1 | #[cfg (feature = "bytemuck" )] |
2 | use bytemuck::{Pod, Zeroable}; |
3 | use core::{ |
4 | cmp::Ordering, |
5 | fmt::{ |
6 | Binary, Debug, Display, Error, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex, |
7 | }, |
8 | iter::{Product, Sum}, |
9 | num::{FpCategory, ParseFloatError}, |
10 | ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign}, |
11 | str::FromStr, |
12 | }; |
13 | #[cfg (feature = "serde" )] |
14 | use serde::{Deserialize, Serialize}; |
15 | #[cfg (feature = "zerocopy" )] |
16 | use zerocopy::{AsBytes, FromBytes}; |
17 | |
18 | pub(crate) mod convert; |
19 | |
20 | /// A 16-bit floating point type implementing the IEEE 754-2008 standard [`binary16`] a.k.a `half` |
21 | /// format. |
22 | /// |
23 | /// This 16-bit floating point type is intended for efficient storage where the full range and |
24 | /// precision of a larger floating point value is not required. Because [`f16`] is primarily for |
25 | /// efficient storage, floating point operations such as addition, multiplication, etc. are not |
26 | /// implemented. Operations should be performed with [`f32`] or higher-precision types and converted |
27 | /// to/from [`f16`] as necessary. |
28 | /// |
29 | /// [`binary16`]: https://en.wikipedia.org/wiki/Half-precision_floating-point_format |
30 | #[allow (non_camel_case_types)] |
31 | #[derive(Clone, Copy, Default)] |
32 | #[repr (transparent)] |
33 | #[cfg_attr (feature = "serde" , derive(Serialize, Deserialize))] |
34 | #[cfg_attr (feature = "bytemuck" , derive(Zeroable, Pod))] |
35 | #[cfg_attr (feature = "zerocopy" , derive(AsBytes, FromBytes))] |
36 | pub struct f16(u16); |
37 | |
38 | #[doc (hidden)] |
39 | #[deprecated ( |
40 | since = "1.4.0" , |
41 | note = "all constants moved to associated constants of `f16`" |
42 | )] |
43 | pub mod consts { |
44 | use super::f16; |
45 | |
46 | #[deprecated (since = "1.4.0" , note = "moved to `f16::DIGITS`" )] |
47 | pub const DIGITS: u32 = f16::DIGITS; |
48 | #[deprecated (since = "1.4.0" , note = "moved to `f16::EPSILON`" )] |
49 | pub const EPSILON: f16 = f16::EPSILON; |
50 | #[deprecated (since = "1.4.0" , note = "moved to `f16::INFINITY`" )] |
51 | pub const INFINITY: f16 = f16::INFINITY; |
52 | #[deprecated (since = "1.4.0" , note = "moved to `f16::MANTISSA_DIGITS`" )] |
53 | pub const MANTISSA_DIGITS: u32 = f16::MANTISSA_DIGITS; |
54 | #[deprecated (since = "1.4.0" , note = "moved to `f16::MAX`" )] |
55 | pub const MAX: f16 = f16::MAX; |
56 | #[deprecated (since = "1.4.0" , note = "moved to `f16::MAX_10_EXP`" )] |
57 | pub const MAX_10_EXP: i32 = f16::MAX_10_EXP; |
58 | #[deprecated (since = "1.4.0" , note = "moved to `f16::MAX_EXP`" )] |
59 | pub const MAX_EXP: i32 = f16::MAX_EXP; |
60 | #[deprecated (since = "1.4.0" , note = "moved to `f16::MIN`" )] |
61 | pub const MIN: f16 = f16::MIN; |
62 | #[deprecated (since = "1.4.0" , note = "moved to `f16::MIN_10_EXP`" )] |
63 | pub const MIN_10_EXP: i32 = f16::MIN_10_EXP; |
64 | #[deprecated (since = "1.4.0" , note = "moved to `f16::MIN_EXP`" )] |
65 | pub const MIN_EXP: i32 = f16::MIN_EXP; |
66 | #[deprecated (since = "1.4.0" , note = "moved to `f16::MIN_POSITIVE`" )] |
67 | pub const MIN_POSITIVE: f16 = f16::MIN_POSITIVE; |
68 | #[deprecated (since = "1.4.0" , note = "moved to `f16::NAN`" )] |
69 | pub const NAN: f16 = f16::NAN; |
70 | #[deprecated (since = "1.4.0" , note = "moved to `f16::NEG_INFINITY`" )] |
71 | pub const NEG_INFINITY: f16 = f16::NEG_INFINITY; |
72 | #[deprecated (since = "1.4.0" , note = "moved to `f16::RADIX`" )] |
73 | pub const RADIX: u32 = f16::RADIX; |
74 | |
75 | #[deprecated (since = "1.4.0" , note = "moved to `f16::MIN_POSITIVE_SUBNORMAL`" )] |
76 | pub const MIN_POSITIVE_SUBNORMAL: f16 = f16::MIN_POSITIVE_SUBNORMAL; |
77 | #[deprecated (since = "1.4.0" , note = "moved to `f16::MAX_SUBNORMAL`" )] |
78 | pub const MAX_SUBNORMAL: f16 = f16::MAX_SUBNORMAL; |
79 | |
80 | #[deprecated (since = "1.4.0" , note = "moved to `f16::ONE`" )] |
81 | pub const ONE: f16 = f16::ONE; |
82 | #[deprecated (since = "1.4.0" , note = "moved to `f16::ZERO`" )] |
83 | pub const ZERO: f16 = f16::ZERO; |
84 | #[deprecated (since = "1.4.0" , note = "moved to `f16::NEG_ZERO`" )] |
85 | pub const NEG_ZERO: f16 = f16::NEG_ZERO; |
86 | |
87 | #[deprecated (since = "1.4.0" , note = "moved to `f16::E`" )] |
88 | pub const E: f16 = f16::E; |
89 | #[deprecated (since = "1.4.0" , note = "moved to `f16::PI`" )] |
90 | pub const PI: f16 = f16::PI; |
91 | #[deprecated (since = "1.4.0" , note = "moved to `f16::FRAC_1_PI`" )] |
92 | pub const FRAC_1_PI: f16 = f16::FRAC_1_PI; |
93 | #[deprecated (since = "1.4.0" , note = "moved to `f16::FRAC_1_SQRT_2`" )] |
94 | pub const FRAC_1_SQRT_2: f16 = f16::FRAC_1_SQRT_2; |
95 | #[deprecated (since = "1.4.0" , note = "moved to `f16::FRAC_2_PI`" )] |
96 | pub const FRAC_2_PI: f16 = f16::FRAC_2_PI; |
97 | #[deprecated (since = "1.4.0" , note = "moved to `f16::FRAC_2_SQRT_PI`" )] |
98 | pub const FRAC_2_SQRT_PI: f16 = f16::FRAC_2_SQRT_PI; |
99 | #[deprecated (since = "1.4.0" , note = "moved to `f16::FRAC_PI_2`" )] |
100 | pub const FRAC_PI_2: f16 = f16::FRAC_PI_2; |
101 | #[deprecated (since = "1.4.0" , note = "moved to `f16::FRAC_PI_3`" )] |
102 | pub const FRAC_PI_3: f16 = f16::FRAC_PI_3; |
103 | #[deprecated (since = "1.4.0" , note = "moved to `f16::FRAC_PI_4`" )] |
104 | pub const FRAC_PI_4: f16 = f16::FRAC_PI_4; |
105 | #[deprecated (since = "1.4.0" , note = "moved to `f16::FRAC_PI_6`" )] |
106 | pub const FRAC_PI_6: f16 = f16::FRAC_PI_6; |
107 | #[deprecated (since = "1.4.0" , note = "moved to `f16::FRAC_PI_8`" )] |
108 | pub const FRAC_PI_8: f16 = f16::FRAC_PI_8; |
109 | #[deprecated (since = "1.4.0" , note = "moved to `f16::LN_10`" )] |
110 | pub const LN_10: f16 = f16::LN_10; |
111 | #[deprecated (since = "1.4.0" , note = "moved to `f16::LN_2`" )] |
112 | pub const LN_2: f16 = f16::LN_2; |
113 | #[deprecated (since = "1.4.0" , note = "moved to `f16::LOG10_E`" )] |
114 | pub const LOG10_E: f16 = f16::LOG10_E; |
115 | #[deprecated (since = "1.4.0" , note = "moved to `f16::LOG2_E`" )] |
116 | pub const LOG2_E: f16 = f16::LOG2_E; |
117 | #[deprecated (since = "1.4.0" , note = "moved to `f16::SQRT_2`" )] |
118 | pub const SQRT_2: f16 = f16::SQRT_2; |
119 | } |
120 | |
121 | impl f16 { |
122 | /// Constructs a 16-bit floating point value from the raw bits. |
123 | #[inline ] |
124 | pub const fn from_bits(bits: u16) -> f16 { |
125 | f16(bits) |
126 | } |
127 | |
128 | /// Constructs a 16-bit floating point value from a 32-bit floating point value. |
129 | /// |
130 | /// If the 32-bit value is to large to fit in 16-bits, ±∞ will result. NaN values are |
131 | /// preserved. 32-bit subnormal values are too tiny to be represented in 16-bits and result in |
132 | /// ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals |
133 | /// or ±0. All other values are truncated and rounded to the nearest representable 16-bit |
134 | /// value. |
135 | #[inline ] |
136 | pub fn from_f32(value: f32) -> f16 { |
137 | f16(convert::f32_to_f16(value)) |
138 | } |
139 | |
140 | /// Constructs a 16-bit floating point value from a 64-bit floating point value. |
141 | /// |
142 | /// If the 64-bit value is to large to fit in 16-bits, ±∞ will result. NaN values are |
143 | /// preserved. 64-bit subnormal values are too tiny to be represented in 16-bits and result in |
144 | /// ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals |
145 | /// or ±0. All other values are truncated and rounded to the nearest representable 16-bit |
146 | /// value. |
147 | #[inline ] |
148 | pub fn from_f64(value: f64) -> f16 { |
149 | f16(convert::f64_to_f16(value)) |
150 | } |
151 | |
152 | /// Converts a [`f16`] into the underlying bit representation. |
153 | #[inline ] |
154 | pub const fn to_bits(self) -> u16 { |
155 | self.0 |
156 | } |
157 | |
158 | /// Returns the memory representation of the underlying bit representation as a byte array in |
159 | /// little-endian byte order. |
160 | /// |
161 | /// # Examples |
162 | /// |
163 | /// ```rust |
164 | /// # use half::prelude::*; |
165 | /// let bytes = f16::from_f32(12.5).to_le_bytes(); |
166 | /// assert_eq!(bytes, [0x40, 0x4A]); |
167 | /// ``` |
168 | #[inline ] |
169 | pub const fn to_le_bytes(self) -> [u8; 2] { |
170 | self.0.to_le_bytes() |
171 | } |
172 | |
173 | /// Returns the memory representation of the underlying bit representation as a byte array in |
174 | /// big-endian (network) byte order. |
175 | /// |
176 | /// # Examples |
177 | /// |
178 | /// ```rust |
179 | /// # use half::prelude::*; |
180 | /// let bytes = f16::from_f32(12.5).to_be_bytes(); |
181 | /// assert_eq!(bytes, [0x4A, 0x40]); |
182 | /// ``` |
183 | #[inline ] |
184 | pub const fn to_be_bytes(self) -> [u8; 2] { |
185 | self.0.to_be_bytes() |
186 | } |
187 | |
188 | /// Returns the memory representation of the underlying bit representation as a byte array in |
189 | /// native byte order. |
190 | /// |
191 | /// As the target platform's native endianness is used, portable code should use |
192 | /// [`to_be_bytes`][Self::to_be_bytes] or [`to_le_bytes`][Self::to_le_bytes], as appropriate, |
193 | /// instead. |
194 | /// |
195 | /// # Examples |
196 | /// |
197 | /// ```rust |
198 | /// # use half::prelude::*; |
199 | /// let bytes = f16::from_f32(12.5).to_ne_bytes(); |
200 | /// assert_eq!(bytes, if cfg!(target_endian = "big" ) { |
201 | /// [0x4A, 0x40] |
202 | /// } else { |
203 | /// [0x40, 0x4A] |
204 | /// }); |
205 | /// ``` |
206 | #[inline ] |
207 | pub const fn to_ne_bytes(self) -> [u8; 2] { |
208 | self.0.to_ne_bytes() |
209 | } |
210 | |
211 | /// Creates a floating point value from its representation as a byte array in little endian. |
212 | /// |
213 | /// # Examples |
214 | /// |
215 | /// ```rust |
216 | /// # use half::prelude::*; |
217 | /// let value = f16::from_le_bytes([0x40, 0x4A]); |
218 | /// assert_eq!(value, f16::from_f32(12.5)); |
219 | /// ``` |
220 | #[inline ] |
221 | pub const fn from_le_bytes(bytes: [u8; 2]) -> f16 { |
222 | f16::from_bits(u16::from_le_bytes(bytes)) |
223 | } |
224 | |
225 | /// Creates a floating point value from its representation as a byte array in big endian. |
226 | /// |
227 | /// # Examples |
228 | /// |
229 | /// ```rust |
230 | /// # use half::prelude::*; |
231 | /// let value = f16::from_be_bytes([0x4A, 0x40]); |
232 | /// assert_eq!(value, f16::from_f32(12.5)); |
233 | /// ``` |
234 | #[inline ] |
235 | pub const fn from_be_bytes(bytes: [u8; 2]) -> f16 { |
236 | f16::from_bits(u16::from_be_bytes(bytes)) |
237 | } |
238 | |
239 | /// Creates a floating point value from its representation as a byte array in native endian. |
240 | /// |
241 | /// As the target platform's native endianness is used, portable code likely wants to use |
242 | /// [`from_be_bytes`][Self::from_be_bytes] or [`from_le_bytes`][Self::from_le_bytes], as |
243 | /// appropriate instead. |
244 | /// |
245 | /// # Examples |
246 | /// |
247 | /// ```rust |
248 | /// # use half::prelude::*; |
249 | /// let value = f16::from_ne_bytes(if cfg!(target_endian = "big" ) { |
250 | /// [0x4A, 0x40] |
251 | /// } else { |
252 | /// [0x40, 0x4A] |
253 | /// }); |
254 | /// assert_eq!(value, f16::from_f32(12.5)); |
255 | /// ``` |
256 | #[inline ] |
257 | pub const fn from_ne_bytes(bytes: [u8; 2]) -> f16 { |
258 | f16::from_bits(u16::from_ne_bytes(bytes)) |
259 | } |
260 | |
261 | #[doc (hidden)] |
262 | #[deprecated (since = "1.2.0" , note = "renamed to `to_bits`" )] |
263 | #[inline ] |
264 | pub fn as_bits(self) -> u16 { |
265 | self.to_bits() |
266 | } |
267 | |
268 | /// Converts a [`f16`] value into a `f32` value. |
269 | /// |
270 | /// This conversion is lossless as all 16-bit floating point values can be represented exactly |
271 | /// in 32-bit floating point. |
272 | #[inline ] |
273 | pub fn to_f32(self) -> f32 { |
274 | convert::f16_to_f32(self.0) |
275 | } |
276 | |
277 | /// Converts a [`f16`] value into a `f64` value. |
278 | /// |
279 | /// This conversion is lossless as all 16-bit floating point values can be represented exactly |
280 | /// in 64-bit floating point. |
281 | #[inline ] |
282 | pub fn to_f64(self) -> f64 { |
283 | convert::f16_to_f64(self.0) |
284 | } |
285 | |
286 | /// Returns `true` if this value is `NaN` and `false` otherwise. |
287 | /// |
288 | /// # Examples |
289 | /// |
290 | /// ```rust |
291 | /// # use half::prelude::*; |
292 | /// |
293 | /// let nan = f16::NAN; |
294 | /// let f = f16::from_f32(7.0_f32); |
295 | /// |
296 | /// assert!(nan.is_nan()); |
297 | /// assert!(!f.is_nan()); |
298 | /// ``` |
299 | #[inline ] |
300 | pub const fn is_nan(self) -> bool { |
301 | self.0 & 0x7FFFu16 > 0x7C00u16 |
302 | } |
303 | |
304 | /// Returns `true` if this value is ±∞ and `false`. |
305 | /// otherwise. |
306 | /// |
307 | /// # Examples |
308 | /// |
309 | /// ```rust |
310 | /// # use half::prelude::*; |
311 | /// |
312 | /// let f = f16::from_f32(7.0f32); |
313 | /// let inf = f16::INFINITY; |
314 | /// let neg_inf = f16::NEG_INFINITY; |
315 | /// let nan = f16::NAN; |
316 | /// |
317 | /// assert!(!f.is_infinite()); |
318 | /// assert!(!nan.is_infinite()); |
319 | /// |
320 | /// assert!(inf.is_infinite()); |
321 | /// assert!(neg_inf.is_infinite()); |
322 | /// ``` |
323 | #[inline ] |
324 | pub const fn is_infinite(self) -> bool { |
325 | self.0 & 0x7FFFu16 == 0x7C00u16 |
326 | } |
327 | |
328 | /// Returns `true` if this number is neither infinite nor `NaN`. |
329 | /// |
330 | /// # Examples |
331 | /// |
332 | /// ```rust |
333 | /// # use half::prelude::*; |
334 | /// |
335 | /// let f = f16::from_f32(7.0f32); |
336 | /// let inf = f16::INFINITY; |
337 | /// let neg_inf = f16::NEG_INFINITY; |
338 | /// let nan = f16::NAN; |
339 | /// |
340 | /// assert!(f.is_finite()); |
341 | /// |
342 | /// assert!(!nan.is_finite()); |
343 | /// assert!(!inf.is_finite()); |
344 | /// assert!(!neg_inf.is_finite()); |
345 | /// ``` |
346 | #[inline ] |
347 | pub const fn is_finite(self) -> bool { |
348 | self.0 & 0x7C00u16 != 0x7C00u16 |
349 | } |
350 | |
351 | /// Returns `true` if the number is neither zero, infinite, subnormal, or `NaN`. |
352 | /// |
353 | /// # Examples |
354 | /// |
355 | /// ```rust |
356 | /// # use half::prelude::*; |
357 | /// |
358 | /// let min = f16::MIN_POSITIVE; |
359 | /// let max = f16::MAX; |
360 | /// let lower_than_min = f16::from_f32(1.0e-10_f32); |
361 | /// let zero = f16::from_f32(0.0_f32); |
362 | /// |
363 | /// assert!(min.is_normal()); |
364 | /// assert!(max.is_normal()); |
365 | /// |
366 | /// assert!(!zero.is_normal()); |
367 | /// assert!(!f16::NAN.is_normal()); |
368 | /// assert!(!f16::INFINITY.is_normal()); |
369 | /// // Values between `0` and `min` are Subnormal. |
370 | /// assert!(!lower_than_min.is_normal()); |
371 | /// ``` |
372 | #[inline ] |
373 | pub const fn is_normal(self) -> bool { |
374 | let exp = self.0 & 0x7C00u16; |
375 | exp != 0x7C00u16 && exp != 0 |
376 | } |
377 | |
378 | /// Returns the floating point category of the number. |
379 | /// |
380 | /// If only one property is going to be tested, it is generally faster to use the specific |
381 | /// predicate instead. |
382 | /// |
383 | /// # Examples |
384 | /// |
385 | /// ```rust |
386 | /// use std::num::FpCategory; |
387 | /// # use half::prelude::*; |
388 | /// |
389 | /// let num = f16::from_f32(12.4_f32); |
390 | /// let inf = f16::INFINITY; |
391 | /// |
392 | /// assert_eq!(num.classify(), FpCategory::Normal); |
393 | /// assert_eq!(inf.classify(), FpCategory::Infinite); |
394 | /// ``` |
395 | pub const fn classify(self) -> FpCategory { |
396 | let exp = self.0 & 0x7C00u16; |
397 | let man = self.0 & 0x03FFu16; |
398 | match (exp, man) { |
399 | (0, 0) => FpCategory::Zero, |
400 | (0, _) => FpCategory::Subnormal, |
401 | (0x7C00u16, 0) => FpCategory::Infinite, |
402 | (0x7C00u16, _) => FpCategory::Nan, |
403 | _ => FpCategory::Normal, |
404 | } |
405 | } |
406 | |
407 | /// Returns a number that represents the sign of `self`. |
408 | /// |
409 | /// * `1.0` if the number is positive, `+0.0` or [`INFINITY`][f16::INFINITY] |
410 | /// * `-1.0` if the number is negative, `-0.0` or [`NEG_INFINITY`][f16::NEG_INFINITY] |
411 | /// * [`NAN`][f16::NAN] if the number is `NaN` |
412 | /// |
413 | /// # Examples |
414 | /// |
415 | /// ```rust |
416 | /// # use half::prelude::*; |
417 | /// |
418 | /// let f = f16::from_f32(3.5_f32); |
419 | /// |
420 | /// assert_eq!(f.signum(), f16::from_f32(1.0)); |
421 | /// assert_eq!(f16::NEG_INFINITY.signum(), f16::from_f32(-1.0)); |
422 | /// |
423 | /// assert!(f16::NAN.signum().is_nan()); |
424 | /// ``` |
425 | pub const fn signum(self) -> f16 { |
426 | if self.is_nan() { |
427 | self |
428 | } else if self.0 & 0x8000u16 != 0 { |
429 | Self::NEG_ONE |
430 | } else { |
431 | Self::ONE |
432 | } |
433 | } |
434 | |
435 | /// Returns `true` if and only if `self` has a positive sign, including `+0.0`, `NaNs` with a |
436 | /// positive sign bit and +∞. |
437 | /// |
438 | /// # Examples |
439 | /// |
440 | /// ```rust |
441 | /// # use half::prelude::*; |
442 | /// |
443 | /// let nan = f16::NAN; |
444 | /// let f = f16::from_f32(7.0_f32); |
445 | /// let g = f16::from_f32(-7.0_f32); |
446 | /// |
447 | /// assert!(f.is_sign_positive()); |
448 | /// assert!(!g.is_sign_positive()); |
449 | /// // `NaN` can be either positive or negative |
450 | /// assert!(nan.is_sign_positive() != nan.is_sign_negative()); |
451 | /// ``` |
452 | #[inline ] |
453 | pub const fn is_sign_positive(self) -> bool { |
454 | self.0 & 0x8000u16 == 0 |
455 | } |
456 | |
457 | /// Returns `true` if and only if `self` has a negative sign, including `-0.0`, `NaNs` with a |
458 | /// negative sign bit and −∞. |
459 | /// |
460 | /// # Examples |
461 | /// |
462 | /// ```rust |
463 | /// # use half::prelude::*; |
464 | /// |
465 | /// let nan = f16::NAN; |
466 | /// let f = f16::from_f32(7.0f32); |
467 | /// let g = f16::from_f32(-7.0f32); |
468 | /// |
469 | /// assert!(!f.is_sign_negative()); |
470 | /// assert!(g.is_sign_negative()); |
471 | /// // `NaN` can be either positive or negative |
472 | /// assert!(nan.is_sign_positive() != nan.is_sign_negative()); |
473 | /// ``` |
474 | #[inline ] |
475 | pub const fn is_sign_negative(self) -> bool { |
476 | self.0 & 0x8000u16 != 0 |
477 | } |
478 | |
479 | /// Returns a number composed of the magnitude of `self` and the sign of `sign`. |
480 | /// |
481 | /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`. |
482 | /// If `self` is NaN, then NaN with the sign of `sign` is returned. |
483 | /// |
484 | /// # Examples |
485 | /// |
486 | /// ``` |
487 | /// # use half::prelude::*; |
488 | /// let f = f16::from_f32(3.5); |
489 | /// |
490 | /// assert_eq!(f.copysign(f16::from_f32(0.42)), f16::from_f32(3.5)); |
491 | /// assert_eq!(f.copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5)); |
492 | /// assert_eq!((-f).copysign(f16::from_f32(0.42)), f16::from_f32(3.5)); |
493 | /// assert_eq!((-f).copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5)); |
494 | /// |
495 | /// assert!(f16::NAN.copysign(f16::from_f32(1.0)).is_nan()); |
496 | /// ``` |
497 | #[inline ] |
498 | pub const fn copysign(self, sign: f16) -> f16 { |
499 | f16((sign.0 & 0x8000u16) | (self.0 & 0x7FFFu16)) |
500 | } |
501 | |
502 | /// Returns the maximum of the two numbers. |
503 | /// |
504 | /// If one of the arguments is NaN, then the other argument is returned. |
505 | /// |
506 | /// # Examples |
507 | /// |
508 | /// ``` |
509 | /// # use half::prelude::*; |
510 | /// let x = f16::from_f32(1.0); |
511 | /// let y = f16::from_f32(2.0); |
512 | /// |
513 | /// assert_eq!(x.max(y), y); |
514 | /// ``` |
515 | #[inline ] |
516 | pub fn max(self, other: f16) -> f16 { |
517 | if other > self && !other.is_nan() { |
518 | other |
519 | } else { |
520 | self |
521 | } |
522 | } |
523 | |
524 | /// Returns the minimum of the two numbers. |
525 | /// |
526 | /// If one of the arguments is NaN, then the other argument is returned. |
527 | /// |
528 | /// # Examples |
529 | /// |
530 | /// ``` |
531 | /// # use half::prelude::*; |
532 | /// let x = f16::from_f32(1.0); |
533 | /// let y = f16::from_f32(2.0); |
534 | /// |
535 | /// assert_eq!(x.min(y), x); |
536 | /// ``` |
537 | #[inline ] |
538 | pub fn min(self, other: f16) -> f16 { |
539 | if other < self && !other.is_nan() { |
540 | other |
541 | } else { |
542 | self |
543 | } |
544 | } |
545 | |
546 | /// Restrict a value to a certain interval unless it is NaN. |
547 | /// |
548 | /// Returns `max` if `self` is greater than `max`, and `min` if `self` is less than `min`. |
549 | /// Otherwise this returns `self`. |
550 | /// |
551 | /// Note that this function returns NaN if the initial value was NaN as well. |
552 | /// |
553 | /// # Panics |
554 | /// Panics if `min > max`, `min` is NaN, or `max` is NaN. |
555 | /// |
556 | /// # Examples |
557 | /// |
558 | /// ``` |
559 | /// # use half::prelude::*; |
560 | /// assert!(f16::from_f32(-3.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(-2.0)); |
561 | /// assert!(f16::from_f32(0.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(0.0)); |
562 | /// assert!(f16::from_f32(2.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(1.0)); |
563 | /// assert!(f16::NAN.clamp(f16::from_f32(-2.0), f16::from_f32(1.0)).is_nan()); |
564 | /// ``` |
565 | #[inline ] |
566 | pub fn clamp(self, min: f16, max: f16) -> f16 { |
567 | assert!(min <= max); |
568 | let mut x = self; |
569 | if x < min { |
570 | x = min; |
571 | } |
572 | if x > max { |
573 | x = max; |
574 | } |
575 | x |
576 | } |
577 | |
578 | /// Approximate number of [`f16`] significant digits in base 10 |
579 | pub const DIGITS: u32 = 3; |
580 | /// [`f16`] |
581 | /// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value |
582 | /// |
583 | /// This is the difference between 1.0 and the next largest representable number. |
584 | pub const EPSILON: f16 = f16(0x1400u16); |
585 | /// [`f16`] positive Infinity (+∞) |
586 | pub const INFINITY: f16 = f16(0x7C00u16); |
587 | /// Number of [`f16`] significant digits in base 2 |
588 | pub const MANTISSA_DIGITS: u32 = 11; |
589 | /// Largest finite [`f16`] value |
590 | pub const MAX: f16 = f16(0x7BFF); |
591 | /// Maximum possible [`f16`] power of 10 exponent |
592 | pub const MAX_10_EXP: i32 = 4; |
593 | /// Maximum possible [`f16`] power of 2 exponent |
594 | pub const MAX_EXP: i32 = 16; |
595 | /// Smallest finite [`f16`] value |
596 | pub const MIN: f16 = f16(0xFBFF); |
597 | /// Minimum possible normal [`f16`] power of 10 exponent |
598 | pub const MIN_10_EXP: i32 = -4; |
599 | /// One greater than the minimum possible normal [`f16`] power of 2 exponent |
600 | pub const MIN_EXP: i32 = -13; |
601 | /// Smallest positive normal [`f16`] value |
602 | pub const MIN_POSITIVE: f16 = f16(0x0400u16); |
603 | /// [`f16`] Not a Number (NaN) |
604 | pub const NAN: f16 = f16(0x7E00u16); |
605 | /// [`f16`] negative infinity (-∞) |
606 | pub const NEG_INFINITY: f16 = f16(0xFC00u16); |
607 | /// The radix or base of the internal representation of [`f16`] |
608 | pub const RADIX: u32 = 2; |
609 | |
610 | /// Minimum positive subnormal [`f16`] value |
611 | pub const MIN_POSITIVE_SUBNORMAL: f16 = f16(0x0001u16); |
612 | /// Maximum subnormal [`f16`] value |
613 | pub const MAX_SUBNORMAL: f16 = f16(0x03FFu16); |
614 | |
615 | /// [`f16`] 1 |
616 | pub const ONE: f16 = f16(0x3C00u16); |
617 | /// [`f16`] 0 |
618 | pub const ZERO: f16 = f16(0x0000u16); |
619 | /// [`f16`] -0 |
620 | pub const NEG_ZERO: f16 = f16(0x8000u16); |
621 | /// [`f16`] -1 |
622 | pub const NEG_ONE: f16 = f16(0xBC00u16); |
623 | |
624 | /// [`f16`] Euler's number (ℯ) |
625 | pub const E: f16 = f16(0x4170u16); |
626 | /// [`f16`] Archimedes' constant (π) |
627 | pub const PI: f16 = f16(0x4248u16); |
628 | /// [`f16`] 1/π |
629 | pub const FRAC_1_PI: f16 = f16(0x3518u16); |
630 | /// [`f16`] 1/√2 |
631 | pub const FRAC_1_SQRT_2: f16 = f16(0x39A8u16); |
632 | /// [`f16`] 2/π |
633 | pub const FRAC_2_PI: f16 = f16(0x3918u16); |
634 | /// [`f16`] 2/√π |
635 | pub const FRAC_2_SQRT_PI: f16 = f16(0x3C83u16); |
636 | /// [`f16`] π/2 |
637 | pub const FRAC_PI_2: f16 = f16(0x3E48u16); |
638 | /// [`f16`] π/3 |
639 | pub const FRAC_PI_3: f16 = f16(0x3C30u16); |
640 | /// [`f16`] π/4 |
641 | pub const FRAC_PI_4: f16 = f16(0x3A48u16); |
642 | /// [`f16`] π/6 |
643 | pub const FRAC_PI_6: f16 = f16(0x3830u16); |
644 | /// [`f16`] π/8 |
645 | pub const FRAC_PI_8: f16 = f16(0x3648u16); |
646 | /// [`f16`] 𝗅𝗇 10 |
647 | pub const LN_10: f16 = f16(0x409Bu16); |
648 | /// [`f16`] 𝗅𝗇 2 |
649 | pub const LN_2: f16 = f16(0x398Cu16); |
650 | /// [`f16`] 𝗅𝗈𝗀₁₀ℯ |
651 | pub const LOG10_E: f16 = f16(0x36F3u16); |
652 | /// [`f16`] 𝗅𝗈𝗀₁₀2 |
653 | pub const LOG10_2: f16 = f16(0x34D1u16); |
654 | /// [`f16`] 𝗅𝗈𝗀₂ℯ |
655 | pub const LOG2_E: f16 = f16(0x3DC5u16); |
656 | /// [`f16`] 𝗅𝗈𝗀₂10 |
657 | pub const LOG2_10: f16 = f16(0x42A5u16); |
658 | /// [`f16`] √2 |
659 | pub const SQRT_2: f16 = f16(0x3DA8u16); |
660 | } |
661 | |
662 | impl From<f16> for f32 { |
663 | #[inline ] |
664 | fn from(x: f16) -> f32 { |
665 | x.to_f32() |
666 | } |
667 | } |
668 | |
669 | impl From<f16> for f64 { |
670 | #[inline ] |
671 | fn from(x: f16) -> f64 { |
672 | x.to_f64() |
673 | } |
674 | } |
675 | |
676 | impl From<i8> for f16 { |
677 | #[inline ] |
678 | fn from(x: i8) -> f16 { |
679 | // Convert to f32, then to f16 |
680 | f16::from_f32(f32::from(x)) |
681 | } |
682 | } |
683 | |
684 | impl From<u8> for f16 { |
685 | #[inline ] |
686 | fn from(x: u8) -> f16 { |
687 | // Convert to f32, then to f16 |
688 | f16::from_f32(f32::from(x)) |
689 | } |
690 | } |
691 | |
692 | impl PartialEq for f16 { |
693 | fn eq(&self, other: &f16) -> bool { |
694 | if self.is_nan() || other.is_nan() { |
695 | false |
696 | } else { |
697 | (self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0) |
698 | } |
699 | } |
700 | } |
701 | |
702 | impl PartialOrd for f16 { |
703 | fn partial_cmp(&self, other: &f16) -> Option<Ordering> { |
704 | if self.is_nan() || other.is_nan() { |
705 | None |
706 | } else { |
707 | let neg = self.0 & 0x8000u16 != 0; |
708 | let other_neg = other.0 & 0x8000u16 != 0; |
709 | match (neg, other_neg) { |
710 | (false, false) => Some(self.0.cmp(&other.0)), |
711 | (false, true) => { |
712 | if (self.0 | other.0) & 0x7FFFu16 == 0 { |
713 | Some(Ordering::Equal) |
714 | } else { |
715 | Some(Ordering::Greater) |
716 | } |
717 | } |
718 | (true, false) => { |
719 | if (self.0 | other.0) & 0x7FFFu16 == 0 { |
720 | Some(Ordering::Equal) |
721 | } else { |
722 | Some(Ordering::Less) |
723 | } |
724 | } |
725 | (true, true) => Some(other.0.cmp(&self.0)), |
726 | } |
727 | } |
728 | } |
729 | |
730 | fn lt(&self, other: &f16) -> bool { |
731 | if self.is_nan() || other.is_nan() { |
732 | false |
733 | } else { |
734 | let neg = self.0 & 0x8000u16 != 0; |
735 | let other_neg = other.0 & 0x8000u16 != 0; |
736 | match (neg, other_neg) { |
737 | (false, false) => self.0 < other.0, |
738 | (false, true) => false, |
739 | (true, false) => (self.0 | other.0) & 0x7FFFu16 != 0, |
740 | (true, true) => self.0 > other.0, |
741 | } |
742 | } |
743 | } |
744 | |
745 | fn le(&self, other: &f16) -> bool { |
746 | if self.is_nan() || other.is_nan() { |
747 | false |
748 | } else { |
749 | let neg = self.0 & 0x8000u16 != 0; |
750 | let other_neg = other.0 & 0x8000u16 != 0; |
751 | match (neg, other_neg) { |
752 | (false, false) => self.0 <= other.0, |
753 | (false, true) => (self.0 | other.0) & 0x7FFFu16 == 0, |
754 | (true, false) => true, |
755 | (true, true) => self.0 >= other.0, |
756 | } |
757 | } |
758 | } |
759 | |
760 | fn gt(&self, other: &f16) -> bool { |
761 | if self.is_nan() || other.is_nan() { |
762 | false |
763 | } else { |
764 | let neg = self.0 & 0x8000u16 != 0; |
765 | let other_neg = other.0 & 0x8000u16 != 0; |
766 | match (neg, other_neg) { |
767 | (false, false) => self.0 > other.0, |
768 | (false, true) => (self.0 | other.0) & 0x7FFFu16 != 0, |
769 | (true, false) => false, |
770 | (true, true) => self.0 < other.0, |
771 | } |
772 | } |
773 | } |
774 | |
775 | fn ge(&self, other: &f16) -> bool { |
776 | if self.is_nan() || other.is_nan() { |
777 | false |
778 | } else { |
779 | let neg = self.0 & 0x8000u16 != 0; |
780 | let other_neg = other.0 & 0x8000u16 != 0; |
781 | match (neg, other_neg) { |
782 | (false, false) => self.0 >= other.0, |
783 | (false, true) => true, |
784 | (true, false) => (self.0 | other.0) & 0x7FFFu16 == 0, |
785 | (true, true) => self.0 <= other.0, |
786 | } |
787 | } |
788 | } |
789 | } |
790 | |
791 | impl FromStr for f16 { |
792 | type Err = ParseFloatError; |
793 | fn from_str(src: &str) -> Result<f16, ParseFloatError> { |
794 | f32::from_str(src).map(f16::from_f32) |
795 | } |
796 | } |
797 | |
798 | impl Debug for f16 { |
799 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
800 | write!(f, "{:?}" , self.to_f32()) |
801 | } |
802 | } |
803 | |
804 | impl Display for f16 { |
805 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
806 | write!(f, "{}" , self.to_f32()) |
807 | } |
808 | } |
809 | |
810 | impl LowerExp for f16 { |
811 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
812 | write!(f, "{:e}" , self.to_f32()) |
813 | } |
814 | } |
815 | |
816 | impl UpperExp for f16 { |
817 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
818 | write!(f, "{:E}" , self.to_f32()) |
819 | } |
820 | } |
821 | |
822 | impl Binary for f16 { |
823 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
824 | write!(f, "{:b}" , self.0) |
825 | } |
826 | } |
827 | |
828 | impl Octal for f16 { |
829 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
830 | write!(f, "{:o}" , self.0) |
831 | } |
832 | } |
833 | |
834 | impl LowerHex for f16 { |
835 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
836 | write!(f, "{:x}" , self.0) |
837 | } |
838 | } |
839 | |
840 | impl UpperHex for f16 { |
841 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
842 | write!(f, "{:X}" , self.0) |
843 | } |
844 | } |
845 | |
846 | impl Neg for f16 { |
847 | type Output = Self; |
848 | |
849 | #[inline ] |
850 | fn neg(self) -> Self::Output { |
851 | Self(self.0 ^ 0x8000) |
852 | } |
853 | } |
854 | |
855 | impl Add for f16 { |
856 | type Output = Self; |
857 | |
858 | #[inline ] |
859 | fn add(self, rhs: Self) -> Self::Output { |
860 | Self::from_f32(Self::to_f32(self) + Self::to_f32(rhs)) |
861 | } |
862 | } |
863 | |
864 | impl Add<&f16> for f16 { |
865 | type Output = <f16 as Add<f16>>::Output; |
866 | |
867 | #[inline ] |
868 | fn add(self, rhs: &f16) -> Self::Output { |
869 | self.add(*rhs) |
870 | } |
871 | } |
872 | |
873 | impl Add<&f16> for &f16 { |
874 | type Output = <f16 as Add<f16>>::Output; |
875 | |
876 | #[inline ] |
877 | fn add(self, rhs: &f16) -> Self::Output { |
878 | (*self).add(*rhs) |
879 | } |
880 | } |
881 | |
882 | impl Add<f16> for &f16 { |
883 | type Output = <f16 as Add<f16>>::Output; |
884 | |
885 | #[inline ] |
886 | fn add(self, rhs: f16) -> Self::Output { |
887 | (*self).add(rhs) |
888 | } |
889 | } |
890 | |
891 | impl AddAssign for f16 { |
892 | #[inline ] |
893 | fn add_assign(&mut self, rhs: Self) { |
894 | *self = (*self).add(rhs); |
895 | } |
896 | } |
897 | |
898 | impl AddAssign<&f16> for f16 { |
899 | #[inline ] |
900 | fn add_assign(&mut self, rhs: &f16) { |
901 | *self = (*self).add(rhs); |
902 | } |
903 | } |
904 | |
905 | impl Sub for f16 { |
906 | type Output = Self; |
907 | |
908 | #[inline ] |
909 | fn sub(self, rhs: Self) -> Self::Output { |
910 | Self::from_f32(Self::to_f32(self) - Self::to_f32(rhs)) |
911 | } |
912 | } |
913 | |
914 | impl Sub<&f16> for f16 { |
915 | type Output = <f16 as Sub<f16>>::Output; |
916 | |
917 | #[inline ] |
918 | fn sub(self, rhs: &f16) -> Self::Output { |
919 | self.sub(*rhs) |
920 | } |
921 | } |
922 | |
923 | impl Sub<&f16> for &f16 { |
924 | type Output = <f16 as Sub<f16>>::Output; |
925 | |
926 | #[inline ] |
927 | fn sub(self, rhs: &f16) -> Self::Output { |
928 | (*self).sub(*rhs) |
929 | } |
930 | } |
931 | |
932 | impl Sub<f16> for &f16 { |
933 | type Output = <f16 as Sub<f16>>::Output; |
934 | |
935 | #[inline ] |
936 | fn sub(self, rhs: f16) -> Self::Output { |
937 | (*self).sub(rhs) |
938 | } |
939 | } |
940 | |
941 | impl SubAssign for f16 { |
942 | #[inline ] |
943 | fn sub_assign(&mut self, rhs: Self) { |
944 | *self = (*self).sub(rhs); |
945 | } |
946 | } |
947 | |
948 | impl SubAssign<&f16> for f16 { |
949 | #[inline ] |
950 | fn sub_assign(&mut self, rhs: &f16) { |
951 | *self = (*self).sub(rhs); |
952 | } |
953 | } |
954 | |
955 | impl Mul for f16 { |
956 | type Output = Self; |
957 | |
958 | #[inline ] |
959 | fn mul(self, rhs: Self) -> Self::Output { |
960 | Self::from_f32(Self::to_f32(self) * Self::to_f32(rhs)) |
961 | } |
962 | } |
963 | |
964 | impl Mul<&f16> for f16 { |
965 | type Output = <f16 as Mul<f16>>::Output; |
966 | |
967 | #[inline ] |
968 | fn mul(self, rhs: &f16) -> Self::Output { |
969 | self.mul(*rhs) |
970 | } |
971 | } |
972 | |
973 | impl Mul<&f16> for &f16 { |
974 | type Output = <f16 as Mul<f16>>::Output; |
975 | |
976 | #[inline ] |
977 | fn mul(self, rhs: &f16) -> Self::Output { |
978 | (*self).mul(*rhs) |
979 | } |
980 | } |
981 | |
982 | impl Mul<f16> for &f16 { |
983 | type Output = <f16 as Mul<f16>>::Output; |
984 | |
985 | #[inline ] |
986 | fn mul(self, rhs: f16) -> Self::Output { |
987 | (*self).mul(rhs) |
988 | } |
989 | } |
990 | |
991 | impl MulAssign for f16 { |
992 | #[inline ] |
993 | fn mul_assign(&mut self, rhs: Self) { |
994 | *self = (*self).mul(rhs); |
995 | } |
996 | } |
997 | |
998 | impl MulAssign<&f16> for f16 { |
999 | #[inline ] |
1000 | fn mul_assign(&mut self, rhs: &f16) { |
1001 | *self = (*self).mul(rhs); |
1002 | } |
1003 | } |
1004 | |
1005 | impl Div for f16 { |
1006 | type Output = Self; |
1007 | |
1008 | #[inline ] |
1009 | fn div(self, rhs: Self) -> Self::Output { |
1010 | Self::from_f32(Self::to_f32(self) / Self::to_f32(rhs)) |
1011 | } |
1012 | } |
1013 | |
1014 | impl Div<&f16> for f16 { |
1015 | type Output = <f16 as Div<f16>>::Output; |
1016 | |
1017 | #[inline ] |
1018 | fn div(self, rhs: &f16) -> Self::Output { |
1019 | self.div(*rhs) |
1020 | } |
1021 | } |
1022 | |
1023 | impl Div<&f16> for &f16 { |
1024 | type Output = <f16 as Div<f16>>::Output; |
1025 | |
1026 | #[inline ] |
1027 | fn div(self, rhs: &f16) -> Self::Output { |
1028 | (*self).div(*rhs) |
1029 | } |
1030 | } |
1031 | |
1032 | impl Div<f16> for &f16 { |
1033 | type Output = <f16 as Div<f16>>::Output; |
1034 | |
1035 | #[inline ] |
1036 | fn div(self, rhs: f16) -> Self::Output { |
1037 | (*self).div(rhs) |
1038 | } |
1039 | } |
1040 | |
1041 | impl DivAssign for f16 { |
1042 | #[inline ] |
1043 | fn div_assign(&mut self, rhs: Self) { |
1044 | *self = (*self).div(rhs); |
1045 | } |
1046 | } |
1047 | |
1048 | impl DivAssign<&f16> for f16 { |
1049 | #[inline ] |
1050 | fn div_assign(&mut self, rhs: &f16) { |
1051 | *self = (*self).div(rhs); |
1052 | } |
1053 | } |
1054 | |
1055 | impl Rem for f16 { |
1056 | type Output = Self; |
1057 | |
1058 | #[inline ] |
1059 | fn rem(self, rhs: Self) -> Self::Output { |
1060 | Self::from_f32(Self::to_f32(self) % Self::to_f32(rhs)) |
1061 | } |
1062 | } |
1063 | |
1064 | impl Rem<&f16> for f16 { |
1065 | type Output = <f16 as Rem<f16>>::Output; |
1066 | |
1067 | #[inline ] |
1068 | fn rem(self, rhs: &f16) -> Self::Output { |
1069 | self.rem(*rhs) |
1070 | } |
1071 | } |
1072 | |
1073 | impl Rem<&f16> for &f16 { |
1074 | type Output = <f16 as Rem<f16>>::Output; |
1075 | |
1076 | #[inline ] |
1077 | fn rem(self, rhs: &f16) -> Self::Output { |
1078 | (*self).rem(*rhs) |
1079 | } |
1080 | } |
1081 | |
1082 | impl Rem<f16> for &f16 { |
1083 | type Output = <f16 as Rem<f16>>::Output; |
1084 | |
1085 | #[inline ] |
1086 | fn rem(self, rhs: f16) -> Self::Output { |
1087 | (*self).rem(rhs) |
1088 | } |
1089 | } |
1090 | |
1091 | impl RemAssign for f16 { |
1092 | #[inline ] |
1093 | fn rem_assign(&mut self, rhs: Self) { |
1094 | *self = (*self).rem(rhs); |
1095 | } |
1096 | } |
1097 | |
1098 | impl RemAssign<&f16> for f16 { |
1099 | #[inline ] |
1100 | fn rem_assign(&mut self, rhs: &f16) { |
1101 | *self = (*self).rem(rhs); |
1102 | } |
1103 | } |
1104 | |
1105 | impl Product for f16 { |
1106 | #[inline ] |
1107 | fn product<I: Iterator<Item = Self>>(iter: I) -> Self { |
1108 | f16::from_f32(iter.map(|f| f.to_f32()).product()) |
1109 | } |
1110 | } |
1111 | |
1112 | impl<'a> Product<&'a f16> for f16 { |
1113 | #[inline ] |
1114 | fn product<I: Iterator<Item = &'a f16>>(iter: I) -> Self { |
1115 | f16::from_f32(iter.map(|f| f.to_f32()).product()) |
1116 | } |
1117 | } |
1118 | |
1119 | impl Sum for f16 { |
1120 | #[inline ] |
1121 | fn sum<I: Iterator<Item = Self>>(iter: I) -> Self { |
1122 | f16::from_f32(iter.map(|f| f.to_f32()).sum()) |
1123 | } |
1124 | } |
1125 | |
1126 | impl<'a> Sum<&'a f16> for f16 { |
1127 | #[inline ] |
1128 | fn sum<I: Iterator<Item = &'a f16>>(iter: I) -> Self { |
1129 | f16::from_f32(iter.map(|f| f.to_f32()).product()) |
1130 | } |
1131 | } |
1132 | |
1133 | #[allow ( |
1134 | clippy::cognitive_complexity, |
1135 | clippy::float_cmp, |
1136 | clippy::neg_cmp_op_on_partial_ord |
1137 | )] |
1138 | #[cfg (test)] |
1139 | mod test { |
1140 | use super::*; |
1141 | use core::cmp::Ordering; |
1142 | #[cfg (feature = "num-traits" )] |
1143 | use num_traits::{AsPrimitive, FromPrimitive, ToPrimitive}; |
1144 | use quickcheck_macros::quickcheck; |
1145 | |
1146 | #[cfg (feature = "num-traits" )] |
1147 | #[test] |
1148 | fn as_primitive() { |
1149 | let two = f16::from_f32(2.0); |
1150 | assert_eq!(<i32 as AsPrimitive<f16>>::as_(2), two); |
1151 | assert_eq!(<f16 as AsPrimitive<i32>>::as_(two), 2); |
1152 | |
1153 | assert_eq!(<f32 as AsPrimitive<f16>>::as_(2.0), two); |
1154 | assert_eq!(<f16 as AsPrimitive<f32>>::as_(two), 2.0); |
1155 | |
1156 | assert_eq!(<f64 as AsPrimitive<f16>>::as_(2.0), two); |
1157 | assert_eq!(<f16 as AsPrimitive<f64>>::as_(two), 2.0); |
1158 | } |
1159 | |
1160 | #[cfg (feature = "num-traits" )] |
1161 | #[test] |
1162 | fn to_primitive() { |
1163 | let two = f16::from_f32(2.0); |
1164 | assert_eq!(ToPrimitive::to_i32(&two).unwrap(), 2i32); |
1165 | assert_eq!(ToPrimitive::to_f32(&two).unwrap(), 2.0f32); |
1166 | assert_eq!(ToPrimitive::to_f64(&two).unwrap(), 2.0f64); |
1167 | } |
1168 | |
1169 | #[cfg (feature = "num-traits" )] |
1170 | #[test] |
1171 | fn from_primitive() { |
1172 | let two = f16::from_f32(2.0); |
1173 | assert_eq!(<f16 as FromPrimitive>::from_i32(2).unwrap(), two); |
1174 | assert_eq!(<f16 as FromPrimitive>::from_f32(2.0).unwrap(), two); |
1175 | assert_eq!(<f16 as FromPrimitive>::from_f64(2.0).unwrap(), two); |
1176 | } |
1177 | |
1178 | #[test] |
1179 | fn test_f16_consts() { |
1180 | // DIGITS |
1181 | let digits = ((f16::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32; |
1182 | assert_eq!(f16::DIGITS, digits); |
1183 | // sanity check to show test is good |
1184 | let digits32 = ((core::f32::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32; |
1185 | assert_eq!(core::f32::DIGITS, digits32); |
1186 | |
1187 | // EPSILON |
1188 | let one = f16::from_f32(1.0); |
1189 | let one_plus_epsilon = f16::from_bits(one.to_bits() + 1); |
1190 | let epsilon = f16::from_f32(one_plus_epsilon.to_f32() - 1.0); |
1191 | assert_eq!(f16::EPSILON, epsilon); |
1192 | // sanity check to show test is good |
1193 | let one_plus_epsilon32 = f32::from_bits(1.0f32.to_bits() + 1); |
1194 | let epsilon32 = one_plus_epsilon32 - 1f32; |
1195 | assert_eq!(core::f32::EPSILON, epsilon32); |
1196 | |
1197 | // MAX, MIN and MIN_POSITIVE |
1198 | let max = f16::from_bits(f16::INFINITY.to_bits() - 1); |
1199 | let min = f16::from_bits(f16::NEG_INFINITY.to_bits() - 1); |
1200 | let min_pos = f16::from_f32(2f32.powi(f16::MIN_EXP - 1)); |
1201 | assert_eq!(f16::MAX, max); |
1202 | assert_eq!(f16::MIN, min); |
1203 | assert_eq!(f16::MIN_POSITIVE, min_pos); |
1204 | // sanity check to show test is good |
1205 | let max32 = f32::from_bits(core::f32::INFINITY.to_bits() - 1); |
1206 | let min32 = f32::from_bits(core::f32::NEG_INFINITY.to_bits() - 1); |
1207 | let min_pos32 = 2f32.powi(core::f32::MIN_EXP - 1); |
1208 | assert_eq!(core::f32::MAX, max32); |
1209 | assert_eq!(core::f32::MIN, min32); |
1210 | assert_eq!(core::f32::MIN_POSITIVE, min_pos32); |
1211 | |
1212 | // MIN_10_EXP and MAX_10_EXP |
1213 | let ten_to_min = 10f32.powi(f16::MIN_10_EXP); |
1214 | assert!(ten_to_min / 10.0 < f16::MIN_POSITIVE.to_f32()); |
1215 | assert!(ten_to_min > f16::MIN_POSITIVE.to_f32()); |
1216 | let ten_to_max = 10f32.powi(f16::MAX_10_EXP); |
1217 | assert!(ten_to_max < f16::MAX.to_f32()); |
1218 | assert!(ten_to_max * 10.0 > f16::MAX.to_f32()); |
1219 | // sanity check to show test is good |
1220 | let ten_to_min32 = 10f64.powi(core::f32::MIN_10_EXP); |
1221 | assert!(ten_to_min32 / 10.0 < f64::from(core::f32::MIN_POSITIVE)); |
1222 | assert!(ten_to_min32 > f64::from(core::f32::MIN_POSITIVE)); |
1223 | let ten_to_max32 = 10f64.powi(core::f32::MAX_10_EXP); |
1224 | assert!(ten_to_max32 < f64::from(core::f32::MAX)); |
1225 | assert!(ten_to_max32 * 10.0 > f64::from(core::f32::MAX)); |
1226 | } |
1227 | |
1228 | #[test] |
1229 | fn test_f16_consts_from_f32() { |
1230 | let one = f16::from_f32(1.0); |
1231 | let zero = f16::from_f32(0.0); |
1232 | let neg_zero = f16::from_f32(-0.0); |
1233 | let neg_one = f16::from_f32(-1.0); |
1234 | let inf = f16::from_f32(core::f32::INFINITY); |
1235 | let neg_inf = f16::from_f32(core::f32::NEG_INFINITY); |
1236 | let nan = f16::from_f32(core::f32::NAN); |
1237 | |
1238 | assert_eq!(f16::ONE, one); |
1239 | assert_eq!(f16::ZERO, zero); |
1240 | assert!(zero.is_sign_positive()); |
1241 | assert_eq!(f16::NEG_ZERO, neg_zero); |
1242 | assert!(neg_zero.is_sign_negative()); |
1243 | assert_eq!(f16::NEG_ONE, neg_one); |
1244 | assert!(neg_one.is_sign_negative()); |
1245 | assert_eq!(f16::INFINITY, inf); |
1246 | assert_eq!(f16::NEG_INFINITY, neg_inf); |
1247 | assert!(nan.is_nan()); |
1248 | assert!(f16::NAN.is_nan()); |
1249 | |
1250 | let e = f16::from_f32(core::f32::consts::E); |
1251 | let pi = f16::from_f32(core::f32::consts::PI); |
1252 | let frac_1_pi = f16::from_f32(core::f32::consts::FRAC_1_PI); |
1253 | let frac_1_sqrt_2 = f16::from_f32(core::f32::consts::FRAC_1_SQRT_2); |
1254 | let frac_2_pi = f16::from_f32(core::f32::consts::FRAC_2_PI); |
1255 | let frac_2_sqrt_pi = f16::from_f32(core::f32::consts::FRAC_2_SQRT_PI); |
1256 | let frac_pi_2 = f16::from_f32(core::f32::consts::FRAC_PI_2); |
1257 | let frac_pi_3 = f16::from_f32(core::f32::consts::FRAC_PI_3); |
1258 | let frac_pi_4 = f16::from_f32(core::f32::consts::FRAC_PI_4); |
1259 | let frac_pi_6 = f16::from_f32(core::f32::consts::FRAC_PI_6); |
1260 | let frac_pi_8 = f16::from_f32(core::f32::consts::FRAC_PI_8); |
1261 | let ln_10 = f16::from_f32(core::f32::consts::LN_10); |
1262 | let ln_2 = f16::from_f32(core::f32::consts::LN_2); |
1263 | let log10_e = f16::from_f32(core::f32::consts::LOG10_E); |
1264 | // core::f32::consts::LOG10_2 requires rustc 1.43.0 |
1265 | let log10_2 = f16::from_f32(2f32.log10()); |
1266 | let log2_e = f16::from_f32(core::f32::consts::LOG2_E); |
1267 | // core::f32::consts::LOG2_10 requires rustc 1.43.0 |
1268 | let log2_10 = f16::from_f32(10f32.log2()); |
1269 | let sqrt_2 = f16::from_f32(core::f32::consts::SQRT_2); |
1270 | |
1271 | assert_eq!(f16::E, e); |
1272 | assert_eq!(f16::PI, pi); |
1273 | assert_eq!(f16::FRAC_1_PI, frac_1_pi); |
1274 | assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2); |
1275 | assert_eq!(f16::FRAC_2_PI, frac_2_pi); |
1276 | assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi); |
1277 | assert_eq!(f16::FRAC_PI_2, frac_pi_2); |
1278 | assert_eq!(f16::FRAC_PI_3, frac_pi_3); |
1279 | assert_eq!(f16::FRAC_PI_4, frac_pi_4); |
1280 | assert_eq!(f16::FRAC_PI_6, frac_pi_6); |
1281 | assert_eq!(f16::FRAC_PI_8, frac_pi_8); |
1282 | assert_eq!(f16::LN_10, ln_10); |
1283 | assert_eq!(f16::LN_2, ln_2); |
1284 | assert_eq!(f16::LOG10_E, log10_e); |
1285 | assert_eq!(f16::LOG10_2, log10_2); |
1286 | assert_eq!(f16::LOG2_E, log2_e); |
1287 | assert_eq!(f16::LOG2_10, log2_10); |
1288 | assert_eq!(f16::SQRT_2, sqrt_2); |
1289 | } |
1290 | |
1291 | #[test] |
1292 | fn test_f16_consts_from_f64() { |
1293 | let one = f16::from_f64(1.0); |
1294 | let zero = f16::from_f64(0.0); |
1295 | let neg_zero = f16::from_f64(-0.0); |
1296 | let inf = f16::from_f64(core::f64::INFINITY); |
1297 | let neg_inf = f16::from_f64(core::f64::NEG_INFINITY); |
1298 | let nan = f16::from_f64(core::f64::NAN); |
1299 | |
1300 | assert_eq!(f16::ONE, one); |
1301 | assert_eq!(f16::ZERO, zero); |
1302 | assert!(zero.is_sign_positive()); |
1303 | assert_eq!(f16::NEG_ZERO, neg_zero); |
1304 | assert!(neg_zero.is_sign_negative()); |
1305 | assert_eq!(f16::INFINITY, inf); |
1306 | assert_eq!(f16::NEG_INFINITY, neg_inf); |
1307 | assert!(nan.is_nan()); |
1308 | assert!(f16::NAN.is_nan()); |
1309 | |
1310 | let e = f16::from_f64(core::f64::consts::E); |
1311 | let pi = f16::from_f64(core::f64::consts::PI); |
1312 | let frac_1_pi = f16::from_f64(core::f64::consts::FRAC_1_PI); |
1313 | let frac_1_sqrt_2 = f16::from_f64(core::f64::consts::FRAC_1_SQRT_2); |
1314 | let frac_2_pi = f16::from_f64(core::f64::consts::FRAC_2_PI); |
1315 | let frac_2_sqrt_pi = f16::from_f64(core::f64::consts::FRAC_2_SQRT_PI); |
1316 | let frac_pi_2 = f16::from_f64(core::f64::consts::FRAC_PI_2); |
1317 | let frac_pi_3 = f16::from_f64(core::f64::consts::FRAC_PI_3); |
1318 | let frac_pi_4 = f16::from_f64(core::f64::consts::FRAC_PI_4); |
1319 | let frac_pi_6 = f16::from_f64(core::f64::consts::FRAC_PI_6); |
1320 | let frac_pi_8 = f16::from_f64(core::f64::consts::FRAC_PI_8); |
1321 | let ln_10 = f16::from_f64(core::f64::consts::LN_10); |
1322 | let ln_2 = f16::from_f64(core::f64::consts::LN_2); |
1323 | let log10_e = f16::from_f64(core::f64::consts::LOG10_E); |
1324 | // core::f64::consts::LOG10_2 requires rustc 1.43.0 |
1325 | let log10_2 = f16::from_f64(2f64.log10()); |
1326 | let log2_e = f16::from_f64(core::f64::consts::LOG2_E); |
1327 | // core::f64::consts::LOG2_10 requires rustc 1.43.0 |
1328 | let log2_10 = f16::from_f64(10f64.log2()); |
1329 | let sqrt_2 = f16::from_f64(core::f64::consts::SQRT_2); |
1330 | |
1331 | assert_eq!(f16::E, e); |
1332 | assert_eq!(f16::PI, pi); |
1333 | assert_eq!(f16::FRAC_1_PI, frac_1_pi); |
1334 | assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2); |
1335 | assert_eq!(f16::FRAC_2_PI, frac_2_pi); |
1336 | assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi); |
1337 | assert_eq!(f16::FRAC_PI_2, frac_pi_2); |
1338 | assert_eq!(f16::FRAC_PI_3, frac_pi_3); |
1339 | assert_eq!(f16::FRAC_PI_4, frac_pi_4); |
1340 | assert_eq!(f16::FRAC_PI_6, frac_pi_6); |
1341 | assert_eq!(f16::FRAC_PI_8, frac_pi_8); |
1342 | assert_eq!(f16::LN_10, ln_10); |
1343 | assert_eq!(f16::LN_2, ln_2); |
1344 | assert_eq!(f16::LOG10_E, log10_e); |
1345 | assert_eq!(f16::LOG10_2, log10_2); |
1346 | assert_eq!(f16::LOG2_E, log2_e); |
1347 | assert_eq!(f16::LOG2_10, log2_10); |
1348 | assert_eq!(f16::SQRT_2, sqrt_2); |
1349 | } |
1350 | |
1351 | #[test] |
1352 | fn test_nan_conversion_to_smaller() { |
1353 | let nan64 = f64::from_bits(0x7FF0_0000_0000_0001u64); |
1354 | let neg_nan64 = f64::from_bits(0xFFF0_0000_0000_0001u64); |
1355 | let nan32 = f32::from_bits(0x7F80_0001u32); |
1356 | let neg_nan32 = f32::from_bits(0xFF80_0001u32); |
1357 | let nan32_from_64 = nan64 as f32; |
1358 | let neg_nan32_from_64 = neg_nan64 as f32; |
1359 | let nan16_from_64 = f16::from_f64(nan64); |
1360 | let neg_nan16_from_64 = f16::from_f64(neg_nan64); |
1361 | let nan16_from_32 = f16::from_f32(nan32); |
1362 | let neg_nan16_from_32 = f16::from_f32(neg_nan32); |
1363 | |
1364 | assert!(nan64.is_nan() && nan64.is_sign_positive()); |
1365 | assert!(neg_nan64.is_nan() && neg_nan64.is_sign_negative()); |
1366 | assert!(nan32.is_nan() && nan32.is_sign_positive()); |
1367 | assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative()); |
1368 | assert!(nan32_from_64.is_nan() && nan32_from_64.is_sign_positive()); |
1369 | assert!(neg_nan32_from_64.is_nan() && neg_nan32_from_64.is_sign_negative()); |
1370 | assert!(nan16_from_64.is_nan() && nan16_from_64.is_sign_positive()); |
1371 | assert!(neg_nan16_from_64.is_nan() && neg_nan16_from_64.is_sign_negative()); |
1372 | assert!(nan16_from_32.is_nan() && nan16_from_32.is_sign_positive()); |
1373 | assert!(neg_nan16_from_32.is_nan() && neg_nan16_from_32.is_sign_negative()); |
1374 | } |
1375 | |
1376 | #[test] |
1377 | fn test_nan_conversion_to_larger() { |
1378 | let nan16 = f16::from_bits(0x7C01u16); |
1379 | let neg_nan16 = f16::from_bits(0xFC01u16); |
1380 | let nan32 = f32::from_bits(0x7F80_0001u32); |
1381 | let neg_nan32 = f32::from_bits(0xFF80_0001u32); |
1382 | let nan32_from_16 = f32::from(nan16); |
1383 | let neg_nan32_from_16 = f32::from(neg_nan16); |
1384 | let nan64_from_16 = f64::from(nan16); |
1385 | let neg_nan64_from_16 = f64::from(neg_nan16); |
1386 | let nan64_from_32 = f64::from(nan32); |
1387 | let neg_nan64_from_32 = f64::from(neg_nan32); |
1388 | |
1389 | assert!(nan16.is_nan() && nan16.is_sign_positive()); |
1390 | assert!(neg_nan16.is_nan() && neg_nan16.is_sign_negative()); |
1391 | assert!(nan32.is_nan() && nan32.is_sign_positive()); |
1392 | assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative()); |
1393 | assert!(nan32_from_16.is_nan() && nan32_from_16.is_sign_positive()); |
1394 | assert!(neg_nan32_from_16.is_nan() && neg_nan32_from_16.is_sign_negative()); |
1395 | assert!(nan64_from_16.is_nan() && nan64_from_16.is_sign_positive()); |
1396 | assert!(neg_nan64_from_16.is_nan() && neg_nan64_from_16.is_sign_negative()); |
1397 | assert!(nan64_from_32.is_nan() && nan64_from_32.is_sign_positive()); |
1398 | assert!(neg_nan64_from_32.is_nan() && neg_nan64_from_32.is_sign_negative()); |
1399 | } |
1400 | |
1401 | #[test] |
1402 | fn test_f16_to_f32() { |
1403 | let f = f16::from_f32(7.0); |
1404 | assert_eq!(f.to_f32(), 7.0f32); |
1405 | |
1406 | // 7.1 is NOT exactly representable in 16-bit, it's rounded |
1407 | let f = f16::from_f32(7.1); |
1408 | let diff = (f.to_f32() - 7.1f32).abs(); |
1409 | // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1 |
1410 | assert!(diff <= 4.0 * f16::EPSILON.to_f32()); |
1411 | |
1412 | assert_eq!(f16::from_bits(0x0000_0001).to_f32(), 2.0f32.powi(-24)); |
1413 | assert_eq!(f16::from_bits(0x0000_0005).to_f32(), 5.0 * 2.0f32.powi(-24)); |
1414 | |
1415 | assert_eq!(f16::from_bits(0x0000_0001), f16::from_f32(2.0f32.powi(-24))); |
1416 | assert_eq!( |
1417 | f16::from_bits(0x0000_0005), |
1418 | f16::from_f32(5.0 * 2.0f32.powi(-24)) |
1419 | ); |
1420 | } |
1421 | |
1422 | #[test] |
1423 | fn test_f16_to_f64() { |
1424 | let f = f16::from_f64(7.0); |
1425 | assert_eq!(f.to_f64(), 7.0f64); |
1426 | |
1427 | // 7.1 is NOT exactly representable in 16-bit, it's rounded |
1428 | let f = f16::from_f64(7.1); |
1429 | let diff = (f.to_f64() - 7.1f64).abs(); |
1430 | // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1 |
1431 | assert!(diff <= 4.0 * f16::EPSILON.to_f64()); |
1432 | |
1433 | assert_eq!(f16::from_bits(0x0000_0001).to_f64(), 2.0f64.powi(-24)); |
1434 | assert_eq!(f16::from_bits(0x0000_0005).to_f64(), 5.0 * 2.0f64.powi(-24)); |
1435 | |
1436 | assert_eq!(f16::from_bits(0x0000_0001), f16::from_f64(2.0f64.powi(-24))); |
1437 | assert_eq!( |
1438 | f16::from_bits(0x0000_0005), |
1439 | f16::from_f64(5.0 * 2.0f64.powi(-24)) |
1440 | ); |
1441 | } |
1442 | |
1443 | #[test] |
1444 | fn test_comparisons() { |
1445 | let zero = f16::from_f64(0.0); |
1446 | let one = f16::from_f64(1.0); |
1447 | let neg_zero = f16::from_f64(-0.0); |
1448 | let neg_one = f16::from_f64(-1.0); |
1449 | |
1450 | assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal)); |
1451 | assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal)); |
1452 | assert!(zero == neg_zero); |
1453 | assert!(neg_zero == zero); |
1454 | assert!(!(zero != neg_zero)); |
1455 | assert!(!(neg_zero != zero)); |
1456 | assert!(!(zero < neg_zero)); |
1457 | assert!(!(neg_zero < zero)); |
1458 | assert!(zero <= neg_zero); |
1459 | assert!(neg_zero <= zero); |
1460 | assert!(!(zero > neg_zero)); |
1461 | assert!(!(neg_zero > zero)); |
1462 | assert!(zero >= neg_zero); |
1463 | assert!(neg_zero >= zero); |
1464 | |
1465 | assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater)); |
1466 | assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less)); |
1467 | assert!(!(one == neg_zero)); |
1468 | assert!(!(neg_zero == one)); |
1469 | assert!(one != neg_zero); |
1470 | assert!(neg_zero != one); |
1471 | assert!(!(one < neg_zero)); |
1472 | assert!(neg_zero < one); |
1473 | assert!(!(one <= neg_zero)); |
1474 | assert!(neg_zero <= one); |
1475 | assert!(one > neg_zero); |
1476 | assert!(!(neg_zero > one)); |
1477 | assert!(one >= neg_zero); |
1478 | assert!(!(neg_zero >= one)); |
1479 | |
1480 | assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater)); |
1481 | assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less)); |
1482 | assert!(!(one == neg_one)); |
1483 | assert!(!(neg_one == one)); |
1484 | assert!(one != neg_one); |
1485 | assert!(neg_one != one); |
1486 | assert!(!(one < neg_one)); |
1487 | assert!(neg_one < one); |
1488 | assert!(!(one <= neg_one)); |
1489 | assert!(neg_one <= one); |
1490 | assert!(one > neg_one); |
1491 | assert!(!(neg_one > one)); |
1492 | assert!(one >= neg_one); |
1493 | assert!(!(neg_one >= one)); |
1494 | } |
1495 | |
1496 | #[test] |
1497 | #[allow (clippy::erasing_op, clippy::identity_op)] |
1498 | fn round_to_even_f32() { |
1499 | // smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24 |
1500 | let min_sub = f16::from_bits(1); |
1501 | let min_sub_f = (-24f32).exp2(); |
1502 | assert_eq!(f16::from_f32(min_sub_f).to_bits(), min_sub.to_bits()); |
1503 | assert_eq!(f32::from(min_sub).to_bits(), min_sub_f.to_bits()); |
1504 | |
1505 | // 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding) |
1506 | // 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even) |
1507 | // 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up) |
1508 | assert_eq!( |
1509 | f16::from_f32(min_sub_f * 0.49).to_bits(), |
1510 | min_sub.to_bits() * 0 |
1511 | ); |
1512 | assert_eq!( |
1513 | f16::from_f32(min_sub_f * 0.50).to_bits(), |
1514 | min_sub.to_bits() * 0 |
1515 | ); |
1516 | assert_eq!( |
1517 | f16::from_f32(min_sub_f * 0.51).to_bits(), |
1518 | min_sub.to_bits() * 1 |
1519 | ); |
1520 | |
1521 | // 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding) |
1522 | // 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even) |
1523 | // 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up) |
1524 | assert_eq!( |
1525 | f16::from_f32(min_sub_f * 1.49).to_bits(), |
1526 | min_sub.to_bits() * 1 |
1527 | ); |
1528 | assert_eq!( |
1529 | f16::from_f32(min_sub_f * 1.50).to_bits(), |
1530 | min_sub.to_bits() * 2 |
1531 | ); |
1532 | assert_eq!( |
1533 | f16::from_f32(min_sub_f * 1.51).to_bits(), |
1534 | min_sub.to_bits() * 2 |
1535 | ); |
1536 | |
1537 | // 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding) |
1538 | // 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even) |
1539 | // 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up) |
1540 | assert_eq!( |
1541 | f16::from_f32(min_sub_f * 2.49).to_bits(), |
1542 | min_sub.to_bits() * 2 |
1543 | ); |
1544 | assert_eq!( |
1545 | f16::from_f32(min_sub_f * 2.50).to_bits(), |
1546 | min_sub.to_bits() * 2 |
1547 | ); |
1548 | assert_eq!( |
1549 | f16::from_f32(min_sub_f * 2.51).to_bits(), |
1550 | min_sub.to_bits() * 3 |
1551 | ); |
1552 | |
1553 | assert_eq!( |
1554 | f16::from_f32(2000.49f32).to_bits(), |
1555 | f16::from_f32(2000.0).to_bits() |
1556 | ); |
1557 | assert_eq!( |
1558 | f16::from_f32(2000.50f32).to_bits(), |
1559 | f16::from_f32(2000.0).to_bits() |
1560 | ); |
1561 | assert_eq!( |
1562 | f16::from_f32(2000.51f32).to_bits(), |
1563 | f16::from_f32(2001.0).to_bits() |
1564 | ); |
1565 | assert_eq!( |
1566 | f16::from_f32(2001.49f32).to_bits(), |
1567 | f16::from_f32(2001.0).to_bits() |
1568 | ); |
1569 | assert_eq!( |
1570 | f16::from_f32(2001.50f32).to_bits(), |
1571 | f16::from_f32(2002.0).to_bits() |
1572 | ); |
1573 | assert_eq!( |
1574 | f16::from_f32(2001.51f32).to_bits(), |
1575 | f16::from_f32(2002.0).to_bits() |
1576 | ); |
1577 | assert_eq!( |
1578 | f16::from_f32(2002.49f32).to_bits(), |
1579 | f16::from_f32(2002.0).to_bits() |
1580 | ); |
1581 | assert_eq!( |
1582 | f16::from_f32(2002.50f32).to_bits(), |
1583 | f16::from_f32(2002.0).to_bits() |
1584 | ); |
1585 | assert_eq!( |
1586 | f16::from_f32(2002.51f32).to_bits(), |
1587 | f16::from_f32(2003.0).to_bits() |
1588 | ); |
1589 | } |
1590 | |
1591 | #[test] |
1592 | #[allow (clippy::erasing_op, clippy::identity_op)] |
1593 | fn round_to_even_f64() { |
1594 | // smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24 |
1595 | let min_sub = f16::from_bits(1); |
1596 | let min_sub_f = (-24f64).exp2(); |
1597 | assert_eq!(f16::from_f64(min_sub_f).to_bits(), min_sub.to_bits()); |
1598 | assert_eq!(f64::from(min_sub).to_bits(), min_sub_f.to_bits()); |
1599 | |
1600 | // 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding) |
1601 | // 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even) |
1602 | // 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up) |
1603 | assert_eq!( |
1604 | f16::from_f64(min_sub_f * 0.49).to_bits(), |
1605 | min_sub.to_bits() * 0 |
1606 | ); |
1607 | assert_eq!( |
1608 | f16::from_f64(min_sub_f * 0.50).to_bits(), |
1609 | min_sub.to_bits() * 0 |
1610 | ); |
1611 | assert_eq!( |
1612 | f16::from_f64(min_sub_f * 0.51).to_bits(), |
1613 | min_sub.to_bits() * 1 |
1614 | ); |
1615 | |
1616 | // 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding) |
1617 | // 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even) |
1618 | // 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up) |
1619 | assert_eq!( |
1620 | f16::from_f64(min_sub_f * 1.49).to_bits(), |
1621 | min_sub.to_bits() * 1 |
1622 | ); |
1623 | assert_eq!( |
1624 | f16::from_f64(min_sub_f * 1.50).to_bits(), |
1625 | min_sub.to_bits() * 2 |
1626 | ); |
1627 | assert_eq!( |
1628 | f16::from_f64(min_sub_f * 1.51).to_bits(), |
1629 | min_sub.to_bits() * 2 |
1630 | ); |
1631 | |
1632 | // 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding) |
1633 | // 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even) |
1634 | // 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up) |
1635 | assert_eq!( |
1636 | f16::from_f64(min_sub_f * 2.49).to_bits(), |
1637 | min_sub.to_bits() * 2 |
1638 | ); |
1639 | assert_eq!( |
1640 | f16::from_f64(min_sub_f * 2.50).to_bits(), |
1641 | min_sub.to_bits() * 2 |
1642 | ); |
1643 | assert_eq!( |
1644 | f16::from_f64(min_sub_f * 2.51).to_bits(), |
1645 | min_sub.to_bits() * 3 |
1646 | ); |
1647 | |
1648 | assert_eq!( |
1649 | f16::from_f64(2000.49f64).to_bits(), |
1650 | f16::from_f64(2000.0).to_bits() |
1651 | ); |
1652 | assert_eq!( |
1653 | f16::from_f64(2000.50f64).to_bits(), |
1654 | f16::from_f64(2000.0).to_bits() |
1655 | ); |
1656 | assert_eq!( |
1657 | f16::from_f64(2000.51f64).to_bits(), |
1658 | f16::from_f64(2001.0).to_bits() |
1659 | ); |
1660 | assert_eq!( |
1661 | f16::from_f64(2001.49f64).to_bits(), |
1662 | f16::from_f64(2001.0).to_bits() |
1663 | ); |
1664 | assert_eq!( |
1665 | f16::from_f64(2001.50f64).to_bits(), |
1666 | f16::from_f64(2002.0).to_bits() |
1667 | ); |
1668 | assert_eq!( |
1669 | f16::from_f64(2001.51f64).to_bits(), |
1670 | f16::from_f64(2002.0).to_bits() |
1671 | ); |
1672 | assert_eq!( |
1673 | f16::from_f64(2002.49f64).to_bits(), |
1674 | f16::from_f64(2002.0).to_bits() |
1675 | ); |
1676 | assert_eq!( |
1677 | f16::from_f64(2002.50f64).to_bits(), |
1678 | f16::from_f64(2002.0).to_bits() |
1679 | ); |
1680 | assert_eq!( |
1681 | f16::from_f64(2002.51f64).to_bits(), |
1682 | f16::from_f64(2003.0).to_bits() |
1683 | ); |
1684 | } |
1685 | |
1686 | impl quickcheck::Arbitrary for f16 { |
1687 | fn arbitrary(g: &mut quickcheck::Gen) -> Self { |
1688 | f16(u16::arbitrary(g)) |
1689 | } |
1690 | } |
1691 | |
1692 | #[quickcheck ] |
1693 | fn qc_roundtrip_f16_f32_is_identity(f: f16) -> bool { |
1694 | let roundtrip = f16::from_f32(f.to_f32()); |
1695 | if f.is_nan() { |
1696 | roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative() |
1697 | } else { |
1698 | f.0 == roundtrip.0 |
1699 | } |
1700 | } |
1701 | |
1702 | #[quickcheck ] |
1703 | fn qc_roundtrip_f16_f64_is_identity(f: f16) -> bool { |
1704 | let roundtrip = f16::from_f64(f.to_f64()); |
1705 | if f.is_nan() { |
1706 | roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative() |
1707 | } else { |
1708 | f.0 == roundtrip.0 |
1709 | } |
1710 | } |
1711 | } |
1712 | |