1 | |
2 | /// `MinMaxResult` is an enum returned by `minmax`. |
3 | /// |
4 | /// See [`.minmax()`](crate::Itertools::minmax) for more detail. |
5 | #[derive(Copy, Clone, PartialEq, Debug)] |
6 | pub enum MinMaxResult<T> { |
7 | /// Empty iterator |
8 | NoElements, |
9 | |
10 | /// Iterator with one element, so the minimum and maximum are the same |
11 | OneElement(T), |
12 | |
13 | /// More than one element in the iterator, the first element is not larger |
14 | /// than the second |
15 | MinMax(T, T) |
16 | } |
17 | |
18 | impl<T: Clone> MinMaxResult<T> { |
19 | /// `into_option` creates an `Option` of type `(T, T)`. The returned `Option` |
20 | /// has variant `None` if and only if the `MinMaxResult` has variant |
21 | /// `NoElements`. Otherwise `Some((x, y))` is returned where `x <= y`. |
22 | /// If the `MinMaxResult` has variant `OneElement(x)`, performing this |
23 | /// operation will make one clone of `x`. |
24 | /// |
25 | /// # Examples |
26 | /// |
27 | /// ``` |
28 | /// use itertools::MinMaxResult::{self, NoElements, OneElement, MinMax}; |
29 | /// |
30 | /// let r: MinMaxResult<i32> = NoElements; |
31 | /// assert_eq!(r.into_option(), None); |
32 | /// |
33 | /// let r = OneElement(1); |
34 | /// assert_eq!(r.into_option(), Some((1, 1))); |
35 | /// |
36 | /// let r = MinMax(1, 2); |
37 | /// assert_eq!(r.into_option(), Some((1, 2))); |
38 | /// ``` |
39 | pub fn into_option(self) -> Option<(T,T)> { |
40 | match self { |
41 | MinMaxResult::NoElements => None, |
42 | MinMaxResult::OneElement(x) => Some((x.clone(), x)), |
43 | MinMaxResult::MinMax(x, y) => Some((x, y)) |
44 | } |
45 | } |
46 | } |
47 | |
48 | /// Implementation guts for `minmax` and `minmax_by_key`. |
49 | pub fn minmax_impl<I, K, F, L>(mut it: I, mut key_for: F, |
50 | mut lt: L) -> MinMaxResult<I::Item> |
51 | where I: Iterator, |
52 | F: FnMut(&I::Item) -> K, |
53 | L: FnMut(&I::Item, &I::Item, &K, &K) -> bool, |
54 | { |
55 | let (mut min, mut max, mut min_key, mut max_key) = match it.next() { |
56 | None => return MinMaxResult::NoElements, |
57 | Some(x) => { |
58 | match it.next() { |
59 | None => return MinMaxResult::OneElement(x), |
60 | Some(y) => { |
61 | let xk = key_for(&x); |
62 | let yk = key_for(&y); |
63 | if !lt(&y, &x, &yk, &xk) {(x, y, xk, yk)} else {(y, x, yk, xk)} |
64 | } |
65 | } |
66 | } |
67 | }; |
68 | |
69 | loop { |
70 | // `first` and `second` are the two next elements we want to look |
71 | // at. We first compare `first` and `second` (#1). The smaller one |
72 | // is then compared to current minimum (#2). The larger one is |
73 | // compared to current maximum (#3). This way we do 3 comparisons |
74 | // for 2 elements. |
75 | let first = match it.next() { |
76 | None => break, |
77 | Some(x) => x |
78 | }; |
79 | let second = match it.next() { |
80 | None => { |
81 | let first_key = key_for(&first); |
82 | if lt(&first, &min, &first_key, &min_key) { |
83 | min = first; |
84 | } else if !lt(&first, &max, &first_key, &max_key) { |
85 | max = first; |
86 | } |
87 | break; |
88 | } |
89 | Some(x) => x |
90 | }; |
91 | let first_key = key_for(&first); |
92 | let second_key = key_for(&second); |
93 | if !lt(&second, &first, &second_key, &first_key) { |
94 | if lt(&first, &min, &first_key, &min_key) { |
95 | min = first; |
96 | min_key = first_key; |
97 | } |
98 | if !lt(&second, &max, &second_key, &max_key) { |
99 | max = second; |
100 | max_key = second_key; |
101 | } |
102 | } else { |
103 | if lt(&second, &min, &second_key, &min_key) { |
104 | min = second; |
105 | min_key = second_key; |
106 | } |
107 | if !lt(&first, &max, &first_key, &max_key) { |
108 | max = first; |
109 | max_key = first_key; |
110 | } |
111 | } |
112 | } |
113 | |
114 | MinMaxResult::MinMax(min, max) |
115 | } |
116 | |