1 | //! Licensed under the Apache License, Version 2.0 |
2 | //! <https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
3 | //! <https://opensource.org/licenses/MIT>, at your |
4 | //! option. This file may not be copied, modified, or distributed |
5 | //! except according to those terms. |
6 | |
7 | mod coalesce; |
8 | mod map; |
9 | mod multi_product; |
10 | pub use self::coalesce::*; |
11 | pub use self::map::{map_into, map_ok, MapInto, MapOk}; |
12 | #[allow (deprecated)] |
13 | pub use self::map::MapResults; |
14 | #[cfg (feature = "use_alloc" )] |
15 | pub use self::multi_product::*; |
16 | |
17 | use std::fmt; |
18 | use std::iter::{Fuse, Peekable, FromIterator, FusedIterator}; |
19 | use std::marker::PhantomData; |
20 | use crate::size_hint; |
21 | |
22 | /// An iterator adaptor that alternates elements from two iterators until both |
23 | /// run out. |
24 | /// |
25 | /// This iterator is *fused*. |
26 | /// |
27 | /// See [`.interleave()`](crate::Itertools::interleave) for more information. |
28 | #[derive(Clone, Debug)] |
29 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
30 | pub struct Interleave<I, J> { |
31 | a: Fuse<I>, |
32 | b: Fuse<J>, |
33 | flag: bool, |
34 | } |
35 | |
36 | /// Create an iterator that interleaves elements in `i` and `j`. |
37 | /// |
38 | /// [`IntoIterator`] enabled version of `[Itertools::interleave]`. |
39 | pub fn interleave<I, J>(i: I, j: J) -> Interleave<<I as IntoIterator>::IntoIter, <J as IntoIterator>::IntoIter> |
40 | where I: IntoIterator, |
41 | J: IntoIterator<Item = I::Item> |
42 | { |
43 | Interleave { |
44 | a: i.into_iter().fuse(), |
45 | b: j.into_iter().fuse(), |
46 | flag: false, |
47 | } |
48 | } |
49 | |
50 | impl<I, J> Iterator for Interleave<I, J> |
51 | where I: Iterator, |
52 | J: Iterator<Item = I::Item> |
53 | { |
54 | type Item = I::Item; |
55 | #[inline ] |
56 | fn next(&mut self) -> Option<Self::Item> { |
57 | self.flag = !self.flag; |
58 | if self.flag { |
59 | match self.a.next() { |
60 | None => self.b.next(), |
61 | r => r, |
62 | } |
63 | } else { |
64 | match self.b.next() { |
65 | None => self.a.next(), |
66 | r => r, |
67 | } |
68 | } |
69 | } |
70 | |
71 | fn size_hint(&self) -> (usize, Option<usize>) { |
72 | size_hint::add(self.a.size_hint(), self.b.size_hint()) |
73 | } |
74 | } |
75 | |
76 | impl<I, J> FusedIterator for Interleave<I, J> |
77 | where I: Iterator, |
78 | J: Iterator<Item = I::Item> |
79 | {} |
80 | |
81 | /// An iterator adaptor that alternates elements from the two iterators until |
82 | /// one of them runs out. |
83 | /// |
84 | /// This iterator is *fused*. |
85 | /// |
86 | /// See [`.interleave_shortest()`](crate::Itertools::interleave_shortest) |
87 | /// for more information. |
88 | #[derive(Clone, Debug)] |
89 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
90 | pub struct InterleaveShortest<I, J> |
91 | where I: Iterator, |
92 | J: Iterator<Item = I::Item> |
93 | { |
94 | it0: I, |
95 | it1: J, |
96 | phase: bool, // false ==> it0, true ==> it1 |
97 | } |
98 | |
99 | /// Create a new `InterleaveShortest` iterator. |
100 | pub fn interleave_shortest<I, J>(a: I, b: J) -> InterleaveShortest<I, J> |
101 | where I: Iterator, |
102 | J: Iterator<Item = I::Item> |
103 | { |
104 | InterleaveShortest { |
105 | it0: a, |
106 | it1: b, |
107 | phase: false, |
108 | } |
109 | } |
110 | |
111 | impl<I, J> Iterator for InterleaveShortest<I, J> |
112 | where I: Iterator, |
113 | J: Iterator<Item = I::Item> |
114 | { |
115 | type Item = I::Item; |
116 | |
117 | #[inline ] |
118 | fn next(&mut self) -> Option<Self::Item> { |
119 | let e = if self.phase { self.it1.next() } else { self.it0.next() }; |
120 | if e.is_some() { |
121 | self.phase = !self.phase; |
122 | } |
123 | e |
124 | } |
125 | |
126 | #[inline ] |
127 | fn size_hint(&self) -> (usize, Option<usize>) { |
128 | let (curr_hint, next_hint) = { |
129 | let it0_hint = self.it0.size_hint(); |
130 | let it1_hint = self.it1.size_hint(); |
131 | if self.phase { |
132 | (it1_hint, it0_hint) |
133 | } else { |
134 | (it0_hint, it1_hint) |
135 | } |
136 | }; |
137 | let (curr_lower, curr_upper) = curr_hint; |
138 | let (next_lower, next_upper) = next_hint; |
139 | let (combined_lower, combined_upper) = |
140 | size_hint::mul_scalar(size_hint::min(curr_hint, next_hint), 2); |
141 | let lower = |
142 | if curr_lower > next_lower { |
143 | combined_lower + 1 |
144 | } else { |
145 | combined_lower |
146 | }; |
147 | let upper = { |
148 | let extra_elem = match (curr_upper, next_upper) { |
149 | (_, None) => false, |
150 | (None, Some(_)) => true, |
151 | (Some(curr_max), Some(next_max)) => curr_max > next_max, |
152 | }; |
153 | if extra_elem { |
154 | combined_upper.and_then(|x| x.checked_add(1)) |
155 | } else { |
156 | combined_upper |
157 | } |
158 | }; |
159 | (lower, upper) |
160 | } |
161 | } |
162 | |
163 | impl<I, J> FusedIterator for InterleaveShortest<I, J> |
164 | where I: FusedIterator, |
165 | J: FusedIterator<Item = I::Item> |
166 | {} |
167 | |
168 | #[derive(Clone, Debug)] |
169 | /// An iterator adaptor that allows putting back a single |
170 | /// item to the front of the iterator. |
171 | /// |
172 | /// Iterator element type is `I::Item`. |
173 | pub struct PutBack<I> |
174 | where I: Iterator |
175 | { |
176 | top: Option<I::Item>, |
177 | iter: I, |
178 | } |
179 | |
180 | /// Create an iterator where you can put back a single item |
181 | pub fn put_back<I>(iterable: I) -> PutBack<I::IntoIter> |
182 | where I: IntoIterator |
183 | { |
184 | PutBack { |
185 | top: None, |
186 | iter: iterable.into_iter(), |
187 | } |
188 | } |
189 | |
190 | impl<I> PutBack<I> |
191 | where I: Iterator |
192 | { |
193 | /// put back value `value` (builder method) |
194 | pub fn with_value(mut self, value: I::Item) -> Self { |
195 | self.put_back(value); |
196 | self |
197 | } |
198 | |
199 | /// Split the `PutBack` into its parts. |
200 | #[inline ] |
201 | pub fn into_parts(self) -> (Option<I::Item>, I) { |
202 | let PutBack{top, iter} = self; |
203 | (top, iter) |
204 | } |
205 | |
206 | /// Put back a single value to the front of the iterator. |
207 | /// |
208 | /// If a value is already in the put back slot, it is overwritten. |
209 | #[inline ] |
210 | pub fn put_back(&mut self, x: I::Item) { |
211 | self.top = Some(x); |
212 | } |
213 | } |
214 | |
215 | impl<I> Iterator for PutBack<I> |
216 | where I: Iterator |
217 | { |
218 | type Item = I::Item; |
219 | #[inline ] |
220 | fn next(&mut self) -> Option<Self::Item> { |
221 | match self.top { |
222 | None => self.iter.next(), |
223 | ref mut some => some.take(), |
224 | } |
225 | } |
226 | #[inline ] |
227 | fn size_hint(&self) -> (usize, Option<usize>) { |
228 | // Not ExactSizeIterator because size may be larger than usize |
229 | size_hint::add_scalar(self.iter.size_hint(), self.top.is_some() as usize) |
230 | } |
231 | |
232 | fn count(self) -> usize { |
233 | self.iter.count() + (self.top.is_some() as usize) |
234 | } |
235 | |
236 | fn last(self) -> Option<Self::Item> { |
237 | self.iter.last().or(self.top) |
238 | } |
239 | |
240 | fn nth(&mut self, n: usize) -> Option<Self::Item> { |
241 | match self.top { |
242 | None => self.iter.nth(n), |
243 | ref mut some => { |
244 | if n == 0 { |
245 | some.take() |
246 | } else { |
247 | *some = None; |
248 | self.iter.nth(n - 1) |
249 | } |
250 | } |
251 | } |
252 | } |
253 | |
254 | fn all<G>(&mut self, mut f: G) -> bool |
255 | where G: FnMut(Self::Item) -> bool |
256 | { |
257 | if let Some(elt) = self.top.take() { |
258 | if !f(elt) { |
259 | return false; |
260 | } |
261 | } |
262 | self.iter.all(f) |
263 | } |
264 | |
265 | fn fold<Acc, G>(mut self, init: Acc, mut f: G) -> Acc |
266 | where G: FnMut(Acc, Self::Item) -> Acc, |
267 | { |
268 | let mut accum = init; |
269 | if let Some(elt) = self.top.take() { |
270 | accum = f(accum, elt); |
271 | } |
272 | self.iter.fold(accum, f) |
273 | } |
274 | } |
275 | |
276 | #[derive(Debug, Clone)] |
277 | /// An iterator adaptor that iterates over the cartesian product of |
278 | /// the element sets of two iterators `I` and `J`. |
279 | /// |
280 | /// Iterator element type is `(I::Item, J::Item)`. |
281 | /// |
282 | /// See [`.cartesian_product()`](crate::Itertools::cartesian_product) for more information. |
283 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
284 | pub struct Product<I, J> |
285 | where I: Iterator |
286 | { |
287 | a: I, |
288 | a_cur: Option<I::Item>, |
289 | b: J, |
290 | b_orig: J, |
291 | } |
292 | |
293 | /// Create a new cartesian product iterator |
294 | /// |
295 | /// Iterator element type is `(I::Item, J::Item)`. |
296 | pub fn cartesian_product<I, J>(mut i: I, j: J) -> Product<I, J> |
297 | where I: Iterator, |
298 | J: Clone + Iterator, |
299 | I::Item: Clone |
300 | { |
301 | Product { |
302 | a_cur: i.next(), |
303 | a: i, |
304 | b: j.clone(), |
305 | b_orig: j, |
306 | } |
307 | } |
308 | |
309 | impl<I, J> Iterator for Product<I, J> |
310 | where I: Iterator, |
311 | J: Clone + Iterator, |
312 | I::Item: Clone |
313 | { |
314 | type Item = (I::Item, J::Item); |
315 | |
316 | fn next(&mut self) -> Option<Self::Item> { |
317 | let elt_b = match self.b.next() { |
318 | None => { |
319 | self.b = self.b_orig.clone(); |
320 | match self.b.next() { |
321 | None => return None, |
322 | Some(x) => { |
323 | self.a_cur = self.a.next(); |
324 | x |
325 | } |
326 | } |
327 | } |
328 | Some(x) => x |
329 | }; |
330 | self.a_cur.as_ref().map(|a| (a.clone(), elt_b)) |
331 | } |
332 | |
333 | fn size_hint(&self) -> (usize, Option<usize>) { |
334 | let has_cur = self.a_cur.is_some() as usize; |
335 | // Not ExactSizeIterator because size may be larger than usize |
336 | let (b_min, b_max) = self.b.size_hint(); |
337 | |
338 | // Compute a * b_orig + b for both lower and upper bound |
339 | size_hint::add( |
340 | size_hint::mul(self.a.size_hint(), self.b_orig.size_hint()), |
341 | (b_min * has_cur, b_max.map(move |x| x * has_cur))) |
342 | } |
343 | |
344 | fn fold<Acc, G>(mut self, mut accum: Acc, mut f: G) -> Acc |
345 | where G: FnMut(Acc, Self::Item) -> Acc, |
346 | { |
347 | // use a split loop to handle the loose a_cur as well as avoiding to |
348 | // clone b_orig at the end. |
349 | if let Some(mut a) = self.a_cur.take() { |
350 | let mut b = self.b; |
351 | loop { |
352 | accum = b.fold(accum, |acc, elt| f(acc, (a.clone(), elt))); |
353 | |
354 | // we can only continue iterating a if we had a first element; |
355 | if let Some(next_a) = self.a.next() { |
356 | b = self.b_orig.clone(); |
357 | a = next_a; |
358 | } else { |
359 | break; |
360 | } |
361 | } |
362 | } |
363 | accum |
364 | } |
365 | } |
366 | |
367 | impl<I, J> FusedIterator for Product<I, J> |
368 | where I: FusedIterator, |
369 | J: Clone + FusedIterator, |
370 | I::Item: Clone |
371 | {} |
372 | |
373 | /// A “meta iterator adaptor”. Its closure receives a reference to the iterator |
374 | /// and may pick off as many elements as it likes, to produce the next iterator element. |
375 | /// |
376 | /// Iterator element type is *X*, if the return type of `F` is *Option\<X\>*. |
377 | /// |
378 | /// See [`.batching()`](crate::Itertools::batching) for more information. |
379 | #[derive(Clone)] |
380 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
381 | pub struct Batching<I, F> { |
382 | f: F, |
383 | iter: I, |
384 | } |
385 | |
386 | impl<I, F> fmt::Debug for Batching<I, F> where I: fmt::Debug { |
387 | debug_fmt_fields!(Batching, iter); |
388 | } |
389 | |
390 | /// Create a new Batching iterator. |
391 | pub fn batching<I, F>(iter: I, f: F) -> Batching<I, F> { |
392 | Batching { f, iter } |
393 | } |
394 | |
395 | impl<B, F, I> Iterator for Batching<I, F> |
396 | where I: Iterator, |
397 | F: FnMut(&mut I) -> Option<B> |
398 | { |
399 | type Item = B; |
400 | #[inline ] |
401 | fn next(&mut self) -> Option<Self::Item> { |
402 | (self.f)(&mut self.iter) |
403 | } |
404 | } |
405 | |
406 | /// An iterator adaptor that steps a number elements in the base iterator |
407 | /// for each iteration. |
408 | /// |
409 | /// The iterator steps by yielding the next element from the base iterator, |
410 | /// then skipping forward *n-1* elements. |
411 | /// |
412 | /// See [`.step()`](crate::Itertools::step) for more information. |
413 | #[deprecated (note="Use std .step_by() instead" , since="0.8.0" )] |
414 | #[allow (deprecated)] |
415 | #[derive(Clone, Debug)] |
416 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
417 | pub struct Step<I> { |
418 | iter: Fuse<I>, |
419 | skip: usize, |
420 | } |
421 | |
422 | /// Create a `Step` iterator. |
423 | /// |
424 | /// **Panics** if the step is 0. |
425 | #[allow (deprecated)] |
426 | pub fn step<I>(iter: I, step: usize) -> Step<I> |
427 | where I: Iterator |
428 | { |
429 | assert!(step != 0); |
430 | Step { |
431 | iter: iter.fuse(), |
432 | skip: step - 1, |
433 | } |
434 | } |
435 | |
436 | #[allow (deprecated)] |
437 | impl<I> Iterator for Step<I> |
438 | where I: Iterator |
439 | { |
440 | type Item = I::Item; |
441 | #[inline ] |
442 | fn next(&mut self) -> Option<Self::Item> { |
443 | let elt = self.iter.next(); |
444 | if self.skip > 0 { |
445 | self.iter.nth(self.skip - 1); |
446 | } |
447 | elt |
448 | } |
449 | |
450 | fn size_hint(&self) -> (usize, Option<usize>) { |
451 | let (low, high) = self.iter.size_hint(); |
452 | let div = |x: usize| { |
453 | if x == 0 { |
454 | 0 |
455 | } else { |
456 | 1 + (x - 1) / (self.skip + 1) |
457 | } |
458 | }; |
459 | (div(low), high.map(div)) |
460 | } |
461 | } |
462 | |
463 | // known size |
464 | #[allow (deprecated)] |
465 | impl<I> ExactSizeIterator for Step<I> |
466 | where I: ExactSizeIterator |
467 | {} |
468 | |
469 | pub trait MergePredicate<T> { |
470 | fn merge_pred(&mut self, a: &T, b: &T) -> bool; |
471 | } |
472 | |
473 | #[derive(Clone, Debug)] |
474 | pub struct MergeLte; |
475 | |
476 | impl<T: PartialOrd> MergePredicate<T> for MergeLte { |
477 | fn merge_pred(&mut self, a: &T, b: &T) -> bool { |
478 | a <= b |
479 | } |
480 | } |
481 | |
482 | /// An iterator adaptor that merges the two base iterators in ascending order. |
483 | /// If both base iterators are sorted (ascending), the result is sorted. |
484 | /// |
485 | /// Iterator element type is `I::Item`. |
486 | /// |
487 | /// See [`.merge()`](crate::Itertools::merge_by) for more information. |
488 | pub type Merge<I, J> = MergeBy<I, J, MergeLte>; |
489 | |
490 | /// Create an iterator that merges elements in `i` and `j`. |
491 | /// |
492 | /// [`IntoIterator`] enabled version of [`Itertools::merge`](crate::Itertools::merge). |
493 | /// |
494 | /// ``` |
495 | /// use itertools::merge; |
496 | /// |
497 | /// for elt in merge(&[1, 2, 3], &[2, 3, 4]) { |
498 | /// /* loop body */ |
499 | /// } |
500 | /// ``` |
501 | pub fn merge<I, J>(i: I, j: J) -> Merge<<I as IntoIterator>::IntoIter, <J as IntoIterator>::IntoIter> |
502 | where I: IntoIterator, |
503 | J: IntoIterator<Item = I::Item>, |
504 | I::Item: PartialOrd |
505 | { |
506 | merge_by_new(i, j, MergeLte) |
507 | } |
508 | |
509 | /// An iterator adaptor that merges the two base iterators in ascending order. |
510 | /// If both base iterators are sorted (ascending), the result is sorted. |
511 | /// |
512 | /// Iterator element type is `I::Item`. |
513 | /// |
514 | /// See [`.merge_by()`](crate::Itertools::merge_by) for more information. |
515 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
516 | pub struct MergeBy<I, J, F> |
517 | where I: Iterator, |
518 | J: Iterator<Item = I::Item> |
519 | { |
520 | a: Peekable<I>, |
521 | b: Peekable<J>, |
522 | fused: Option<bool>, |
523 | cmp: F, |
524 | } |
525 | |
526 | impl<I, J, F> fmt::Debug for MergeBy<I, J, F> |
527 | where I: Iterator + fmt::Debug, J: Iterator<Item = I::Item> + fmt::Debug, |
528 | I::Item: fmt::Debug, |
529 | { |
530 | debug_fmt_fields!(MergeBy, a, b); |
531 | } |
532 | |
533 | impl<T, F: FnMut(&T, &T)->bool> MergePredicate<T> for F { |
534 | fn merge_pred(&mut self, a: &T, b: &T) -> bool { |
535 | self(a, b) |
536 | } |
537 | } |
538 | |
539 | /// Create a `MergeBy` iterator. |
540 | pub fn merge_by_new<I, J, F>(a: I, b: J, cmp: F) -> MergeBy<I::IntoIter, J::IntoIter, F> |
541 | where I: IntoIterator, |
542 | J: IntoIterator<Item = I::Item>, |
543 | F: MergePredicate<I::Item>, |
544 | { |
545 | MergeBy { |
546 | a: a.into_iter().peekable(), |
547 | b: b.into_iter().peekable(), |
548 | fused: None, |
549 | cmp, |
550 | } |
551 | } |
552 | |
553 | impl<I, J, F> Clone for MergeBy<I, J, F> |
554 | where I: Iterator, |
555 | J: Iterator<Item = I::Item>, |
556 | Peekable<I>: Clone, |
557 | Peekable<J>: Clone, |
558 | F: Clone |
559 | { |
560 | clone_fields!(a, b, fused, cmp); |
561 | } |
562 | |
563 | impl<I, J, F> Iterator for MergeBy<I, J, F> |
564 | where I: Iterator, |
565 | J: Iterator<Item = I::Item>, |
566 | F: MergePredicate<I::Item> |
567 | { |
568 | type Item = I::Item; |
569 | |
570 | fn next(&mut self) -> Option<Self::Item> { |
571 | let less_than = match self.fused { |
572 | Some(lt) => lt, |
573 | None => match (self.a.peek(), self.b.peek()) { |
574 | (Some(a), Some(b)) => self.cmp.merge_pred(a, b), |
575 | (Some(_), None) => { |
576 | self.fused = Some(true); |
577 | true |
578 | } |
579 | (None, Some(_)) => { |
580 | self.fused = Some(false); |
581 | false |
582 | } |
583 | (None, None) => return None, |
584 | } |
585 | }; |
586 | if less_than { |
587 | self.a.next() |
588 | } else { |
589 | self.b.next() |
590 | } |
591 | } |
592 | |
593 | fn size_hint(&self) -> (usize, Option<usize>) { |
594 | // Not ExactSizeIterator because size may be larger than usize |
595 | size_hint::add(self.a.size_hint(), self.b.size_hint()) |
596 | } |
597 | } |
598 | |
599 | impl<I, J, F> FusedIterator for MergeBy<I, J, F> |
600 | where I: FusedIterator, |
601 | J: FusedIterator<Item = I::Item>, |
602 | F: MergePredicate<I::Item> |
603 | {} |
604 | |
605 | /// An iterator adaptor that borrows from a `Clone`-able iterator |
606 | /// to only pick off elements while the predicate returns `true`. |
607 | /// |
608 | /// See [`.take_while_ref()`](crate::Itertools::take_while_ref) for more information. |
609 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
610 | pub struct TakeWhileRef<'a, I: 'a, F> { |
611 | iter: &'a mut I, |
612 | f: F, |
613 | } |
614 | |
615 | impl<'a, I, F> fmt::Debug for TakeWhileRef<'a, I, F> |
616 | where I: Iterator + fmt::Debug, |
617 | { |
618 | debug_fmt_fields!(TakeWhileRef, iter); |
619 | } |
620 | |
621 | /// Create a new `TakeWhileRef` from a reference to clonable iterator. |
622 | pub fn take_while_ref<I, F>(iter: &mut I, f: F) -> TakeWhileRef<I, F> |
623 | where I: Iterator + Clone |
624 | { |
625 | TakeWhileRef { iter, f } |
626 | } |
627 | |
628 | impl<'a, I, F> Iterator for TakeWhileRef<'a, I, F> |
629 | where I: Iterator + Clone, |
630 | F: FnMut(&I::Item) -> bool |
631 | { |
632 | type Item = I::Item; |
633 | |
634 | fn next(&mut self) -> Option<Self::Item> { |
635 | let old = self.iter.clone(); |
636 | match self.iter.next() { |
637 | None => None, |
638 | Some(elt) => { |
639 | if (self.f)(&elt) { |
640 | Some(elt) |
641 | } else { |
642 | *self.iter = old; |
643 | None |
644 | } |
645 | } |
646 | } |
647 | } |
648 | |
649 | fn size_hint(&self) -> (usize, Option<usize>) { |
650 | (0, self.iter.size_hint().1) |
651 | } |
652 | } |
653 | |
654 | /// An iterator adaptor that filters `Option<A>` iterator elements |
655 | /// and produces `A`. Stops on the first `None` encountered. |
656 | /// |
657 | /// See [`.while_some()`](crate::Itertools::while_some) for more information. |
658 | #[derive(Clone, Debug)] |
659 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
660 | pub struct WhileSome<I> { |
661 | iter: I, |
662 | } |
663 | |
664 | /// Create a new `WhileSome<I>`. |
665 | pub fn while_some<I>(iter: I) -> WhileSome<I> { |
666 | WhileSome { iter } |
667 | } |
668 | |
669 | impl<I, A> Iterator for WhileSome<I> |
670 | where I: Iterator<Item = Option<A>> |
671 | { |
672 | type Item = A; |
673 | |
674 | fn next(&mut self) -> Option<Self::Item> { |
675 | match self.iter.next() { |
676 | None | Some(None) => None, |
677 | Some(elt) => elt, |
678 | } |
679 | } |
680 | |
681 | fn size_hint(&self) -> (usize, Option<usize>) { |
682 | (0, self.iter.size_hint().1) |
683 | } |
684 | } |
685 | |
686 | /// An iterator to iterate through all combinations in a `Clone`-able iterator that produces tuples |
687 | /// of a specific size. |
688 | /// |
689 | /// See [`.tuple_combinations()`](crate::Itertools::tuple_combinations) for more |
690 | /// information. |
691 | #[derive(Clone, Debug)] |
692 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
693 | pub struct TupleCombinations<I, T> |
694 | where I: Iterator, |
695 | T: HasCombination<I> |
696 | { |
697 | iter: T::Combination, |
698 | _mi: PhantomData<I>, |
699 | } |
700 | |
701 | pub trait HasCombination<I>: Sized { |
702 | type Combination: From<I> + Iterator<Item = Self>; |
703 | } |
704 | |
705 | /// Create a new `TupleCombinations` from a clonable iterator. |
706 | pub fn tuple_combinations<T, I>(iter: I) -> TupleCombinations<I, T> |
707 | where I: Iterator + Clone, |
708 | I::Item: Clone, |
709 | T: HasCombination<I>, |
710 | { |
711 | TupleCombinations { |
712 | iter: T::Combination::from(iter), |
713 | _mi: PhantomData, |
714 | } |
715 | } |
716 | |
717 | impl<I, T> Iterator for TupleCombinations<I, T> |
718 | where I: Iterator, |
719 | T: HasCombination<I>, |
720 | { |
721 | type Item = T; |
722 | |
723 | fn next(&mut self) -> Option<Self::Item> { |
724 | self.iter.next() |
725 | } |
726 | } |
727 | |
728 | impl<I, T> FusedIterator for TupleCombinations<I, T> |
729 | where I: FusedIterator, |
730 | T: HasCombination<I>, |
731 | {} |
732 | |
733 | #[derive(Clone, Debug)] |
734 | pub struct Tuple1Combination<I> { |
735 | iter: I, |
736 | } |
737 | |
738 | impl<I> From<I> for Tuple1Combination<I> { |
739 | fn from(iter: I) -> Self { |
740 | Tuple1Combination { iter } |
741 | } |
742 | } |
743 | |
744 | impl<I: Iterator> Iterator for Tuple1Combination<I> { |
745 | type Item = (I::Item,); |
746 | |
747 | fn next(&mut self) -> Option<Self::Item> { |
748 | self.iter.next().map(|x| (x,)) |
749 | } |
750 | } |
751 | |
752 | impl<I: Iterator> HasCombination<I> for (I::Item,) { |
753 | type Combination = Tuple1Combination<I>; |
754 | } |
755 | |
756 | macro_rules! impl_tuple_combination { |
757 | ($C:ident $P:ident ; $($X:ident)*) => ( |
758 | #[derive(Clone, Debug)] |
759 | pub struct $C<I: Iterator> { |
760 | item: Option<I::Item>, |
761 | iter: I, |
762 | c: $P<I>, |
763 | } |
764 | |
765 | impl<I: Iterator + Clone> From<I> for $C<I> { |
766 | fn from(mut iter: I) -> Self { |
767 | Self { |
768 | item: iter.next(), |
769 | iter: iter.clone(), |
770 | c: iter.into(), |
771 | } |
772 | } |
773 | } |
774 | |
775 | impl<I: Iterator + Clone> From<I> for $C<Fuse<I>> { |
776 | fn from(iter: I) -> Self { |
777 | Self::from(iter.fuse()) |
778 | } |
779 | } |
780 | |
781 | impl<I, A> Iterator for $C<I> |
782 | where I: Iterator<Item = A> + Clone, |
783 | I::Item: Clone |
784 | { |
785 | type Item = (A, $(ignore_ident!($X, A)),*); |
786 | |
787 | fn next(&mut self) -> Option<Self::Item> { |
788 | if let Some(($($X),*,)) = self.c.next() { |
789 | let z = self.item.clone().unwrap(); |
790 | Some((z, $($X),*)) |
791 | } else { |
792 | self.item = self.iter.next(); |
793 | self.item.clone().and_then(|z| { |
794 | self.c = self.iter.clone().into(); |
795 | self.c.next().map(|($($X),*,)| (z, $($X),*)) |
796 | }) |
797 | } |
798 | } |
799 | } |
800 | |
801 | impl<I, A> HasCombination<I> for (A, $(ignore_ident!($X, A)),*) |
802 | where I: Iterator<Item = A> + Clone, |
803 | I::Item: Clone |
804 | { |
805 | type Combination = $C<Fuse<I>>; |
806 | } |
807 | ) |
808 | } |
809 | |
810 | // This snippet generates the twelve `impl_tuple_combination!` invocations: |
811 | // use core::iter; |
812 | // use itertools::Itertools; |
813 | // |
814 | // for i in 2..=12 { |
815 | // println!("impl_tuple_combination!(Tuple{arity}Combination Tuple{prev}Combination; {idents});", |
816 | // arity = i, |
817 | // prev = i - 1, |
818 | // idents = ('a'..'z').take(i - 1).join(" "), |
819 | // ); |
820 | // } |
821 | // It could probably be replaced by a bit more macro cleverness. |
822 | impl_tuple_combination!(Tuple2Combination Tuple1Combination; a); |
823 | impl_tuple_combination!(Tuple3Combination Tuple2Combination; a b); |
824 | impl_tuple_combination!(Tuple4Combination Tuple3Combination; a b c); |
825 | impl_tuple_combination!(Tuple5Combination Tuple4Combination; a b c d); |
826 | impl_tuple_combination!(Tuple6Combination Tuple5Combination; a b c d e); |
827 | impl_tuple_combination!(Tuple7Combination Tuple6Combination; a b c d e f); |
828 | impl_tuple_combination!(Tuple8Combination Tuple7Combination; a b c d e f g); |
829 | impl_tuple_combination!(Tuple9Combination Tuple8Combination; a b c d e f g h); |
830 | impl_tuple_combination!(Tuple10Combination Tuple9Combination; a b c d e f g h i); |
831 | impl_tuple_combination!(Tuple11Combination Tuple10Combination; a b c d e f g h i j); |
832 | impl_tuple_combination!(Tuple12Combination Tuple11Combination; a b c d e f g h i j k); |
833 | |
834 | /// An iterator adapter to filter values within a nested `Result::Ok`. |
835 | /// |
836 | /// See [`.filter_ok()`](crate::Itertools::filter_ok) for more information. |
837 | #[derive(Clone)] |
838 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
839 | pub struct FilterOk<I, F> { |
840 | iter: I, |
841 | f: F |
842 | } |
843 | |
844 | impl<I, F> fmt::Debug for FilterOk<I, F> |
845 | where |
846 | I: fmt::Debug, |
847 | { |
848 | debug_fmt_fields!(FilterOk, iter); |
849 | } |
850 | |
851 | /// Create a new `FilterOk` iterator. |
852 | pub fn filter_ok<I, F, T, E>(iter: I, f: F) -> FilterOk<I, F> |
853 | where I: Iterator<Item = Result<T, E>>, |
854 | F: FnMut(&T) -> bool, |
855 | { |
856 | FilterOk { |
857 | iter, |
858 | f, |
859 | } |
860 | } |
861 | |
862 | impl<I, F, T, E> Iterator for FilterOk<I, F> |
863 | where I: Iterator<Item = Result<T, E>>, |
864 | F: FnMut(&T) -> bool, |
865 | { |
866 | type Item = Result<T, E>; |
867 | |
868 | fn next(&mut self) -> Option<Self::Item> { |
869 | loop { |
870 | match self.iter.next() { |
871 | Some(Ok(v)) => { |
872 | if (self.f)(&v) { |
873 | return Some(Ok(v)); |
874 | } |
875 | }, |
876 | Some(Err(e)) => return Some(Err(e)), |
877 | None => return None, |
878 | } |
879 | } |
880 | } |
881 | |
882 | fn size_hint(&self) -> (usize, Option<usize>) { |
883 | (0, self.iter.size_hint().1) |
884 | } |
885 | |
886 | fn fold<Acc, Fold>(self, init: Acc, fold_f: Fold) -> Acc |
887 | where Fold: FnMut(Acc, Self::Item) -> Acc, |
888 | { |
889 | let mut f = self.f; |
890 | self.iter.filter(|v| { |
891 | v.as_ref().map(&mut f).unwrap_or(true) |
892 | }).fold(init, fold_f) |
893 | } |
894 | |
895 | fn collect<C>(self) -> C |
896 | where C: FromIterator<Self::Item> |
897 | { |
898 | let mut f = self.f; |
899 | self.iter.filter(|v| { |
900 | v.as_ref().map(&mut f).unwrap_or(true) |
901 | }).collect() |
902 | } |
903 | } |
904 | |
905 | impl<I, F, T, E> FusedIterator for FilterOk<I, F> |
906 | where I: FusedIterator<Item = Result<T, E>>, |
907 | F: FnMut(&T) -> bool, |
908 | {} |
909 | |
910 | /// An iterator adapter to filter and apply a transformation on values within a nested `Result::Ok`. |
911 | /// |
912 | /// See [`.filter_map_ok()`](crate::Itertools::filter_map_ok) for more information. |
913 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
914 | pub struct FilterMapOk<I, F> { |
915 | iter: I, |
916 | f: F |
917 | } |
918 | |
919 | impl<I, F> fmt::Debug for FilterMapOk<I, F> |
920 | where |
921 | I: fmt::Debug, |
922 | { |
923 | debug_fmt_fields!(FilterMapOk, iter); |
924 | } |
925 | |
926 | fn transpose_result<T, E>(result: Result<Option<T>, E>) -> Option<Result<T, E>> { |
927 | match result { |
928 | Ok(Some(v)) => Some(Ok(v)), |
929 | Ok(None) => None, |
930 | Err(e) => Some(Err(e)), |
931 | } |
932 | } |
933 | |
934 | /// Create a new `FilterOk` iterator. |
935 | pub fn filter_map_ok<I, F, T, U, E>(iter: I, f: F) -> FilterMapOk<I, F> |
936 | where I: Iterator<Item = Result<T, E>>, |
937 | F: FnMut(T) -> Option<U>, |
938 | { |
939 | FilterMapOk { |
940 | iter, |
941 | f, |
942 | } |
943 | } |
944 | |
945 | impl<I, F, T, U, E> Iterator for FilterMapOk<I, F> |
946 | where I: Iterator<Item = Result<T, E>>, |
947 | F: FnMut(T) -> Option<U>, |
948 | { |
949 | type Item = Result<U, E>; |
950 | |
951 | fn next(&mut self) -> Option<Self::Item> { |
952 | loop { |
953 | match self.iter.next() { |
954 | Some(Ok(v)) => { |
955 | if let Some(v) = (self.f)(v) { |
956 | return Some(Ok(v)); |
957 | } |
958 | }, |
959 | Some(Err(e)) => return Some(Err(e)), |
960 | None => return None, |
961 | } |
962 | } |
963 | } |
964 | |
965 | fn size_hint(&self) -> (usize, Option<usize>) { |
966 | (0, self.iter.size_hint().1) |
967 | } |
968 | |
969 | fn fold<Acc, Fold>(self, init: Acc, fold_f: Fold) -> Acc |
970 | where Fold: FnMut(Acc, Self::Item) -> Acc, |
971 | { |
972 | let mut f = self.f; |
973 | self.iter.filter_map(|v| { |
974 | transpose_result(v.map(&mut f)) |
975 | }).fold(init, fold_f) |
976 | } |
977 | |
978 | fn collect<C>(self) -> C |
979 | where C: FromIterator<Self::Item> |
980 | { |
981 | let mut f = self.f; |
982 | self.iter.filter_map(|v| { |
983 | transpose_result(v.map(&mut f)) |
984 | }).collect() |
985 | } |
986 | } |
987 | |
988 | impl<I, F, T, U, E> FusedIterator for FilterMapOk<I, F> |
989 | where I: FusedIterator<Item = Result<T, E>>, |
990 | F: FnMut(T) -> Option<U>, |
991 | {} |
992 | |
993 | /// An iterator adapter to get the positions of each element that matches a predicate. |
994 | /// |
995 | /// See [`.positions()`](crate::Itertools::positions) for more information. |
996 | #[derive(Clone)] |
997 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
998 | pub struct Positions<I, F> { |
999 | iter: I, |
1000 | f: F, |
1001 | count: usize, |
1002 | } |
1003 | |
1004 | impl<I, F> fmt::Debug for Positions<I, F> |
1005 | where |
1006 | I: fmt::Debug, |
1007 | { |
1008 | debug_fmt_fields!(Positions, iter, count); |
1009 | } |
1010 | |
1011 | /// Create a new `Positions` iterator. |
1012 | pub fn positions<I, F>(iter: I, f: F) -> Positions<I, F> |
1013 | where I: Iterator, |
1014 | F: FnMut(I::Item) -> bool, |
1015 | { |
1016 | Positions { |
1017 | iter, |
1018 | f, |
1019 | count: 0 |
1020 | } |
1021 | } |
1022 | |
1023 | impl<I, F> Iterator for Positions<I, F> |
1024 | where I: Iterator, |
1025 | F: FnMut(I::Item) -> bool, |
1026 | { |
1027 | type Item = usize; |
1028 | |
1029 | fn next(&mut self) -> Option<Self::Item> { |
1030 | while let Some(v) = self.iter.next() { |
1031 | let i = self.count; |
1032 | self.count = i + 1; |
1033 | if (self.f)(v) { |
1034 | return Some(i); |
1035 | } |
1036 | } |
1037 | None |
1038 | } |
1039 | |
1040 | fn size_hint(&self) -> (usize, Option<usize>) { |
1041 | (0, self.iter.size_hint().1) |
1042 | } |
1043 | } |
1044 | |
1045 | impl<I, F> DoubleEndedIterator for Positions<I, F> |
1046 | where I: DoubleEndedIterator + ExactSizeIterator, |
1047 | F: FnMut(I::Item) -> bool, |
1048 | { |
1049 | fn next_back(&mut self) -> Option<Self::Item> { |
1050 | while let Some(v) = self.iter.next_back() { |
1051 | if (self.f)(v) { |
1052 | return Some(self.count + self.iter.len()) |
1053 | } |
1054 | } |
1055 | None |
1056 | } |
1057 | } |
1058 | |
1059 | impl<I, F> FusedIterator for Positions<I, F> |
1060 | where I: FusedIterator, |
1061 | F: FnMut(I::Item) -> bool, |
1062 | {} |
1063 | |
1064 | /// An iterator adapter to apply a mutating function to each element before yielding it. |
1065 | /// |
1066 | /// See [`.update()`](crate::Itertools::update) for more information. |
1067 | #[derive(Clone)] |
1068 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
1069 | pub struct Update<I, F> { |
1070 | iter: I, |
1071 | f: F, |
1072 | } |
1073 | |
1074 | impl<I, F> fmt::Debug for Update<I, F> |
1075 | where |
1076 | I: fmt::Debug, |
1077 | { |
1078 | debug_fmt_fields!(Update, iter); |
1079 | } |
1080 | |
1081 | /// Create a new `Update` iterator. |
1082 | pub fn update<I, F>(iter: I, f: F) -> Update<I, F> |
1083 | where |
1084 | I: Iterator, |
1085 | F: FnMut(&mut I::Item), |
1086 | { |
1087 | Update { iter, f } |
1088 | } |
1089 | |
1090 | impl<I, F> Iterator for Update<I, F> |
1091 | where |
1092 | I: Iterator, |
1093 | F: FnMut(&mut I::Item), |
1094 | { |
1095 | type Item = I::Item; |
1096 | |
1097 | fn next(&mut self) -> Option<Self::Item> { |
1098 | if let Some(mut v) = self.iter.next() { |
1099 | (self.f)(&mut v); |
1100 | Some(v) |
1101 | } else { |
1102 | None |
1103 | } |
1104 | } |
1105 | |
1106 | fn size_hint(&self) -> (usize, Option<usize>) { |
1107 | self.iter.size_hint() |
1108 | } |
1109 | |
1110 | fn fold<Acc, G>(self, init: Acc, mut g: G) -> Acc |
1111 | where G: FnMut(Acc, Self::Item) -> Acc, |
1112 | { |
1113 | let mut f = self.f; |
1114 | self.iter.fold(init, move |acc, mut v| { f(&mut v); g(acc, v) }) |
1115 | } |
1116 | |
1117 | // if possible, re-use inner iterator specializations in collect |
1118 | fn collect<C>(self) -> C |
1119 | where C: FromIterator<Self::Item> |
1120 | { |
1121 | let mut f = self.f; |
1122 | self.iter.map(move |mut v| { f(&mut v); v }).collect() |
1123 | } |
1124 | } |
1125 | |
1126 | impl<I, F> ExactSizeIterator for Update<I, F> |
1127 | where |
1128 | I: ExactSizeIterator, |
1129 | F: FnMut(&mut I::Item), |
1130 | {} |
1131 | |
1132 | impl<I, F> DoubleEndedIterator for Update<I, F> |
1133 | where |
1134 | I: DoubleEndedIterator, |
1135 | F: FnMut(&mut I::Item), |
1136 | { |
1137 | fn next_back(&mut self) -> Option<Self::Item> { |
1138 | if let Some(mut v) = self.iter.next_back() { |
1139 | (self.f)(&mut v); |
1140 | Some(v) |
1141 | } else { |
1142 | None |
1143 | } |
1144 | } |
1145 | } |
1146 | |
1147 | impl<I, F> FusedIterator for Update<I, F> |
1148 | where |
1149 | I: FusedIterator, |
1150 | F: FnMut(&mut I::Item), |
1151 | {} |
1152 | |