1 | use core::ops::{Div, Rem}; |
2 | |
3 | pub trait Euclid: Sized + Div<Self, Output = Self> + Rem<Self, Output = Self> { |
4 | /// Calculates Euclidean division, the matching method for `rem_euclid`. |
5 | /// |
6 | /// This computes the integer `n` such that |
7 | /// `self = n * v + self.rem_euclid(v)`. |
8 | /// In other words, the result is `self / v` rounded to the integer `n` |
9 | /// such that `self >= n * v`. |
10 | /// |
11 | /// # Examples |
12 | /// |
13 | /// ``` |
14 | /// use num_traits::Euclid; |
15 | /// |
16 | /// let a: i32 = 7; |
17 | /// let b: i32 = 4; |
18 | /// assert_eq!(Euclid::div_euclid(&a, &b), 1); // 7 > 4 * 1 |
19 | /// assert_eq!(Euclid::div_euclid(&-a, &b), -2); // -7 >= 4 * -2 |
20 | /// assert_eq!(Euclid::div_euclid(&a, &-b), -1); // 7 >= -4 * -1 |
21 | /// assert_eq!(Euclid::div_euclid(&-a, &-b), 2); // -7 >= -4 * 2 |
22 | /// ``` |
23 | fn div_euclid(&self, v: &Self) -> Self; |
24 | |
25 | /// Calculates the least nonnegative remainder of `self (mod v)`. |
26 | /// |
27 | /// In particular, the return value `r` satisfies `0.0 <= r < v.abs()` in |
28 | /// most cases. However, due to a floating point round-off error it can |
29 | /// result in `r == v.abs()`, violating the mathematical definition, if |
30 | /// `self` is much smaller than `v.abs()` in magnitude and `self < 0.0`. |
31 | /// This result is not an element of the function's codomain, but it is the |
32 | /// closest floating point number in the real numbers and thus fulfills the |
33 | /// property `self == self.div_euclid(v) * v + self.rem_euclid(v)` |
34 | /// approximatively. |
35 | /// |
36 | /// # Examples |
37 | /// |
38 | /// ``` |
39 | /// use num_traits::Euclid; |
40 | /// |
41 | /// let a: i32 = 7; |
42 | /// let b: i32 = 4; |
43 | /// assert_eq!(Euclid::rem_euclid(&a, &b), 3); |
44 | /// assert_eq!(Euclid::rem_euclid(&-a, &b), 1); |
45 | /// assert_eq!(Euclid::rem_euclid(&a, &-b), 3); |
46 | /// assert_eq!(Euclid::rem_euclid(&-a, &-b), 1); |
47 | /// ``` |
48 | fn rem_euclid(&self, v: &Self) -> Self; |
49 | } |
50 | |
51 | macro_rules! euclid_forward_impl { |
52 | ($($t:ty)*) => {$( |
53 | #[cfg(has_div_euclid)] |
54 | impl Euclid for $t { |
55 | #[inline] |
56 | fn div_euclid(&self, v: &$t) -> Self { |
57 | <$t>::div_euclid(*self, *v) |
58 | } |
59 | |
60 | #[inline] |
61 | fn rem_euclid(&self, v: &$t) -> Self { |
62 | <$t>::rem_euclid(*self, *v) |
63 | } |
64 | } |
65 | )*} |
66 | } |
67 | |
68 | macro_rules! euclid_int_impl { |
69 | ($($t:ty)*) => {$( |
70 | euclid_forward_impl!($t); |
71 | |
72 | #[cfg(not(has_div_euclid))] |
73 | impl Euclid for $t { |
74 | #[inline] |
75 | fn div_euclid(&self, v: &$t) -> Self { |
76 | let q = self / v; |
77 | if self % v < 0 { |
78 | return if *v > 0 { q - 1 } else { q + 1 } |
79 | } |
80 | q |
81 | } |
82 | |
83 | #[inline] |
84 | fn rem_euclid(&self, v: &$t) -> Self { |
85 | let r = self % v; |
86 | if r < 0 { |
87 | if *v < 0 { |
88 | r - v |
89 | } else { |
90 | r + v |
91 | } |
92 | } else { |
93 | r |
94 | } |
95 | } |
96 | } |
97 | )*} |
98 | } |
99 | |
100 | macro_rules! euclid_uint_impl { |
101 | ($($t:ty)*) => {$( |
102 | euclid_forward_impl!($t); |
103 | |
104 | #[cfg(not(has_div_euclid))] |
105 | impl Euclid for $t { |
106 | #[inline] |
107 | fn div_euclid(&self, v: &$t) -> Self { |
108 | self / v |
109 | } |
110 | |
111 | #[inline] |
112 | fn rem_euclid(&self, v: &$t) -> Self { |
113 | self % v |
114 | } |
115 | } |
116 | )*} |
117 | } |
118 | |
119 | euclid_int_impl!(isize i8 i16 i32 i64 i128); |
120 | euclid_uint_impl!(usize u8 u16 u32 u64 u128); |
121 | |
122 | #[cfg (all(has_div_euclid, feature = "std" ))] |
123 | euclid_forward_impl!(f32 f64); |
124 | |
125 | #[cfg (not(all(has_div_euclid, feature = "std" )))] |
126 | impl Euclid for f32 { |
127 | #[inline ] |
128 | fn div_euclid(&self, v: &f32) -> f32 { |
129 | let q = <f32 as crate::float::FloatCore>::trunc(self / v); |
130 | if self % v < 0.0 { |
131 | return if *v > 0.0 { q - 1.0 } else { q + 1.0 }; |
132 | } |
133 | q |
134 | } |
135 | |
136 | #[inline ] |
137 | fn rem_euclid(&self, v: &f32) -> f32 { |
138 | let r = self % v; |
139 | if r < 0.0 { |
140 | r + <f32 as crate::float::FloatCore>::abs(*v) |
141 | } else { |
142 | r |
143 | } |
144 | } |
145 | } |
146 | |
147 | #[cfg (not(all(has_div_euclid, feature = "std" )))] |
148 | impl Euclid for f64 { |
149 | #[inline ] |
150 | fn div_euclid(&self, v: &f64) -> f64 { |
151 | let q = <f64 as crate::float::FloatCore>::trunc(self / v); |
152 | if self % v < 0.0 { |
153 | return if *v > 0.0 { q - 1.0 } else { q + 1.0 }; |
154 | } |
155 | q |
156 | } |
157 | |
158 | #[inline ] |
159 | fn rem_euclid(&self, v: &f64) -> f64 { |
160 | let r = self % v; |
161 | if r < 0.0 { |
162 | r + <f64 as crate::float::FloatCore>::abs(*v) |
163 | } else { |
164 | r |
165 | } |
166 | } |
167 | } |
168 | |
169 | pub trait CheckedEuclid: Euclid { |
170 | /// Performs euclid division that returns `None` instead of panicking on division by zero |
171 | /// and instead of wrapping around on underflow and overflow. |
172 | fn checked_div_euclid(&self, v: &Self) -> Option<Self>; |
173 | |
174 | /// Finds the euclid remainder of dividing two numbers, checking for underflow, overflow and |
175 | /// division by zero. If any of that happens, `None` is returned. |
176 | fn checked_rem_euclid(&self, v: &Self) -> Option<Self>; |
177 | } |
178 | |
179 | macro_rules! checked_euclid_forward_impl { |
180 | ($($t:ty)*) => {$( |
181 | #[cfg(has_div_euclid)] |
182 | impl CheckedEuclid for $t { |
183 | #[inline] |
184 | fn checked_div_euclid(&self, v: &$t) -> Option<Self> { |
185 | <$t>::checked_div_euclid(*self, *v) |
186 | } |
187 | |
188 | #[inline] |
189 | fn checked_rem_euclid(&self, v: &$t) -> Option<Self> { |
190 | <$t>::checked_rem_euclid(*self, *v) |
191 | } |
192 | } |
193 | )*} |
194 | } |
195 | |
196 | macro_rules! checked_euclid_int_impl { |
197 | ($($t:ty)*) => {$( |
198 | checked_euclid_forward_impl!($t); |
199 | |
200 | #[cfg(not(has_div_euclid))] |
201 | impl CheckedEuclid for $t { |
202 | #[inline] |
203 | fn checked_div_euclid(&self, v: &$t) -> Option<$t> { |
204 | if *v == 0 || (*self == Self::min_value() && *v == -1) { |
205 | None |
206 | } else { |
207 | Some(Euclid::div_euclid(self, v)) |
208 | } |
209 | } |
210 | |
211 | #[inline] |
212 | fn checked_rem_euclid(&self, v: &$t) -> Option<$t> { |
213 | if *v == 0 || (*self == Self::min_value() && *v == -1) { |
214 | None |
215 | } else { |
216 | Some(Euclid::rem_euclid(self, v)) |
217 | } |
218 | } |
219 | } |
220 | )*} |
221 | } |
222 | |
223 | macro_rules! checked_euclid_uint_impl { |
224 | ($($t:ty)*) => {$( |
225 | checked_euclid_forward_impl!($t); |
226 | |
227 | #[cfg(not(has_div_euclid))] |
228 | impl CheckedEuclid for $t { |
229 | #[inline] |
230 | fn checked_div_euclid(&self, v: &$t) -> Option<$t> { |
231 | if *v == 0 { |
232 | None |
233 | } else { |
234 | Some(Euclid::div_euclid(self, v)) |
235 | } |
236 | } |
237 | |
238 | #[inline] |
239 | fn checked_rem_euclid(&self, v: &$t) -> Option<$t> { |
240 | if *v == 0 { |
241 | None |
242 | } else { |
243 | Some(Euclid::rem_euclid(self, v)) |
244 | } |
245 | } |
246 | } |
247 | )*} |
248 | } |
249 | |
250 | checked_euclid_int_impl!(isize i8 i16 i32 i64 i128); |
251 | checked_euclid_uint_impl!(usize u8 u16 u32 u64 u128); |
252 | |
253 | #[cfg (test)] |
254 | mod tests { |
255 | use super::*; |
256 | |
257 | #[test] |
258 | fn euclid_unsigned() { |
259 | macro_rules! test_euclid { |
260 | ($($t:ident)+) => { |
261 | $( |
262 | { |
263 | let x: $t = 10; |
264 | let y: $t = 3; |
265 | assert_eq!(Euclid::div_euclid(&x, &y), 3); |
266 | assert_eq!(Euclid::rem_euclid(&x, &y), 1); |
267 | } |
268 | )+ |
269 | }; |
270 | } |
271 | |
272 | test_euclid!(usize u8 u16 u32 u64); |
273 | } |
274 | |
275 | #[test] |
276 | fn euclid_signed() { |
277 | macro_rules! test_euclid { |
278 | ($($t:ident)+) => { |
279 | $( |
280 | { |
281 | let x: $t = 10; |
282 | let y: $t = -3; |
283 | assert_eq!(Euclid::div_euclid(&x, &y), -3); |
284 | assert_eq!(Euclid::div_euclid(&-x, &y), 4); |
285 | assert_eq!(Euclid::rem_euclid(&x, &y), 1); |
286 | assert_eq!(Euclid::rem_euclid(&-x, &y), 2); |
287 | let x: $t = $t::min_value() + 1; |
288 | let y: $t = -1; |
289 | assert_eq!(Euclid::div_euclid(&x, &y), $t::max_value()); |
290 | } |
291 | )+ |
292 | }; |
293 | } |
294 | |
295 | test_euclid!(isize i8 i16 i32 i64 i128); |
296 | } |
297 | |
298 | #[test] |
299 | fn euclid_float() { |
300 | macro_rules! test_euclid { |
301 | ($($t:ident)+) => { |
302 | $( |
303 | { |
304 | let x: $t = 12.1; |
305 | let y: $t = 3.2; |
306 | assert!(Euclid::div_euclid(&x, &y) * y + Euclid::rem_euclid(&x, &y) - x |
307 | <= 46.4 * <$t as crate::float::FloatCore>::epsilon()); |
308 | assert!(Euclid::div_euclid(&x, &-y) * -y + Euclid::rem_euclid(&x, &-y) - x |
309 | <= 46.4 * <$t as crate::float::FloatCore>::epsilon()); |
310 | assert!(Euclid::div_euclid(&-x, &y) * y + Euclid::rem_euclid(&-x, &y) + x |
311 | <= 46.4 * <$t as crate::float::FloatCore>::epsilon()); |
312 | assert!(Euclid::div_euclid(&-x, &-y) * -y + Euclid::rem_euclid(&-x, &-y) + x |
313 | <= 46.4 * <$t as crate::float::FloatCore>::epsilon()); |
314 | } |
315 | )+ |
316 | }; |
317 | } |
318 | |
319 | test_euclid!(f32 f64); |
320 | } |
321 | |
322 | #[test] |
323 | fn euclid_checked() { |
324 | macro_rules! test_euclid_checked { |
325 | ($($t:ident)+) => { |
326 | $( |
327 | { |
328 | assert_eq!(CheckedEuclid::checked_div_euclid(&$t::min_value(), &-1), None); |
329 | assert_eq!(CheckedEuclid::checked_rem_euclid(&$t::min_value(), &-1), None); |
330 | assert_eq!(CheckedEuclid::checked_div_euclid(&1, &0), None); |
331 | assert_eq!(CheckedEuclid::checked_rem_euclid(&1, &0), None); |
332 | } |
333 | )+ |
334 | }; |
335 | } |
336 | |
337 | test_euclid_checked!(isize i8 i16 i32 i64 i128); |
338 | } |
339 | } |
340 | |