16 > 0x7C00u16 |
| 302 | } |
| 303 | |
| 304 | /// Returns `true` if this value is ±∞ and `false`. |
| 305 | /// otherwise. |
| 306 | /// |
| 307 | /// # Examples |
| 308 | /// |
| 309 | /// ```rust |
| 310 | /// # use half::prelude::*; |
| 311 | /// |
| 312 | /// let f = f16::from_f32(7.0f32); |
| 313 | /// let inf = f16::INFINITY; |
| 314 | /// let neg_inf = f16::NEG_INFINITY; |
| 315 | /// let nan = f16::NAN; |
| 316 | /// |
| 317 | /// assert!(!f.is_infinite()); |
| 318 | /// assert!(!nan.is_infinite()); |
| 319 | /// |
| 320 | /// assert!(inf.is_infinite()); |
| 321 | /// assert!(neg_inf.is_infinite()); |
| 322 | /// ``` |
| 323 | #[inline ] |
| 324 | pub const fn is_infinite(self) -> bool { |
| 325 | self.0 & 0x7FFFu16 == 0x7C00u16 |
| 326 | } |
| 327 | |
| 328 | /// Returns `true` if this number is neither infinite nor `NaN`. |
| 329 | /// |
| 330 | /// # Examples |
| 331 | /// |
| 332 | /// ```rust |
| 333 | /// # use half::prelude::*; |
| 334 | /// |
| 335 | /// let f = f16::from_f32(7.0f32); |
| 336 | /// let inf = f16::INFINITY; |
| 337 | /// let neg_inf = f16::NEG_INFINITY; |
| 338 | /// let nan = f16::NAN; |
| 339 | /// |
| 340 | /// assert!(f.is_finite()); |
| 341 | /// |
| 342 | /// assert!(!nan.is_finite()); |
| 343 | /// assert!(!inf.is_finite()); |
| 344 | /// assert!(!neg_inf.is_finite()); |
| 345 | /// ``` |
| 346 | #[inline ] |
| 347 | pub const fn is_finite(self) -> bool { |
| 348 | self.0 & 0x7C00u16 != 0x7C00u16 |
| 349 | } |
| 350 | |
| 351 | /// Returns `true` if the number is neither zero, infinite, subnormal, or `NaN`. |
| 352 | /// |
| 353 | /// # Examples |
| 354 | /// |
| 355 | /// ```rust |
| 356 | /// # use half::prelude::*; |
| 357 | /// |
| 358 | /// let min = f16::MIN_POSITIVE; |
| 359 | /// let max = f16::MAX; |
| 360 | /// let lower_than_min = f16::from_f32(1.0e-10_f32); |
| 361 | /// let zero = f16::from_f32(0.0_f32); |
| 362 | /// |
| 363 | /// assert!(min.is_normal()); |
| 364 | /// assert!(max.is_normal()); |
| 365 | /// |
| 366 | /// assert!(!zero.is_normal()); |
| 367 | /// assert!(!f16::NAN.is_normal()); |
| 368 | /// assert!(!f16::INFINITY.is_normal()); |
| 369 | /// // Values between `0` and `min` are Subnormal. |
| 370 | /// assert!(!lower_than_min.is_normal()); |
| 371 | /// ``` |
| 372 | #[inline ] |
| 373 | pub const fn is_normal(self) -> bool { |
| 374 | let exp = self.0 & 0x7C00u16; |
| 375 | exp != 0x7C00u16 && exp != 0 |
| 376 | } |
| 377 | |
| 378 | /// Returns the floating point category of the number. |
| 379 | /// |
| 380 | /// If only one property is going to be tested, it is generally faster to use the specific |
| 381 | /// predicate instead. |
| 382 | /// |
| 383 | /// # Examples |
| 384 | /// |
| 385 | /// ```rust |
| 386 | /// use std::num::FpCategory; |
| 387 | /// # use half::prelude::*; |
| 388 | /// |
| 389 | /// let num = f16::from_f32(12.4_f32); |
| 390 | /// let inf = f16::INFINITY; |
| 391 | /// |
| 392 | /// assert_eq!(num.classify(), FpCategory::Normal); |
| 393 | /// assert_eq!(inf.classify(), FpCategory::Infinite); |
| 394 | /// ``` |
| 395 | pub const fn classify(self) -> FpCategory { |
| 396 | let exp = self.0 & 0x7C00u16; |
| 397 | let man = self.0 & 0x03FFu16; |
| 398 | match (exp, man) { |
| 399 | (0, 0) => FpCategory::Zero, |
| 400 | (0, _) => FpCategory::Subnormal, |
| 401 | (0x7C00u16, 0) => FpCategory::Infinite, |
| 402 | (0x7C00u16, _) => FpCategory::Nan, |
| 403 | _ => FpCategory::Normal, |
| 404 | } |
| 405 | } |
| 406 | |
| 407 | /// Returns a number that represents the sign of `self`. |
| 408 | /// |
| 409 | /// * `1.0` if the number is positive, `+0.0` or [`INFINITY`][f16::INFINITY] |
| 410 | /// * `-1.0` if the number is negative, `-0.0` or [`NEG_INFINITY`][f16::NEG_INFINITY] |
| 411 | /// * [`NAN`][f16::NAN] if the number is `NaN` |
| 412 | /// |
| 413 | /// # Examples |
| 414 | /// |
| 415 | /// ```rust |
| 416 | /// # use half::prelude::*; |
| 417 | /// |
| 418 | /// let f = f16::from_f32(3.5_f32); |
| 419 | /// |
| 420 | /// assert_eq!(f.signum(), f16::from_f32(1.0)); |
| 421 | /// assert_eq!(f16::NEG_INFINITY.signum(), f16::from_f32(-1.0)); |
| 422 | /// |
| 423 | /// assert!(f16::NAN.signum().is_nan()); |
| 424 | /// ``` |
| 425 | pub const fn signum(self) -> f16 { |
| 426 | if self.is_nan() { |
| 427 | self |
| 428 | } else if self.0 & 0x8000u16 != 0 { |
| 429 | Self::NEG_ONE |
| 430 | } else { |
| 431 | Self::ONE |
| 432 | } |
| 433 | } |
| 434 | |
| 435 | /// Returns `true` if and only if `self` has a positive sign, including `+0.0`, `NaNs` with a |
| 436 | /// positive sign bit and +∞. |
| 437 | /// |
| 438 | /// # Examples |
| 439 | /// |
| 440 | /// ```rust |
| 441 | /// # use half::prelude::*; |
| 442 | /// |
| 443 | /// let nan = f16::NAN; |
| 444 | /// let f = f16::from_f32(7.0_f32); |
| 445 | /// let g = f16::from_f32(-7.0_f32); |
| 446 | /// |
| 447 | /// assert!(f.is_sign_positive()); |
| 448 | /// assert!(!g.is_sign_positive()); |
| 449 | /// // `NaN` can be either positive or negative |
| 450 | /// assert!(nan.is_sign_positive() != nan.is_sign_negative()); |
| 451 | /// ``` |
| 452 | #[inline ] |
| 453 | pub const fn is_sign_positive(self) -> bool { |
| 454 | self.0 & 0x8000u16 == 0 |
| 455 | } |
| 456 | |
| 457 | /// Returns `true` if and only if `self` has a negative sign, including `-0.0`, `NaNs` with a |
| 458 | /// negative sign bit and −∞. |
| 459 | /// |
| 460 | /// # Examples |
| 461 | /// |
| 462 | /// ```rust |
| 463 | /// # use half::prelude::*; |
| 464 | /// |
| 465 | /// let nan = f16::NAN; |
| 466 | /// let f = f16::from_f32(7.0f32); |
| 467 | /// let g = f16::from_f32(-7.0f32); |
| 468 | /// |
| 469 | /// assert!(!f.is_sign_negative()); |
| 470 | /// assert!(g.is_sign_negative()); |
| 471 | /// // `NaN` can be either positive or negative |
| 472 | /// assert!(nan.is_sign_positive() != nan.is_sign_negative()); |
| 473 | /// ``` |
| 474 | #[inline ] |
| 475 | pub const fn is_sign_negative(self) -> bool { |
| 476 | self.0 & 0x8000u16 != 0 |
| 477 | } |
| 478 | |
| 479 | /// Returns a number composed of the magnitude of `self` and the sign of `sign`. |
| 480 | /// |
| 481 | /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`. |
| 482 | /// If `self` is NaN, then NaN with the sign of `sign` is returned. |
| 483 | /// |
| 484 | /// # Examples |
| 485 | /// |
| 486 | /// ``` |
| 487 | /// # use half::prelude::*; |
| 488 | /// let f = f16::from_f32(3.5); |
| 489 | /// |
| 490 | /// assert_eq!(f.copysign(f16::from_f32(0.42)), f16::from_f32(3.5)); |
| 491 | /// assert_eq!(f.copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5)); |
| 492 | /// assert_eq!((-f).copysign(f16::from_f32(0.42)), f16::from_f32(3.5)); |
| 493 | /// assert_eq!((-f).copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5)); |
| 494 | /// |
| 495 | /// assert!(f16::NAN.copysign(f16::from_f32(1.0)).is_nan()); |
| 496 | /// ``` |
| 497 | #[inline ] |
| 498 | pub const fn copysign(self, sign: f16) -> f16 { |
| 499 | f16((sign.0 & 0x8000u16) | (self.0 & 0x7FFFu16)) |
| 500 | } |
| 501 | |
| 502 | /// Returns the maximum of the two numbers. |
| 503 | /// |
| 504 | /// If one of the arguments is NaN, then the other argument is returned. |
| 505 | /// |
| 506 | /// # Examples |
| 507 | /// |
| 508 | /// ``` |
| 509 | /// # use half::prelude::*; |
| 510 | /// let x = f16::from_f32(1.0); |
| 511 | /// let y = f16::from_f32(2.0); |
| 512 | /// |
| 513 | /// assert_eq!(x.max(y), y); |
| 514 | /// ``` |
| 515 | #[inline ] |
| 516 | pub fn max(self, other: f16) -> f16 { |
| 517 | if other > self && !other.is_nan() { |
| 518 | other |
| 519 | } else { |
| 520 | self |
| 521 | } |
| 522 | } |
| 523 | |
| 524 | /// Returns the minimum of the two numbers. |
| 525 | /// |
| 526 | /// If one of the arguments is NaN, then the other argument is returned. |
| 527 | /// |
| 528 | /// # Examples |
| 529 | /// |
| 530 | /// ``` |
| 531 | /// # use half::prelude::*; |
| 532 | /// let x = f16::from_f32(1.0); |
| 533 | /// let y = f16::from_f32(2.0); |
| 534 | /// |
| 535 | /// assert_eq!(x.min(y), x); |
| 536 | /// ``` |
| 537 | #[inline ] |
| 538 | pub fn min(self, other: f16) -> f16 { |
| 539 | if other < self && !other.is_nan() { |
| 540 | other |
| 541 | } else { |
| 542 | self |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | /// Restrict a value to a certain interval unless it is NaN. |
| 547 | /// |
| 548 | /// Returns `max` if `self` is greater than `max`, and `min` if `self` is less than `min`. |
| 549 | /// Otherwise this returns `self`. |
| 550 | /// |
| 551 | /// Note that this function returns NaN if the initial value was NaN as well. |
| 552 | /// |
| 553 | /// # Panics |
| 554 | /// Panics if `min > max`, `min` is NaN, or `max` is NaN. |
| 555 | /// |
| 556 | /// # Examples |
| 557 | /// |
| 558 | /// ``` |
| 559 | /// # use half::prelude::*; |
| 560 | /// assert!(f16::from_f32(-3.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(-2.0)); |
| 561 | /// assert!(f16::from_f32(0.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(0.0)); |
| 562 | /// assert!(f16::from_f32(2.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(1.0)); |
| 563 | /// assert!(f16::NAN.clamp(f16::from_f32(-2.0), f16::from_f32(1.0)).is_nan()); |
| 564 | /// ``` |
| 565 | #[inline ] |
| 566 | pub fn clamp(self, min: f16, max: f16) -> f16 { |
| 567 | assert!(min <= max); |
| 568 | let mut x = self; |
| 569 | if x < min { |
| 570 | x = min; |
| 571 | } |
| 572 | if x > max { |
| 573 | x = max; |
| 574 | } |
| 575 | x |
| 576 | } |
| 577 | |
| 578 | /// Approximate number of [`f16`] significant digits in base 10 |
| 579 | pub const DIGITS: u32 = 3; |
| 580 | /// [`f16`] |
| 581 | /// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value |
| 582 | /// |
| 583 | /// This is the difference between 1.0 and the next largest representable number. |
| 584 | pub const EPSILON: f16 = f16(0x1400u16); |
| 585 | /// [`f16`] positive Infinity (+∞) |
| 586 | pub const INFINITY: f16 = f16(0x7C00u16); |
| 587 | /// Number of [`f16`] significant digits in base 2 |
| 588 | pub const MANTISSA_DIGITS: u32 = 11; |
| 589 | /// Largest finite [`f16`] value |
| 590 | pub const MAX: f16 = f16(0x7BFF); |
| 591 | /// Maximum possible [`f16`] power of 10 exponent |
| 592 | pub const MAX_10_EXP: i32 = 4; |
| 593 | /// Maximum possible [`f16`] power of 2 exponent |
| 594 | pub const MAX_EXP: i32 = 16; |
| 595 | /// Smallest finite [`f16`] value |
| 596 | pub const MIN: f16 = f16(0xFBFF); |
| 597 | /// Minimum possible normal [`f16`] power of 10 exponent |
| 598 | pub const MIN_10_EXP: i32 = -4; |
| 599 | /// One greater than the minimum possible normal [`f16`] power of 2 exponent |
| 600 | pub const MIN_EXP: i32 = -13; |
| 601 | /// Smallest positive normal [`f16`] value |
| 602 | pub const MIN_POSITIVE: f16 = f16(0x0400u16); |
| 603 | /// [`f16`] Not a Number (NaN) |
| 604 | pub const NAN: f16 = f16(0x7E00u16); |
| 605 | /// [`f16`] negative infinity (-∞) |
| 606 | pub const NEG_INFINITY: f16 = f16(0xFC00u16); |
| 607 | /// The radix or base of the internal representation of [`f16`] |
| 608 | pub const RADIX: u32 = 2; |
| 609 | |
| 610 | /// Minimum positive subnormal [`f16`] value |
| 611 | pub const MIN_POSITIVE_SUBNORMAL: f16 = f16(0x0001u16); |
| 612 | /// Maximum subnormal [`f16`] value |
| 613 | pub const MAX_SUBNORMAL: f16 = f16(0x03FFu16); |
| 614 | |
| 615 | /// [`f16`] 1 |
| 616 | pub const ONE: f16 = f16(0x3C00u16); |
| 617 | /// [`f16`] 0 |
| 618 | pub const ZERO: f16 = f16(0x0000u16); |
| 619 | /// [`f16`] -0 |
| 620 | pub const NEG_ZERO: f16 = f16(0x8000u16); |
| 621 | /// [`f16`] -1 |
| 622 | pub const NEG_ONE: f16 = f16(0xBC00u16); |
| 623 | |
| 624 | /// [`f16`] Euler's number (ℯ) |
| 625 | pub const E: f16 = f16(0x4170u16); |
| 626 | /// [`f16`] Archimedes' constant (π) |
| 627 | pub const PI: f16 = f16(0x4248u16); |
| 628 | /// [`f16`] 1/π |
| 629 | pub const FRAC_1_PI: f16 = f16(0x3518u16); |
| 630 | /// [`f16`] 1/√2 |
| 631 | pub const FRAC_1_SQRT_2: f16 = f16(0x39A8u16); |
| 632 | /// [`f16`] 2/π |
| 633 | pub const FRAC_2_PI: f16 = f16(0x3918u16); |
| 634 | /// [`f16`] 2/√π |
| 635 | pub const FRAC_2_SQRT_PI: f16 = f16(0x3C83u16); |
| 636 | /// [`f16`] π/2 |
| 637 | pub const FRAC_PI_2: f16 = f16(0x3E48u16); |
| 638 | /// [`f16`] π/3 |
| 639 | pub const FRAC_PI_3: f16 = f16(0x3C30u16); |
| 640 | /// [`f16`] π/4 |
| 641 | pub const FRAC_PI_4: f16 = f16(0x3A48u16); |
| 642 | /// [`f16`] π/6 |
| 643 | pub const FRAC_PI_6: f16 = f16(0x3830u16); |
| 644 | /// [`f16`] π/8 |
| 645 | pub const FRAC_PI_8: f16 = f16(0x3648u16); |
| 646 | /// [`f16`] 𝗅𝗇 10 |
| 647 | pub const LN_10: f16 = f16(0x409Bu16); |
| 648 | /// [`f16`] 𝗅𝗇 2 |
| 649 | pub const LN_2: f16 = f16(0x398Cu16); |
| 650 | /// [`f16`] 𝗅𝗈𝗀₁₀ℯ |
| 651 | pub const LOG10_E: f16 = f16(0x36F3u16); |
| 652 | /// [`f16`] 𝗅𝗈𝗀₁₀2 |
| 653 | pub const LOG10_2: f16 = f16(0x34D1u16); |
| 654 | /// [`f16`] 𝗅𝗈𝗀₂ℯ |
| 655 | pub const LOG2_E: f16 = f16(0x3DC5u16); |
| 656 | /// [`f16`] 𝗅𝗈𝗀₂10 |
| 657 | pub const LOG2_10: f16 = f16(0x42A5u16); |
| 658 | /// [`f16`] √2 |
| 659 | pub const SQRT_2: f16 = f16(0x3DA8u16); |
| 660 | } |
| 661 | |
| 662 | impl From<f16> for f32 { |
| 663 | #[inline ] |
| 664 | fn from(x: f16) -> f32 { |
| 665 | x.to_f32() |
| 666 | } |
| 667 | } |
| 668 | |
| 669 | impl From<f16> for f64 { |
| 670 | #[inline ] |
| 671 | fn from(x: f16) -> f64 { |
| 672 | x.to_f64() |
| 673 | } |
| 674 | } |
| 675 | |
| 676 | impl From<i8> for f16 { |
| 677 | #[inline ] |
| 678 | fn from(x: i8) -> f16 { |
| 679 | // Convert to f32, then to f16 |
| 680 | f16::from_f32(f32::from(x)) |
| 681 | } |
| 682 | } |
| 683 | |
| 684 | impl From<u8> for f16 { |
| 685 | #[inline ] |
| 686 | fn from(x: u8) -> f16 { |
| 687 | // Convert to f32, then to f16 |
| 688 | f16::from_f32(f32::from(x)) |
| 689 | } |
| 690 | } |
| 691 | |
| 692 | impl PartialEq for f16 { |
| 693 | fn eq(&self, other: &f16) -> bool { |
| 694 | if self.is_nan() || other.is_nan() { |
| 695 | false |
| 696 | } else { |
| 697 | (self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0) |
| 698 | } |
| 699 | } |
| 700 | } |
| 701 | |
| 702 | impl PartialOrd for f16 { |
| 703 | fn partial_cmp(&self, other: &f16) -> Option<Ordering> { |
| 704 | if self.is_nan() || other.is_nan() { |
| 705 | None |
| 706 | } else { |
| 707 | let neg = self.0 & 0x8000u16 != 0; |
| 708 | let other_neg = other.0 & 0x8000u16 != 0; |
| 709 | match (neg, other_neg) { |
| 710 | (false, false) => Some(self.0.cmp(&other.0)), |
| 711 | (false, true) => { |
| 712 | if (self.0 | other.0) & 0x7FFFu16 == 0 { |
| 713 | Some(Ordering::Equal) |
| 714 | } else { |
| 715 | Some(Ordering::Greater) |
| 716 | } |
| 717 | } |
| 718 | (true, false) => { |
| 719 | if (self.0 | other.0) & 0x7FFFu16 == 0 { |
| 720 | Some(Ordering::Equal) |
| 721 | } else { |
| 722 | Some(Ordering::Less) |
| 723 | } |
| 724 | } |
| 725 | (true, true) => Some(other.0.cmp(&self.0)), |
| 726 | } |
| 727 | } |
| 728 | } |
| 729 | |
| 730 | fn lt(&self, other: &f16) -> bool { |
| 731 | if self.is_nan() || other.is_nan() { |
| 732 | false |
| 733 | } else { |
| 734 | let neg = self.0 & 0x8000u16 != 0; |
| 735 | let other_neg = other.0 & 0x8000u16 != 0; |
| 736 | match (neg, other_neg) { |
| 737 | (false, false) => self.0 < other.0, |
| 738 | (false, true) => false, |
| 739 | (true, false) => (self.0 | other.0) & 0x7FFFu16 != 0, |
| 740 | (true, true) => self.0 > other.0, |
| 741 | } |
| 742 | } |
| 743 | } |
| 744 | |
| 745 | fn le(&self, other: &f16) -> bool { |
| 746 | if self.is_nan() || other.is_nan() { |
| 747 | false |
| 748 | } else { |
| 749 | let neg = self.0 & 0x8000u16 != 0; |
| 750 | let other_neg = other.0 & 0x8000u16 != 0; |
| 751 | match (neg, other_neg) { |
| 752 | (false, false) => self.0 <= other.0, |
| 753 | (false, true) => (self.0 | other.0) & 0x7FFFu16 == 0, |
| 754 | (true, false) => true, |
| 755 | (true, true) => self.0 >= other.0, |
| 756 | } |
| 757 | } |
| 758 | } |
| 759 | |
| 760 | fn gt(&self, other: &f16) -> bool { |
| 761 | if self.is_nan() || other.is_nan() { |
| 762 | false |
| 763 | } else { |
| 764 | let neg = self.0 & 0x8000u16 != 0; |
| 765 | let other_neg = other.0 & 0x8000u16 != 0; |
| 766 | match (neg, other_neg) { |
| 767 | (false, false) => self.0 > other.0, |
| 768 | (false, true) => (self.0 | other.0) & 0x7FFFu16 != 0, |
| 769 | (true, false) => false, |
| 770 | (true, true) => self.0 < other.0, |
| 771 | } |
| 772 | } |
| 773 | } |
| 774 | |
| 775 | fn ge(&self, other: &f16) -> bool { |
| 776 | if self.is_nan() || other.is_nan() { |
| 777 | false |
| 778 | } else { |
| 779 | let neg = self.0 & 0x8000u16 != 0; |
| 780 | let other_neg = other.0 & 0x8000u16 != 0; |
| 781 | match (neg, other_neg) { |
| 782 | (false, false) => self.0 >= other.0, |
| 783 | (false, true) => true, |
| 784 | (true, false) => (self.0 | other.0) & 0x7FFFu16 == 0, |
| 785 | (true, true) => self.0 <= other.0, |
| 786 | } |
| 787 | } |
| 788 | } |
| 789 | } |
| 790 | |
| 791 | impl FromStr for f16 { |
| 792 | type Err = ParseFloatError; |
| 793 | fn from_str(src: &str) -> Result<f16, ParseFloatError> { |
| 794 | f32::from_str(src).map(f16::from_f32) |
| 795 | } |
| 796 | } |
| 797 | |
| 798 | impl Debug for f16 { |
| 799 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
| 800 | write!(f, "{:?}" , self.to_f32()) |
| 801 | } |
| 802 | } |
| 803 | |
| 804 | impl Display for f16 { |
| 805 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
| 806 | write!(f, "{}" , self.to_f32()) |
| 807 | } |
| 808 | } |
| 809 | |
| 810 | impl LowerExp for f16 { |
| 811 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
| 812 | write!(f, "{:e}" , self.to_f32()) |
| 813 | } |
| 814 | } |
| 815 | |
| 816 | impl UpperExp for f16 { |
| 817 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
| 818 | write!(f, "{:E}" , self.to_f32()) |
| 819 | } |
| 820 | } |
| 821 | |
| 822 | impl Binary for f16 { |
| 823 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
| 824 | write!(f, "{:b}" , self.0) |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | impl Octal for f16 { |
| 829 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
| 830 | write!(f, "{:o}" , self.0) |
| 831 | } |
| 832 | } |
| 833 | |
| 834 | impl LowerHex for f16 { |
| 835 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
| 836 | write!(f, "{:x}" , self.0) |
| 837 | } |
| 838 | } |
| 839 | |
| 840 | impl UpperHex for f16 { |
| 841 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
| 842 | write!(f, "{:X}" , self.0) |
| 843 | } |
| 844 | } |
| 845 | |
| 846 | impl Neg for f16 { |
| 847 | type Output = Self; |
| 848 | |
| 849 | #[inline ] |
| 850 | fn neg(self) -> Self::Output { |
| 851 | Self(self.0 ^ 0x8000) |
| 852 | } |
| 853 | } |
| 854 | |
| 855 | impl Add for f16 { |
| 856 | type Output = Self; |
| 857 | |
| 858 | #[inline ] |
| 859 | fn add(self, rhs: Self) -> Self::Output { |
| 860 | Self::from_f32(Self::to_f32(self) + Self::to_f32(rhs)) |
| 861 | } |
| 862 | } |
| 863 | |
| 864 | impl Add<&f16> for f16 { |
| 865 | type Output = <f16 as Add<f16>>::Output; |
| 866 | |
| 867 | #[inline ] |
| 868 | fn add(self, rhs: &f16) -> Self::Output { |
| 869 | self.add(*rhs) |
| 870 | } |
| 871 | } |
| 872 | |
| 873 | impl Add<&f16> for &f16 { |
| 874 | type Output = <f16 as Add<f16>>::Output; |
| 875 | |
| 876 | #[inline ] |
| 877 | fn add(self, rhs: &f16) -> Self::Output { |
| 878 | (*self).add(*rhs) |
| 879 | } |
| 880 | } |
| 881 | |
| 882 | impl Add<f16> for &f16 { |
| 883 | type Output = <f16 as Add<f16>>::Output; |
| 884 | |
| 885 | #[inline ] |
| 886 | fn add(self, rhs: f16) -> Self::Output { |
| 887 | (*self).add(rhs) |
| 888 | } |
| 889 | } |
| 890 | |
| 891 | impl AddAssign for f16 { |
| 892 | #[inline ] |
| 893 | fn add_assign(&mut self, rhs: Self) { |
| 894 | *self = (*self).add(rhs); |
| 895 | } |
| 896 | } |
| 897 | |
| 898 | impl AddAssign<&f16> for f16 { |
| 899 | #[inline ] |
| 900 | fn add_assign(&mut self, rhs: &f16) { |
| 901 | *self = (*self).add(rhs); |
| 902 | } |
| 903 | } |
| 904 | |
| 905 | impl Sub for f16 { |
| 906 | type Output = Self; |
| 907 | |
| 908 | #[inline ] |
| 909 | fn sub(self, rhs: Self) -> Self::Output { |
| 910 | Self::from_f32(Self::to_f32(self) - Self::to_f32(rhs)) |
| 911 | } |
| 912 | } |
| 913 | |
| 914 | impl Sub<&f16> for f16 { |
| 915 | type Output = <f16 as Sub<f16>>::Output; |
| 916 | |
| 917 | #[inline ] |
| 918 | fn sub(self, rhs: &f16) -> Self::Output { |
| 919 | self.sub(*rhs) |
| 920 | } |
| 921 | } |
| 922 | |
| 923 | impl Sub<&f16> for &f16 { |
| 924 | type Output = <f16 as Sub<f16>>::Output; |
| 925 | |
| 926 | #[inline ] |
| 927 | fn sub(self, rhs: &f16) -> Self::Output { |
| 928 | (*self).sub(*rhs) |
| 929 | } |
| 930 | } |
| 931 | |
| 932 | impl Sub<f16> for &f16 { |
| 933 | type Output = <f16 as Sub<f16>>::Output; |
| 934 | |
| 935 | #[inline ] |
| 936 | fn sub(self, rhs: f16) -> Self::Output { |
| 937 | (*self).sub(rhs) |
| 938 | } |
| 939 | } |
| 940 | |
| 941 | impl SubAssign for f16 { |
| 942 | #[inline ] |
| 943 | fn sub_assign(&mut self, rhs: Self) { |
| 944 | *self = (*self).sub(rhs); |
| 945 | } |
| 946 | } |
| 947 | |
| 948 | impl SubAssign<&f16> for f16 { |
| 949 | #[inline ] |
| 950 | fn sub_assign(&mut self, rhs: &f16) { |
| 951 | *self = (*self).sub(rhs); |
| 952 | } |
| 953 | } |
| 954 | |
| 955 | impl Mul for f16 { |
| 956 | type Output = Self; |
| 957 | |
| 958 | #[inline ] |
| 959 | fn mul(self, rhs: Self) -> Self::Output { |
| 960 | Self::from_f32(Self::to_f32(self) * Self::to_f32(rhs)) |
| 961 | } |
| 962 | } |
| 963 | |
| 964 | impl Mul<&f16> for f16 { |
| 965 | type Output = <f16 as Mul<f16>>::Output; |
| 966 | |
| 967 | #[inline ] |
| 968 | fn mul(self, rhs: &f16) -> Self::Output { |
| 969 | self.mul(*rhs) |
| 970 | } |
| 971 | } |
| 972 | |
| 973 | impl Mul<&f16> for &f16 { |
| 974 | type Output = <f16 as Mul<f16>>::Output; |
| 975 | |
| 976 | #[inline ] |
| 977 | fn mul(self, rhs: &f16) -> Self::Output { |
| 978 | (*self).mul(*rhs) |
| 979 | } |
| 980 | } |
| 981 | |
| 982 | impl Mul<f16> for &f16 { |
| 983 | type Output = <f16 as Mul<f16>>::Output; |
| 984 | |
| 985 | #[inline ] |
| 986 | fn mul(self, rhs: f16) -> Self::Output { |
| 987 | (*self).mul(rhs) |
| 988 | } |
| 989 | } |
| 990 | |
| 991 | impl MulAssign for f16 { |
| 992 | #[inline ] |
| 993 | fn mul_assign(&mut self, rhs: Self) { |
| 994 | *self = (*self).mul(rhs); |
| 995 | } |
| 996 | } |
| 997 | |
| 998 | impl MulAssign<&f16> for f16 { |
| 999 | #[inline ] |
| 1000 | fn mul_assign(&mut self, rhs: &f16) { |
| 1001 | *self = (*self).mul(rhs); |
| 1002 | } |
| 1003 | } |
| 1004 | |
| 1005 | impl Div for f16 { |
| 1006 | type Output = Self; |
| 1007 | |
| 1008 | #[inline ] |
| 1009 | fn div(self, rhs: Self) -> Self::Output { |
| 1010 | Self::from_f32(Self::to_f32(self) / Self::to_f32(rhs)) |
| 1011 | } |
| 1012 | } |
| 1013 | |
| 1014 | impl Div<&f16> for f16 { |
| 1015 | type Output = <f16 as Div<f16>>::Output; |
| 1016 | |
| 1017 | #[inline ] |
| 1018 | fn div(self, rhs: &f16) -> Self::Output { |
| 1019 | self.div(*rhs) |
| 1020 | } |
| 1021 | } |
| 1022 | |
| 1023 | impl Div<&f16> for &f16 { |
| 1024 | type Output = <f16 as Div<f16>>::Output; |
| 1025 | |
| 1026 | #[inline ] |
| 1027 | fn div(self, rhs: &f16) -> Self::Output { |
| 1028 | (*self).div(*rhs) |
| 1029 | } |
| 1030 | } |
| 1031 | |
| 1032 | impl Div<f16> for &f16 { |
| 1033 | type Output = <f16 as Div<f16>>::Output; |
| 1034 | |
| 1035 | #[inline ] |
| 1036 | fn div(self, rhs: f16) -> Self::Output { |
| 1037 | (*self).div(rhs) |
| 1038 | } |
| 1039 | } |
| 1040 | |
| 1041 | impl DivAssign for f16 { |
| 1042 | #[inline ] |
| 1043 | fn div_assign(&mut self, rhs: Self) { |
| 1044 | *self = (*self).div(rhs); |
| 1045 | } |
| 1046 | } |
| 1047 | |
| 1048 | impl DivAssign<&f16> for f16 { |
| 1049 | #[inline ] |
| 1050 | fn div_assign(&mut self, rhs: &f16) { |
| 1051 | *self = (*self).div(rhs); |
| 1052 | } |
| 1053 | } |
| 1054 | |
| 1055 | impl Rem for f16 { |
| 1056 | type Output = Self; |
| 1057 | |
| 1058 | #[inline ] |
| 1059 | fn rem(self, rhs: Self) -> Self::Output { |
| 1060 | Self::from_f32(Self::to_f32(self) % Self::to_f32(rhs)) |
| 1061 | } |
| 1062 | } |
| 1063 | |
| 1064 | impl Rem<&f16> for f16 { |
| 1065 | type Output = <f16 as Rem<f16>>::Output; |
| 1066 | |
| 1067 | #[inline ] |
| 1068 | fn rem(self, rhs: &f16) -> Self::Output { |
| 1069 | self.rem(*rhs) |
| 1070 | } |
| 1071 | } |
| 1072 | |
| 1073 | impl Rem<&f16> for &f16 { |
| 1074 | type Output = <f16 as Rem<f16>>::Output; |
| 1075 | |
| 1076 | #[inline ] |
| 1077 | fn rem(self, rhs: &f16) -> Self::Output { |
| 1078 | (*self).rem(*rhs) |
| 1079 | } |
| 1080 | } |
| 1081 | |
| 1082 | impl Rem<f16> for &f16 { |
| 1083 | type Output = <f16 as Rem<f16>>::Output; |
| 1084 | |
| 1085 | #[inline ] |
| 1086 | fn rem(self, rhs: f16) -> Self::Output { |
| 1087 | (*self).rem(rhs) |
| 1088 | } |
| 1089 | } |
| 1090 | |
| 1091 | impl RemAssign for f16 { |
| 1092 | #[inline ] |
| 1093 | fn rem_assign(&mut self, rhs: Self) { |
| 1094 | *self = (*self).rem(rhs); |
| 1095 | } |
| 1096 | } |
| 1097 | |
| 1098 | impl RemAssign<&f16> for f16 { |
| 1099 | #[inline ] |
| 1100 | fn rem_assign(&mut self, rhs: &f16) { |
| 1101 | *self = (*self).rem(rhs); |
| 1102 | } |
| 1103 | } |
| 1104 | |
| 1105 | impl Product for f16 { |
| 1106 | #[inline ] |
| 1107 | fn product<I: Iterator<Item = Self>>(iter: I) -> Self { |
| 1108 | f16::from_f32(iter.map(|f| f.to_f32()).product()) |
| 1109 | } |
| 1110 | } |
| 1111 | |
| 1112 | impl<'a> Product<&'a f16> for f16 { |
| 1113 | #[inline ] |
| 1114 | fn product<I: Iterator<Item = &'a f16>>(iter: I) -> Self { |
| 1115 | f16::from_f32(iter.map(|f| f.to_f32()).product()) |
| 1116 | } |
| 1117 | } |
| 1118 | |
| 1119 | impl Sum for f16 { |
| 1120 | #[inline ] |
| 1121 | fn sum<I: Iterator<Item = Self>>(iter: I) -> Self { |
| 1122 | f16::from_f32(iter.map(|f| f.to_f32()).sum()) |
| 1123 | } |
| 1124 | } |
| 1125 | |
| 1126 | impl<'a> Sum<&'a f16> for f16 { |
| 1127 | #[inline ] |
| 1128 | fn sum<I: Iterator<Item = &'a f16>>(iter: I) -> Self { |
| 1129 | f16::from_f32(iter.map(|f| f.to_f32()).product()) |
| 1130 | } |
| 1131 | } |
| 1132 | |
| 1133 | #[allow ( |
| 1134 | clippy::cognitive_complexity, |
| 1135 | clippy::float_cmp, |
| 1136 | clippy::neg_cmp_op_on_partial_ord |
| 1137 | )] |
| 1138 | #[cfg (test)] |
| 1139 | mod test { |
| 1140 | use super::*; |
| 1141 | use core::cmp::Ordering; |
| 1142 | #[cfg (feature = "num-traits" )] |
| 1143 | use num_traits::{AsPrimitive, FromPrimitive, ToPrimitive}; |
| 1144 | use quickcheck_macros::quickcheck; |
| 1145 | |
| 1146 | #[cfg (feature = "num-traits" )] |
| 1147 | #[test] |
| 1148 | fn as_primitive() { |
| 1149 | let two = f16::from_f32(2.0); |
| 1150 | assert_eq!(<i32 as AsPrimitive<f16>>::as_(2), two); |
| 1151 | assert_eq!(<f16 as AsPrimitive<i32>>::as_(two), 2); |
| 1152 | |
| 1153 | assert_eq!(<f32 as AsPrimitive<f16>>::as_(2.0), two); |
| 1154 | assert_eq!(<f16 as AsPrimitive<f32>>::as_(two), 2.0); |
| 1155 | |
| 1156 | assert_eq!(<f64 as AsPrimitive<f16>>::as_(2.0), two); |
| 1157 | assert_eq!(<f16 as AsPrimitive<f64>>::as_(two), 2.0); |
| 1158 | } |
| 1159 | |
| 1160 | #[cfg (feature = "num-traits" )] |
| 1161 | #[test] |
| 1162 | fn to_primitive() { |
| 1163 | let two = f16::from_f32(2.0); |
| 1164 | assert_eq!(ToPrimitive::to_i32(&two).unwrap(), 2i32); |
| 1165 | assert_eq!(ToPrimitive::to_f32(&two).unwrap(), 2.0f32); |
| 1166 | assert_eq!(ToPrimitive::to_f64(&two).unwrap(), 2.0f64); |
| 1167 | } |
| 1168 | |
| 1169 | #[cfg (feature = "num-traits" )] |
| 1170 | #[test] |
| 1171 | fn from_primitive() { |
| 1172 | let two = f16::from_f32(2.0); |
| 1173 | assert_eq!(<f16 as FromPrimitive>::from_i32(2).unwrap(), two); |
| 1174 | assert_eq!(<f16 as FromPrimitive>::from_f32(2.0).unwrap(), two); |
| 1175 | assert_eq!(<f16 as FromPrimitive>::from_f64(2.0).unwrap(), two); |
| 1176 | } |
| 1177 | |
| 1178 | #[test] |
| 1179 | fn test_f16_consts() { |
| 1180 | // DIGITS |
| 1181 | let digits = ((f16::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32; |
| 1182 | assert_eq!(f16::DIGITS, digits); |
| 1183 | // sanity check to show test is good |
| 1184 | let digits32 = ((core::f32::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32; |
| 1185 | assert_eq!(core::f32::DIGITS, digits32); |
| 1186 | |
| 1187 | // EPSILON |
| 1188 | let one = f16::from_f32(1.0); |
| 1189 | let one_plus_epsilon = f16::from_bits(one.to_bits() + 1); |
| 1190 | let epsilon = f16::from_f32(one_plus_epsilon.to_f32() - 1.0); |
| 1191 | assert_eq!(f16::EPSILON, epsilon); |
| 1192 | // sanity check to show test is good |
| 1193 | let one_plus_epsilon32 = f32::from_bits(1.0f32.to_bits() + 1); |
| 1194 | let epsilon32 = one_plus_epsilon32 - 1f32; |
| 1195 | assert_eq!(core::f32::EPSILON, epsilon32); |
| 1196 | |
| 1197 | // MAX, MIN and MIN_POSITIVE |
| 1198 | let max = f16::from_bits(f16::INFINITY.to_bits() - 1); |
| 1199 | let min = f16::from_bits(f16::NEG_INFINITY.to_bits() - 1); |
| 1200 | let min_pos = f16::from_f32(2f32.powi(f16::MIN_EXP - 1)); |
| 1201 | assert_eq!(f16::MAX, max); |
| 1202 | assert_eq!(f16::MIN, min); |
| 1203 | assert_eq!(f16::MIN_POSITIVE, min_pos); |
| 1204 | // sanity check to show test is good |
| 1205 | let max32 = f32::from_bits(core::f32::INFINITY.to_bits() - 1); |
| 1206 | let min32 = f32::from_bits(core::f32::NEG_INFINITY.to_bits() - 1); |
| 1207 | let min_pos32 = 2f32.powi(core::f32::MIN_EXP - 1); |
| 1208 | assert_eq!(core::f32::MAX, max32); |
| 1209 | assert_eq!(core::f32::MIN, min32); |
| 1210 | assert_eq!(core::f32::MIN_POSITIVE, min_pos32); |
| 1211 | |
| 1212 | // MIN_10_EXP and MAX_10_EXP |
| 1213 | let ten_to_min = 10f32.powi(f16::MIN_10_EXP); |
| 1214 | assert!(ten_to_min / 10.0 < f16::MIN_POSITIVE.to_f32()); |
| 1215 | assert!(ten_to_min > f16::MIN_POSITIVE.to_f32()); |
| 1216 | let ten_to_max = 10f32.powi(f16::MAX_10_EXP); |
| 1217 | assert!(ten_to_max < f16::MAX.to_f32()); |
| 1218 | assert!(ten_to_max * 10.0 > f16::MAX.to_f32()); |
| 1219 | // sanity check to show test is good |
| 1220 | let ten_to_min32 = 10f64.powi(core::f32::MIN_10_EXP); |
| 1221 | assert!(ten_to_min32 / 10.0 < f64::from(core::f32::MIN_POSITIVE)); |
| 1222 | assert!(ten_to_min32 > f64::from(core::f32::MIN_POSITIVE)); |
| 1223 | let ten_to_max32 = 10f64.powi(core::f32::MAX_10_EXP); |
| 1224 | assert!(ten_to_max32 < f64::from(core::f32::MAX)); |
| 1225 | assert!(ten_to_max32 * 10.0 > f64::from(core::f32::MAX)); |
| 1226 | } |
| 1227 | |
| 1228 | #[test] |
| 1229 | fn test_f16_consts_from_f32() { |
| 1230 | let one = f16::from_f32(1.0); |
| 1231 | let zero = f16::from_f32(0.0); |
| 1232 | let neg_zero = f16::from_f32(-0.0); |
| 1233 | let neg_one = f16::from_f32(-1.0); |
| 1234 | let inf = f16::from_f32(core::f32::INFINITY); |
| 1235 | let neg_inf = f16::from_f32(core::f32::NEG_INFINITY); |
| 1236 | let nan = f16::from_f32(core::f32::NAN); |
| 1237 | |
| 1238 | assert_eq!(f16::ONE, one); |
| 1239 | assert_eq!(f16::ZERO, zero); |
| 1240 | assert!(zero.is_sign_positive()); |
| 1241 | assert_eq!(f16::NEG_ZERO, neg_zero); |
| 1242 | assert!(neg_zero.is_sign_negative()); |
| 1243 | assert_eq!(f16::NEG_ONE, neg_one); |
| 1244 | assert!(neg_one.is_sign_negative()); |
| 1245 | assert_eq!(f16::INFINITY, inf); |
| 1246 | assert_eq!(f16::NEG_INFINITY, neg_inf); |
| 1247 | assert!(nan.is_nan()); |
| 1248 | assert!(f16::NAN.is_nan()); |
| 1249 | |
| 1250 | let e = f16::from_f32(core::f32::consts::E); |
| 1251 | let pi = f16::from_f32(core::f32::consts::PI); |
| 1252 | let frac_1_pi = f16::from_f32(core::f32::consts::FRAC_1_PI); |
| 1253 | let frac_1_sqrt_2 = f16::from_f32(core::f32::consts::FRAC_1_SQRT_2); |
| 1254 | let frac_2_pi = f16::from_f32(core::f32::consts::FRAC_2_PI); |
| 1255 | let frac_2_sqrt_pi = f16::from_f32(core::f32::consts::FRAC_2_SQRT_PI); |
| 1256 | let frac_pi_2 = f16::from_f32(core::f32::consts::FRAC_PI_2); |
| 1257 | let frac_pi_3 = f16::from_f32(core::f32::consts::FRAC_PI_3); |
| 1258 | let frac_pi_4 = f16::from_f32(core::f32::consts::FRAC_PI_4); |
| 1259 | let frac_pi_6 = f16::from_f32(core::f32::consts::FRAC_PI_6); |
| 1260 | let frac_pi_8 = f16::from_f32(core::f32::consts::FRAC_PI_8); |
| 1261 | let ln_10 = f16::from_f32(core::f32::consts::LN_10); |
| 1262 | let ln_2 = f16::from_f32(core::f32::consts::LN_2); |
| 1263 | let log10_e = f16::from_f32(core::f32::consts::LOG10_E); |
| 1264 | // core::f32::consts::LOG10_2 requires rustc 1.43.0 |
| 1265 | let log10_2 = f16::from_f32(2f32.log10()); |
| 1266 | let log2_e = f16::from_f32(core::f32::consts::LOG2_E); |
| 1267 | // core::f32::consts::LOG2_10 requires rustc 1.43.0 |
| 1268 | let log2_10 = f16::from_f32(10f32.log2()); |
| 1269 | let sqrt_2 = f16::from_f32(core::f32::consts::SQRT_2); |
| 1270 | |
| 1271 | assert_eq!(f16::E, e); |
| 1272 | assert_eq!(f16::PI, pi); |
| 1273 | assert_eq!(f16::FRAC_1_PI, frac_1_pi); |
| 1274 | assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2); |
| 1275 | assert_eq!(f16::FRAC_2_PI, frac_2_pi); |
| 1276 | assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi); |
| 1277 | assert_eq!(f16::FRAC_PI_2, frac_pi_2); |
| 1278 | assert_eq!(f16::FRAC_PI_3, frac_pi_3); |
| 1279 | assert_eq!(f16::FRAC_PI_4, frac_pi_4); |
| 1280 | assert_eq!(f16::FRAC_PI_6, frac_pi_6); |
| 1281 | assert_eq!(f16::FRAC_PI_8, frac_pi_8); |
| 1282 | assert_eq!(f16::LN_10, ln_10); |
| 1283 | assert_eq!(f16::LN_2, ln_2); |
| 1284 | assert_eq!(f16::LOG10_E, log10_e); |
| 1285 | assert_eq!(f16::LOG10_2, log10_2); |
| 1286 | assert_eq!(f16::LOG2_E, log2_e); |
| 1287 | assert_eq!(f16::LOG2_10, log2_10); |
| 1288 | assert_eq!(f16::SQRT_2, sqrt_2); |
| 1289 | } |
| 1290 | |
| 1291 | #[test] |
| 1292 | fn test_f16_consts_from_f64() { |
| 1293 | let one = f16::from_f64(1.0); |
| 1294 | let zero = f16::from_f64(0.0); |
| 1295 | let neg_zero = f16::from_f64(-0.0); |
| 1296 | let inf = f16::from_f64(core::f64::INFINITY); |
| 1297 | let neg_inf = f16::from_f64(core::f64::NEG_INFINITY); |
| 1298 | let nan = f16::from_f64(core::f64::NAN); |
| 1299 | |
| 1300 | assert_eq!(f16::ONE, one); |
| 1301 | assert_eq!(f16::ZERO, zero); |
| 1302 | assert!(zero.is_sign_positive()); |
| 1303 | assert_eq!(f16::NEG_ZERO, neg_zero); |
| 1304 | assert!(neg_zero.is_sign_negative()); |
| 1305 | assert_eq!(f16::INFINITY, inf); |
| 1306 | assert_eq!(f16::NEG_INFINITY, neg_inf); |
| 1307 | assert!(nan.is_nan()); |
| 1308 | assert!(f16::NAN.is_nan()); |
| 1309 | |
| 1310 | let e = f16::from_f64(core::f64::consts::E); |
| 1311 | let pi = f16::from_f64(core::f64::consts::PI); |
| 1312 | let frac_1_pi = f16::from_f64(core::f64::consts::FRAC_1_PI); |
| 1313 | let frac_1_sqrt_2 = f16::from_f64(core::f64::consts::FRAC_1_SQRT_2); |
| 1314 | let frac_2_pi = f16::from_f64(core::f64::consts::FRAC_2_PI); |
| 1315 | let frac_2_sqrt_pi = f16::from_f64(core::f64::consts::FRAC_2_SQRT_PI); |
| 1316 | let frac_pi_2 = f16::from_f64(core::f64::consts::FRAC_PI_2); |
| 1317 | let frac_pi_3 = f16::from_f64(core::f64::consts::FRAC_PI_3); |
| 1318 | let frac_pi_4 = f16::from_f64(core::f64::consts::FRAC_PI_4); |
| 1319 | let frac_pi_6 = f16::from_f64(core::f64::consts::FRAC_PI_6); |
| 1320 | let frac_pi_8 = f16::from_f64(core::f64::consts::FRAC_PI_8); |
| 1321 | let ln_10 = f16::from_f64(core::f64::consts::LN_10); |
| 1322 | let ln_2 = f16::from_f64(core::f64::consts::LN_2); |
| 1323 | let log10_e = f16::from_f64(core::f64::consts::LOG10_E); |
| 1324 | // core::f64::consts::LOG10_2 requires rustc 1.43.0 |
| 1325 | let log10_2 = f16::from_f64(2f64.log10()); |
| 1326 | let log2_e = f16::from_f64(core::f64::consts::LOG2_E); |
| 1327 | // core::f64::consts::LOG2_10 requires rustc 1.43.0 |
| 1328 | let log2_10 = f16::from_f64(10f64.log2()); |
| 1329 | let sqrt_2 = f16::from_f64(core::f64::consts::SQRT_2); |
| 1330 | |
| 1331 | assert_eq!(f16::E, e); |
| 1332 | assert_eq!(f16::PI, pi); |
| 1333 | assert_eq!(f16::FRAC_1_PI, frac_1_pi); |
| 1334 | assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2); |
| 1335 | assert_eq!(f16::FRAC_2_PI, frac_2_pi); |
| 1336 | assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi); |
| 1337 | assert_eq!(f16::FRAC_PI_2, frac_pi_2); |
| 1338 | assert_eq!(f16::FRAC_PI_3, frac_pi_3); |
| 1339 | assert_eq!(f16::FRAC_PI_4, frac_pi_4); |
| 1340 | assert_eq!(f16::FRAC_PI_6, frac_pi_6); |
| 1341 | assert_eq!(f16::FRAC_PI_8, frac_pi_8); |
| 1342 | assert_eq!(f16::LN_10, ln_10); |
| 1343 | assert_eq!(f16::LN_2, ln_2); |
| 1344 | assert_eq!(f16::LOG10_E, log10_e); |
| 1345 | assert_eq!(f16::LOG10_2, log10_2); |
| 1346 | assert_eq!(f16::LOG2_E, log2_e); |
| 1347 | assert_eq!(f16::LOG2_10, log2_10); |
| 1348 | assert_eq!(f16::SQRT_2, sqrt_2); |
| 1349 | } |
| 1350 | |
| 1351 | #[test] |
| 1352 | fn test_nan_conversion_to_smaller() { |
| 1353 | let nan64 = f64::from_bits(0x7FF0_0000_0000_0001u64); |
| 1354 | let neg_nan64 = f64::from_bits(0xFFF0_0000_0000_0001u64); |
| 1355 | let nan32 = f32::from_bits(0x7F80_0001u32); |
| 1356 | let neg_nan32 = f32::from_bits(0xFF80_0001u32); |
| 1357 | let nan32_from_64 = nan64 as f32; |
| 1358 | let neg_nan32_from_64 = neg_nan64 as f32; |
| 1359 | let nan16_from_64 = f16::from_f64(nan64); |
| 1360 | let neg_nan16_from_64 = f16::from_f64(neg_nan64); |
| 1361 | let nan16_from_32 = f16::from_f32(nan32); |
| 1362 | let neg_nan16_from_32 = f16::from_f32(neg_nan32); |
| 1363 | |
| 1364 | assert!(nan64.is_nan() && nan64.is_sign_positive()); |
| 1365 | assert!(neg_nan64.is_nan() && neg_nan64.is_sign_negative()); |
| 1366 | assert!(nan32.is_nan() && nan32.is_sign_positive()); |
| 1367 | assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative()); |
| 1368 | assert!(nan32_from_64.is_nan() && nan32_from_64.is_sign_positive()); |
| 1369 | assert!(neg_nan32_from_64.is_nan() && neg_nan32_from_64.is_sign_negative()); |
| 1370 | assert!(nan16_from_64.is_nan() && nan16_from_64.is_sign_positive()); |
| 1371 | assert!(neg_nan16_from_64.is_nan() && neg_nan16_from_64.is_sign_negative()); |
| 1372 | assert!(nan16_from_32.is_nan() && nan16_from_32.is_sign_positive()); |
| 1373 | assert!(neg_nan16_from_32.is_nan() && neg_nan16_from_32.is_sign_negative()); |
| 1374 | } |
| 1375 | |
| 1376 | #[test] |
| 1377 | fn test_nan_conversion_to_larger() { |
| 1378 | let nan16 = f16::from_bits(0x7C01u16); |
| 1379 | let neg_nan16 = f16::from_bits(0xFC01u16); |
| 1380 | let nan32 = f32::from_bits(0x7F80_0001u32); |
| 1381 | let neg_nan32 = f32::from_bits(0xFF80_0001u32); |
| 1382 | let nan32_from_16 = f32::from(nan16); |
| 1383 | let neg_nan32_from_16 = f32::from(neg_nan16); |
| 1384 | let nan64_from_16 = f64::from(nan16); |
| 1385 | let neg_nan64_from_16 = f64::from(neg_nan16); |
| 1386 | let nan64_from_32 = f64::from(nan32); |
| 1387 | let neg_nan64_from_32 = f64::from(neg_nan32); |
| 1388 | |
| 1389 | assert!(nan16.is_nan() && nan16.is_sign_positive()); |
| 1390 | assert!(neg_nan16.is_nan() && neg_nan16.is_sign_negative()); |
| 1391 | assert!(nan32.is_nan() && nan32.is_sign_positive()); |
| 1392 | assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative()); |
| 1393 | assert!(nan32_from_16.is_nan() && nan32_from_16.is_sign_positive()); |
| 1394 | assert!(neg_nan32_from_16.is_nan() && neg_nan32_from_16.is_sign_negative()); |
| 1395 | assert!(nan64_from_16.is_nan() && nan64_from_16.is_sign_positive()); |
| 1396 | assert!(neg_nan64_from_16.is_nan() && neg_nan64_from_16.is_sign_negative()); |
| 1397 | assert!(nan64_from_32.is_nan() && nan64_from_32.is_sign_positive()); |
| 1398 | assert!(neg_nan64_from_32.is_nan() && neg_nan64_from_32.is_sign_negative()); |
| 1399 | } |
| 1400 | |
| 1401 | #[test] |
| 1402 | fn test_f16_to_f32() { |
| 1403 | let f = f16::from_f32(7.0); |
| 1404 | assert_eq!(f.to_f32(), 7.0f32); |
| 1405 | |
| 1406 | // 7.1 is NOT exactly representable in 16-bit, it's rounded |
| 1407 | let f = f16::from_f32(7.1); |
| 1408 | let diff = (f.to_f32() - 7.1f32).abs(); |
| 1409 | // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1 |
| 1410 | assert!(diff <= 4.0 * f16::EPSILON.to_f32()); |
| 1411 | |
| 1412 | assert_eq!(f16::from_bits(0x0000_0001).to_f32(), 2.0f32.powi(-24)); |
| 1413 | assert_eq!(f16::from_bits(0x0000_0005).to_f32(), 5.0 * 2.0f32.powi(-24)); |
| 1414 | |
| 1415 | assert_eq!(f16::from_bits(0x0000_0001), f16::from_f32(2.0f32.powi(-24))); |
| 1416 | assert_eq!( |
| 1417 | f16::from_bits(0x0000_0005), |
| 1418 | f16::from_f32(5.0 * 2.0f32.powi(-24)) |
| 1419 | ); |
| 1420 | } |
| 1421 | |
| 1422 | #[test] |
| 1423 | fn test_f16_to_f64() { |
| 1424 | let f = f16::from_f64(7.0); |
| 1425 | assert_eq!(f.to_f64(), 7.0f64); |
| 1426 | |
| 1427 | // 7.1 is NOT exactly representable in 16-bit, it's rounded |
| 1428 | let f = f16::from_f64(7.1); |
| 1429 | let diff = (f.to_f64() - 7.1f64).abs(); |
| 1430 | // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1 |
| 1431 | assert!(diff <= 4.0 * f16::EPSILON.to_f64()); |
| 1432 | |
| 1433 | assert_eq!(f16::from_bits(0x0000_0001).to_f64(), 2.0f64.powi(-24)); |
| 1434 | assert_eq!(f16::from_bits(0x0000_0005).to_f64(), 5.0 * 2.0f64.powi(-24)); |
| 1435 | |
| 1436 | assert_eq!(f16::from_bits(0x0000_0001), f16::from_f64(2.0f64.powi(-24))); |
| 1437 | assert_eq!( |
| 1438 | f16::from_bits(0x0000_0005), |
| 1439 | f16::from_f64(5.0 * 2.0f64.powi(-24)) |
| 1440 | ); |
| 1441 | } |
| 1442 | |
| 1443 | #[test] |
| 1444 | fn test_comparisons() { |
| 1445 | let zero = f16::from_f64(0.0); |
| 1446 | let one = f16::from_f64(1.0); |
| 1447 | let neg_zero = f16::from_f64(-0.0); |
| 1448 | let neg_one = f16::from_f64(-1.0); |
| 1449 | |
| 1450 | assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal)); |
| 1451 | assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal)); |
| 1452 | assert!(zero == neg_zero); |
| 1453 | assert!(neg_zero == zero); |
| 1454 | assert!(!(zero != neg_zero)); |
| 1455 | assert!(!(neg_zero != zero)); |
| 1456 | assert!(!(zero < neg_zero)); |
| 1457 | assert!(!(neg_zero < zero)); |
| 1458 | assert!(zero <= neg_zero); |
| 1459 | assert!(neg_zero <= zero); |
| 1460 | assert!(!(zero > neg_zero)); |
| 1461 | assert!(!(neg_zero > zero)); |
| 1462 | assert!(zero >= neg_zero); |
| 1463 | assert!(neg_zero >= zero); |
| 1464 | |
| 1465 | assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater)); |
| 1466 | assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less)); |
| 1467 | assert!(!(one == neg_zero)); |
| 1468 | assert!(!(neg_zero == one)); |
| 1469 | assert!(one != neg_zero); |
| 1470 | assert!(neg_zero != one); |
| 1471 | assert!(!(one < neg_zero)); |
| 1472 | assert!(neg_zero < one); |
| 1473 | assert!(!(one <= neg_zero)); |
| 1474 | assert!(neg_zero <= one); |
| 1475 | assert!(one > neg_zero); |
| 1476 | assert!(!(neg_zero > one)); |
| 1477 | assert!(one >= neg_zero); |
| 1478 | assert!(!(neg_zero >= one)); |
| 1479 | |
| 1480 | assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater)); |
| 1481 | assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less)); |
| 1482 | assert!(!(one == neg_one)); |
| 1483 | assert!(!(neg_one == one)); |
| 1484 | assert!(one != neg_one); |
| 1485 | assert!(neg_one != one); |
| 1486 | assert!(!(one < neg_one)); |
| 1487 | assert!(neg_one < one); |
| 1488 | assert!(!(one <= neg_one)); |
| 1489 | assert!(neg_one <= one); |
| 1490 | assert!(one > neg_one); |
| 1491 | assert!(!(neg_one > one)); |
| 1492 | assert!(one >= neg_one); |
| 1493 | assert!(!(neg_one >= one)); |
| 1494 | } |
| 1495 | |
| 1496 | #[test] |
| 1497 | #[allow (clippy::erasing_op, clippy::identity_op)] |
| 1498 | fn round_to_even_f32() { |
| 1499 | // smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24 |
| 1500 | let min_sub = f16::from_bits(1); |
| 1501 | let min_sub_f = (-24f32).exp2(); |
| 1502 | assert_eq!(f16::from_f32(min_sub_f).to_bits(), min_sub.to_bits()); |
| 1503 | assert_eq!(f32::from(min_sub).to_bits(), min_sub_f.to_bits()); |
| 1504 | |
| 1505 | // 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding) |
| 1506 | // 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even) |
| 1507 | // 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up) |
| 1508 | assert_eq!( |
| 1509 | f16::from_f32(min_sub_f * 0.49).to_bits(), |
| 1510 | min_sub.to_bits() * 0 |
| 1511 | ); |
| 1512 | assert_eq!( |
| 1513 | f16::from_f32(min_sub_f * 0.50).to_bits(), |
| 1514 | min_sub.to_bits() * 0 |
| 1515 | ); |
| 1516 | assert_eq!( |
| 1517 | f16::from_f32(min_sub_f * 0.51).to_bits(), |
| 1518 | min_sub.to_bits() * 1 |
| 1519 | ); |
| 1520 | |
| 1521 | // 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding) |
| 1522 | // 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even) |
| 1523 | // 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up) |
| 1524 | assert_eq!( |
| 1525 | f16::from_f32(min_sub_f * 1.49).to_bits(), |
| 1526 | min_sub.to_bits() * 1 |
| 1527 | ); |
| 1528 | assert_eq!( |
| 1529 | f16::from_f32(min_sub_f * 1.50).to_bits(), |
| 1530 | min_sub.to_bits() * 2 |
| 1531 | ); |
| 1532 | assert_eq!( |
| 1533 | f16::from_f32(min_sub_f * 1.51).to_bits(), |
| 1534 | min_sub.to_bits() * 2 |
| 1535 | ); |
| 1536 | |
| 1537 | // 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding) |
| 1538 | // 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even) |
| 1539 | // 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up) |
| 1540 | assert_eq!( |
| 1541 | f16::from_f32(min_sub_f * 2.49).to_bits(), |
| 1542 | min_sub.to_bits() * 2 |
| 1543 | ); |
| 1544 | assert_eq!( |
| 1545 | f16::from_f32(min_sub_f * 2.50).to_bits(), |
| 1546 | min_sub.to_bits() * 2 |
| 1547 | ); |
| 1548 | assert_eq!( |
| 1549 | f16::from_f32(min_sub_f * 2.51).to_bits(), |
| 1550 | min_sub.to_bits() * 3 |
| 1551 | ); |
| 1552 | |
| 1553 | assert_eq!( |
| 1554 | f16::from_f32(2000.49f32).to_bits(), |
| 1555 | f16::from_f32(2000.0).to_bits() |
| 1556 | ); |
| 1557 | assert_eq!( |
| 1558 | f16::from_f32(2000.50f32).to_bits(), |
| 1559 | f16::from_f32(2000.0).to_bits() |
| 1560 | ); |
| 1561 | assert_eq!( |
| 1562 | f16::from_f32(2000.51f32).to_bits(), |
| 1563 | f16::from_f32(2001.0).to_bits() |
| 1564 | ); |
| 1565 | assert_eq!( |
| 1566 | f16::from_f32(2001.49f32).to_bits(), |
| 1567 | f16::from_f32(2001.0).to_bits() |
| 1568 | ); |
| 1569 | assert_eq!( |
| 1570 | f16::from_f32(2001.50f32).to_bits(), |
| 1571 | f16::from_f32(2002.0).to_bits() |
| 1572 | ); |
| 1573 | assert_eq!( |
| 1574 | f16::from_f32(2001.51f32).to_bits(), |
| 1575 | f16::from_f32(2002.0).to_bits() |
| 1576 | ); |
| 1577 | assert_eq!( |
| 1578 | f16::from_f32(2002.49f32).to_bits(), |
| 1579 | f16::from_f32(2002.0).to_bits() |
| 1580 | ); |
| 1581 | assert_eq!( |
| 1582 | f16::from_f32(2002.50f32).to_bits(), |
| 1583 | f16::from_f32(2002.0).to_bits() |
| 1584 | ); |
| 1585 | assert_eq!( |
| 1586 | f16::from_f32(2002.51f32).to_bits(), |
| 1587 | f16::from_f32(2003.0).to_bits() |
| 1588 | ); |
| 1589 | } |
| 1590 | |
| 1591 | #[test] |
| 1592 | #[allow (clippy::erasing_op, clippy::identity_op)] |
| 1593 | fn round_to_even_f64() { |
| 1594 | // smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24 |
| 1595 | let min_sub = f16::from_bits(1); |
| 1596 | let min_sub_f = (-24f64).exp2(); |
| 1597 | assert_eq!(f16::from_f64(min_sub_f).to_bits(), min_sub.to_bits()); |
| 1598 | assert_eq!(f64::from(min_sub).to_bits(), min_sub_f.to_bits()); |
| 1599 | |
| 1600 | // 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding) |
| 1601 | // 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even) |
| 1602 | // 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up) |
| 1603 | assert_eq!( |
| 1604 | f16::from_f64(min_sub_f * 0.49).to_bits(), |
| 1605 | min_sub.to_bits() * 0 |
| 1606 | ); |
| 1607 | assert_eq!( |
| 1608 | f16::from_f64(min_sub_f * 0.50).to_bits(), |
| 1609 | min_sub.to_bits() * 0 |
| 1610 | ); |
| 1611 | assert_eq!( |
| 1612 | f16::from_f64(min_sub_f * 0.51).to_bits(), |
| 1613 | min_sub.to_bits() * 1 |
| 1614 | ); |
| 1615 | |
| 1616 | // 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding) |
| 1617 | // 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even) |
| 1618 | // 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up) |
| 1619 | assert_eq!( |
| 1620 | f16::from_f64(min_sub_f * 1.49).to_bits(), |
| 1621 | min_sub.to_bits() * 1 |
| 1622 | ); |
| 1623 | assert_eq!( |
| 1624 | f16::from_f64(min_sub_f * 1.50).to_bits(), |
| 1625 | min_sub.to_bits() * 2 |
| 1626 | ); |
| 1627 | assert_eq!( |
| 1628 | f16::from_f64(min_sub_f * 1.51).to_bits(), |
| 1629 | min_sub.to_bits() * 2 |
| 1630 | ); |
| 1631 | |
| 1632 | // 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding) |
| 1633 | // 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even) |
| 1634 | // 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up) |
| 1635 | assert_eq!( |
| 1636 | f16::from_f64(min_sub_f * 2.49).to_bits(), |
| 1637 | min_sub.to_bits() * 2 |
| 1638 | ); |
| 1639 | assert_eq!( |
| 1640 | f16::from_f64(min_sub_f * 2.50).to_bits(), |
| 1641 | min_sub.to_bits() * 2 |
| 1642 | ); |
| 1643 | assert_eq!( |
| 1644 | f16::from_f64(min_sub_f * 2.51).to_bits(), |
| 1645 | min_sub.to_bits() * 3 |
| 1646 | ); |
| 1647 | |
| 1648 | assert_eq!( |
| 1649 | f16::from_f64(2000.49f64).to_bits(), |
| 1650 | f16::from_f64(2000.0).to_bits() |
| 1651 | ); |
| 1652 | assert_eq!( |
| 1653 | f16::from_f64(2000.50f64).to_bits(), |
| 1654 | f16::from_f64(2000.0).to_bits() |
| 1655 | ); |
| 1656 | assert_eq!( |
| 1657 | f16::from_f64(2000.51f64).to_bits(), |
| 1658 | f16::from_f64(2001.0).to_bits() |
| 1659 | ); |
| 1660 | assert_eq!( |
| 1661 | f16::from_f64(2001.49f64).to_bits(), |
| 1662 | f16::from_f64(2001.0).to_bits() |
| 1663 | ); |
| 1664 | assert_eq!( |
| 1665 | f16::from_f64(2001.50f64).to_bits(), |
| 1666 | f16::from_f64(2002.0).to_bits() |
| 1667 | ); |
| 1668 | assert_eq!( |
| 1669 | f16::from_f64(2001.51f64).to_bits(), |
| 1670 | f16::from_f64(2002.0).to_bits() |
| 1671 | ); |
| 1672 | assert_eq!( |
| 1673 | f16::from_f64(2002.49f64).to_bits(), |
| 1674 | f16::from_f64(2002.0).to_bits() |
| 1675 | ); |
| 1676 | assert_eq!( |
| 1677 | f16::from_f64(2002.50f64).to_bits(), |
| 1678 | f16::from_f64(2002.0).to_bits() |
| 1679 | ); |
| 1680 | assert_eq!( |
| 1681 | f16::from_f64(2002.51f64).to_bits(), |
| 1682 | f16::from_f64(2003.0).to_bits() |
| 1683 | ); |
| 1684 | } |
| 1685 | |
| 1686 | impl quickcheck::Arbitrary for f16 { |
| 1687 | fn arbitrary(g: &mut quickcheck::Gen) -> Self { |
| 1688 | f16(u16::arbitrary(g)) |
| 1689 | } |
| 1690 | } |
| 1691 | |
| 1692 | #[quickcheck ] |
| 1693 | fn qc_roundtrip_f16_f32_is_identity(f: f16) -> bool { |
| 1694 | let roundtrip = f16::from_f32(f.to_f32()); |
| 1695 | if f.is_nan() { |
| 1696 | roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative() |
| 1697 | } else { |
| 1698 | f.0 == roundtrip.0 |
| 1699 | } |
| 1700 | } |
| 1701 | |
| 1702 | #[quickcheck ] |
| 1703 | fn qc_roundtrip_f16_f64_is_identity(f: f16) -> bool { |
| 1704 | let roundtrip = f16::from_f64(f.to_f64()); |
| 1705 | if f.is_nan() { |
| 1706 | roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative() |
| 1707 | } else { |
| 1708 | f.0 == roundtrip.0 |
| 1709 | } |
| 1710 | } |
| 1711 | } |
| 1712 | |