| 1 | use core::num::Wrapping; |
| 2 | use core::ops::{Add, Mul}; |
| 3 | |
| 4 | /// Defines an additive identity element for `Self`. |
| 5 | /// |
| 6 | /// # Laws |
| 7 | /// |
| 8 | /// ```text |
| 9 | /// a + 0 = a ∀ a ∈ Self |
| 10 | /// 0 + a = a ∀ a ∈ Self |
| 11 | /// ``` |
| 12 | pub trait Zero: Sized + Add<Self, Output = Self> { |
| 13 | /// Returns the additive identity element of `Self`, `0`. |
| 14 | /// # Purity |
| 15 | /// |
| 16 | /// This function should return the same result at all times regardless of |
| 17 | /// external mutable state, for example values stored in TLS or in |
| 18 | /// `static mut`s. |
| 19 | // This cannot be an associated constant, because of bignums. |
| 20 | fn zero() -> Self; |
| 21 | |
| 22 | /// Sets `self` to the additive identity element of `Self`, `0`. |
| 23 | fn set_zero(&mut self) { |
| 24 | *self = Zero::zero(); |
| 25 | } |
| 26 | |
| 27 | /// Returns `true` if `self` is equal to the additive identity. |
| 28 | fn is_zero(&self) -> bool; |
| 29 | } |
| 30 | |
| 31 | macro_rules! zero_impl { |
| 32 | ($t:ty, $v:expr) => { |
| 33 | impl Zero for $t { |
| 34 | #[inline] |
| 35 | fn zero() -> $t { |
| 36 | $v |
| 37 | } |
| 38 | #[inline] |
| 39 | fn is_zero(&self) -> bool { |
| 40 | *self == $v |
| 41 | } |
| 42 | } |
| 43 | }; |
| 44 | } |
| 45 | |
| 46 | zero_impl!(usize, 0); |
| 47 | zero_impl!(u8, 0); |
| 48 | zero_impl!(u16, 0); |
| 49 | zero_impl!(u32, 0); |
| 50 | zero_impl!(u64, 0); |
| 51 | zero_impl!(u128, 0); |
| 52 | |
| 53 | zero_impl!(isize, 0); |
| 54 | zero_impl!(i8, 0); |
| 55 | zero_impl!(i16, 0); |
| 56 | zero_impl!(i32, 0); |
| 57 | zero_impl!(i64, 0); |
| 58 | zero_impl!(i128, 0); |
| 59 | |
| 60 | zero_impl!(f32, 0.0); |
| 61 | zero_impl!(f64, 0.0); |
| 62 | |
| 63 | impl<T: Zero> Zero for Wrapping<T> |
| 64 | where |
| 65 | Wrapping<T>: Add<Output = Wrapping<T>>, |
| 66 | { |
| 67 | fn is_zero(&self) -> bool { |
| 68 | self.0.is_zero() |
| 69 | } |
| 70 | |
| 71 | fn set_zero(&mut self) { |
| 72 | self.0.set_zero(); |
| 73 | } |
| 74 | |
| 75 | fn zero() -> Self { |
| 76 | Wrapping(T::zero()) |
| 77 | } |
| 78 | } |
| 79 | |
| 80 | /// Defines a multiplicative identity element for `Self`. |
| 81 | /// |
| 82 | /// # Laws |
| 83 | /// |
| 84 | /// ```text |
| 85 | /// a * 1 = a ∀ a ∈ Self |
| 86 | /// 1 * a = a ∀ a ∈ Self |
| 87 | /// ``` |
| 88 | pub trait One: Sized + Mul<Self, Output = Self> { |
| 89 | /// Returns the multiplicative identity element of `Self`, `1`. |
| 90 | /// |
| 91 | /// # Purity |
| 92 | /// |
| 93 | /// This function should return the same result at all times regardless of |
| 94 | /// external mutable state, for example values stored in TLS or in |
| 95 | /// `static mut`s. |
| 96 | // This cannot be an associated constant, because of bignums. |
| 97 | fn one() -> Self; |
| 98 | |
| 99 | /// Sets `self` to the multiplicative identity element of `Self`, `1`. |
| 100 | fn set_one(&mut self) { |
| 101 | *self = One::one(); |
| 102 | } |
| 103 | |
| 104 | /// Returns `true` if `self` is equal to the multiplicative identity. |
| 105 | /// |
| 106 | /// For performance reasons, it's best to implement this manually. |
| 107 | /// After a semver bump, this method will be required, and the |
| 108 | /// `where Self: PartialEq` bound will be removed. |
| 109 | #[inline ] |
| 110 | fn is_one(&self) -> bool |
| 111 | where |
| 112 | Self: PartialEq, |
| 113 | { |
| 114 | *self == Self::one() |
| 115 | } |
| 116 | } |
| 117 | |
| 118 | macro_rules! one_impl { |
| 119 | ($t:ty, $v:expr) => { |
| 120 | impl One for $t { |
| 121 | #[inline] |
| 122 | fn one() -> $t { |
| 123 | $v |
| 124 | } |
| 125 | #[inline] |
| 126 | fn is_one(&self) -> bool { |
| 127 | *self == $v |
| 128 | } |
| 129 | } |
| 130 | }; |
| 131 | } |
| 132 | |
| 133 | one_impl!(usize, 1); |
| 134 | one_impl!(u8, 1); |
| 135 | one_impl!(u16, 1); |
| 136 | one_impl!(u32, 1); |
| 137 | one_impl!(u64, 1); |
| 138 | one_impl!(u128, 1); |
| 139 | |
| 140 | one_impl!(isize, 1); |
| 141 | one_impl!(i8, 1); |
| 142 | one_impl!(i16, 1); |
| 143 | one_impl!(i32, 1); |
| 144 | one_impl!(i64, 1); |
| 145 | one_impl!(i128, 1); |
| 146 | |
| 147 | one_impl!(f32, 1.0); |
| 148 | one_impl!(f64, 1.0); |
| 149 | |
| 150 | impl<T: One> One for Wrapping<T> |
| 151 | where |
| 152 | Wrapping<T>: Mul<Output = Wrapping<T>>, |
| 153 | { |
| 154 | fn set_one(&mut self) { |
| 155 | self.0.set_one(); |
| 156 | } |
| 157 | |
| 158 | fn one() -> Self { |
| 159 | Wrapping(T::one()) |
| 160 | } |
| 161 | } |
| 162 | |
| 163 | // Some helper functions provided for backwards compatibility. |
| 164 | |
| 165 | /// Returns the additive identity, `0`. |
| 166 | #[inline (always)] |
| 167 | pub fn zero<T: Zero>() -> T { |
| 168 | Zero::zero() |
| 169 | } |
| 170 | |
| 171 | /// Returns the multiplicative identity, `1`. |
| 172 | #[inline (always)] |
| 173 | pub fn one<T: One>() -> T { |
| 174 | One::one() |
| 175 | } |
| 176 | |
| 177 | #[test] |
| 178 | fn wrapping_identities() { |
| 179 | macro_rules! test_wrapping_identities { |
| 180 | ($($t:ty)+) => { |
| 181 | $( |
| 182 | assert_eq!(zero::<$t>(), zero::<Wrapping<$t>>().0); |
| 183 | assert_eq!(one::<$t>(), one::<Wrapping<$t>>().0); |
| 184 | assert_eq!((0 as $t).is_zero(), Wrapping(0 as $t).is_zero()); |
| 185 | assert_eq!((1 as $t).is_zero(), Wrapping(1 as $t).is_zero()); |
| 186 | )+ |
| 187 | }; |
| 188 | } |
| 189 | |
| 190 | test_wrapping_identities!(isize i8 i16 i32 i64 usize u8 u16 u32 u64); |
| 191 | } |
| 192 | |
| 193 | #[test] |
| 194 | fn wrapping_is_zero() { |
| 195 | fn require_zero<T: Zero>(_: &T) {} |
| 196 | require_zero(&Wrapping(42)); |
| 197 | } |
| 198 | #[test] |
| 199 | fn wrapping_is_one() { |
| 200 | fn require_one<T: One>(_: &T) {} |
| 201 | require_one(&Wrapping(42)); |
| 202 | } |
| 203 | |