1 | //! A tiny, robust PRNG implementation. |
2 | //! |
3 | //! More specifically, it implements a single GOOD PRNG algorithm, |
4 | //! which is currently a permuted congruential generator. It has two |
5 | //! implementations, one that returns `u32` and one that returns |
6 | //! `u64`. It also has functions that return floats or integer |
7 | //! ranges. And that's it. What more do you need? |
8 | //! |
9 | //! For more info on PCG generators, see http://www.pcg-random.org/ |
10 | //! |
11 | //! This was designed as a minimalist utility for video games. No |
12 | //! promises are made about its quality, and if you use it for |
13 | //! cryptography you will get what you deserve. |
14 | //! |
15 | //! Works with `#![no_std]`, has no global state, no dependencies |
16 | //! apart from some in the unit tests, and is generally neato. |
17 | |
18 | #![forbid (unsafe_code)] |
19 | #![forbid (missing_docs)] |
20 | #![forbid (missing_debug_implementations)] |
21 | #![forbid (unused_results)] |
22 | #![no_std ] |
23 | use core::ops::Range; |
24 | |
25 | /// A PRNG producing a 32-bit output. |
26 | /// |
27 | /// The current implementation is `PCG-XSH-RR`. |
28 | #[derive(Copy, Clone, Debug, PartialEq)] |
29 | pub struct Rand32 { |
30 | state: u64, |
31 | inc: u64, |
32 | } |
33 | |
34 | impl Rand32 { |
35 | /// The default value for `increment`. |
36 | /// This is basically arbitrary, it comes from the |
37 | /// PCG reference C implementation: |
38 | /// https://github.com/imneme/pcg-c/blob/master/include/pcg_variants.h#L284 |
39 | pub const DEFAULT_INC: u64 = 1442695040888963407; |
40 | |
41 | /// This is the number that you have to Really Get Right. |
42 | /// |
43 | /// The value used here is from the PCG C implementation: |
44 | /// https://github.com/imneme/pcg-c/blob/master/include/pcg_variants.h#L278 |
45 | pub(crate) const MULTIPLIER: u64 = 6364136223846793005; |
46 | |
47 | /// Creates a new PRNG with the given seed and a default increment. |
48 | pub fn new(seed: u64) -> Self { |
49 | Self::new_inc(seed, Self::DEFAULT_INC) |
50 | } |
51 | |
52 | /// Creates a new PRNG. The two inputs, `seed` and `increment`, |
53 | /// determine what you get; `increment` basically selects which |
54 | /// sequence of all those possible the PRNG will produce, and the |
55 | /// `seed` selects where in that sequence you start. |
56 | /// |
57 | /// Both are arbitrary; increment must be an odd number but this |
58 | /// handles that for you |
59 | pub fn new_inc(seed: u64, increment: u64) -> Self { |
60 | let mut rng = Self { |
61 | state: 0, |
62 | inc: increment.wrapping_shl(1) | 1, |
63 | }; |
64 | // This initialization song-and-dance is a little odd, |
65 | // but seems to be just how things go. |
66 | let _ = rng.rand_u32(); |
67 | rng.state = rng.state.wrapping_add(seed); |
68 | let _ = rng.rand_u32(); |
69 | rng |
70 | } |
71 | |
72 | /// Returns the internal state of the PRNG. This allows |
73 | /// you to save a PRNG and create a new one that will resume |
74 | /// from the same spot in the sequence. |
75 | pub fn state(&self) -> (u64, u64) { |
76 | (self.state, self.inc) |
77 | } |
78 | |
79 | /// Creates a new PRNG from a saved state from `Rand32::state()`. |
80 | /// This is NOT quite the same as `new_inc()` because `new_inc()` does |
81 | /// a little extra setup work to initialize the state. |
82 | pub fn from_state(state: (u64, u64)) -> Self { |
83 | let (state, inc) = state; |
84 | Self { state, inc } |
85 | } |
86 | |
87 | /// Produces a random `u32` in the range `[0, u32::MAX]`. |
88 | pub fn rand_u32(&mut self) -> u32 { |
89 | let oldstate: u64 = self.state; |
90 | self.state = oldstate |
91 | .wrapping_mul(Self::MULTIPLIER) |
92 | .wrapping_add(self.inc); |
93 | let xorshifted: u32 = (((oldstate >> 18) ^ oldstate) >> 27) as u32; |
94 | let rot: u32 = (oldstate >> 59) as u32; |
95 | xorshifted.rotate_right(rot) |
96 | } |
97 | |
98 | /// Produces a random `i32` in the range `[i32::MIN, i32::MAX]`. |
99 | pub fn rand_i32(&mut self) -> i32 { |
100 | self.rand_u32() as i32 |
101 | } |
102 | |
103 | /// Produces a random `f32` in the range `[0.0, 1.0)`. |
104 | pub fn rand_float(&mut self) -> f32 { |
105 | // This impl was taken more or less from `rand`, see |
106 | // <https://docs.rs/rand/0.7.0/src/rand/distributions/float.rs.html#104-117> |
107 | // There MAY be better ways to do this, see: |
108 | // https://mumble.net/~campbell/2014/04/28/uniform-random-float |
109 | // https://mumble.net/~campbell/2014/04/28/random_real.c |
110 | // https://github.com/Lokathor/randomize/issues/34 |
111 | const TOTAL_BITS: u32 = 32; |
112 | const PRECISION: u32 = core::f32::MANTISSA_DIGITS + 1; |
113 | const MANTISSA_SCALE: f32 = 1.0 / ((1u32 << PRECISION) as f32); |
114 | let mut u = self.rand_u32(); |
115 | u >>= TOTAL_BITS - PRECISION; |
116 | u as f32 * MANTISSA_SCALE |
117 | } |
118 | |
119 | /// Produces a random within the given bounds. Like any `Range`, |
120 | /// it includes the lower bound and excludes the upper one. |
121 | /// |
122 | /// This should be faster than `Self::rand() % end + start`, but the |
123 | /// real advantage is it's more convenient. Requires that |
124 | /// `range.end <= range.start`. |
125 | pub fn rand_range(&mut self, range: Range<u32>) -> u32 { |
126 | // This is harder to do well than it looks, it seems. I don't |
127 | // trust Lokathor's implementation 'cause I don't understand |
128 | // it, so I went to numpy's, which points me to "Lemire's |
129 | // rejection algorithm": http://arxiv.org/abs/1805.10941 |
130 | // |
131 | // Algorithms 3, 4 and 5 in that paper all seem fine modulo |
132 | // minor performance differences, so this is algorithm 5. |
133 | // It uses numpy's implementation, `buffered_bounded_lemire_uint32()` |
134 | |
135 | debug_assert!(range.start < range.end); |
136 | let range_starting_from_zero = 0..(range.end - range.start); |
137 | |
138 | let s: u32 = range_starting_from_zero.end; |
139 | let mut m: u64 = u64::from(self.rand_u32()) * u64::from(s); |
140 | let mut leftover: u32 = (m & 0xFFFF_FFFF) as u32; |
141 | |
142 | if leftover < s { |
143 | // TODO: verify the wrapping_neg() here |
144 | let threshold: u32 = s.wrapping_neg() % s; |
145 | while leftover < threshold { |
146 | m = u64::from(self.rand_u32()).wrapping_mul(u64::from(s)); |
147 | leftover = (m & 0xFFFF_FFFF) as u32; |
148 | } |
149 | } |
150 | (m >> 32) as u32 + range.start |
151 | } |
152 | } |
153 | |
154 | /// A PRNG producing a 64-bit output. |
155 | /// |
156 | /// The current implementation is `PCG-XSH-RR`. |
157 | // BUGGO: The recommended algorithm is PCG-XSL-RR? |
158 | // See https://github.com/imneme/pcg-c/blob/master/include/pcg_variants.h#L2405 |
159 | // Not sure if it matters? |
160 | #[derive(Copy, Clone, Debug, PartialEq)] |
161 | pub struct Rand64 { |
162 | state: u128, |
163 | inc: u128, |
164 | } |
165 | |
166 | impl Rand64 { |
167 | /// The default value for `increment`. |
168 | /// |
169 | /// The value used here is from the PCG default C implementation: http://www.pcg-random.org/download.html |
170 | pub const DEFAULT_INC: u128 = 0x2FE0E169_FFBD06E3_5BC307BD_4D2F814F; |
171 | |
172 | /// This is the number that you have to Really Get Right. |
173 | /// |
174 | /// The value used here is from the PCG C implementation: |
175 | /// https://github.com/imneme/pcg-c/blob/master/include/pcg_variants.h#L288 |
176 | pub(crate) const MULTIPLIER: u128 = 47026247687942121848144207491837523525; |
177 | |
178 | /// Creates a new PRNG with the given seed and a default increment. |
179 | pub fn new(seed: u128) -> Self { |
180 | Self::new_inc(seed, Self::DEFAULT_INC) |
181 | } |
182 | |
183 | /// Same as `Rand32::new_inc()` |
184 | pub fn new_inc(seed: u128, increment: u128) -> Self { |
185 | let mut rng = Self { |
186 | state: 0, |
187 | inc: increment.wrapping_shl(1) | 1, |
188 | }; |
189 | let _ = rng.rand_u64(); |
190 | rng.state = rng.state.wrapping_add(seed); |
191 | let _ = rng.rand_u64(); |
192 | rng |
193 | } |
194 | |
195 | /// Returns the internal state of the PRNG. This allows |
196 | /// you to save a PRNG and create a new one that will resume |
197 | /// from the same spot in the sequence. |
198 | pub fn state(&self) -> (u128, u128) { |
199 | (self.state, self.inc) |
200 | } |
201 | |
202 | /// Creates a new PRNG from a saved state from `Rand32::state()`. |
203 | /// This is NOT quite the same as `new_inc()` because `new_inc()` does |
204 | /// a little extra setup work to initialize the state. |
205 | pub fn from_state(state: (u128, u128)) -> Self { |
206 | let (state, inc) = state; |
207 | Self { state, inc } |
208 | } |
209 | |
210 | /// Produces a random `u64` in the range`[0, u64::MAX]`. |
211 | pub fn rand_u64(&mut self) -> u64 { |
212 | let oldstate: u128 = self.state; |
213 | self.state = oldstate |
214 | .wrapping_mul(Self::MULTIPLIER) |
215 | .wrapping_add(self.inc); |
216 | let xorshifted: u64 = (((oldstate >> 29) ^ oldstate) >> 58) as u64; |
217 | let rot: u32 = (oldstate >> 122) as u32; |
218 | xorshifted.rotate_right(rot) |
219 | } |
220 | |
221 | /// Produces a random `i64` in the range `[i64::MIN, i64::MAX]`. |
222 | pub fn rand_i64(&mut self) -> i64 { |
223 | self.rand_u64() as i64 |
224 | } |
225 | |
226 | /// Produces a random `f64` in the range `[0.0, 1.0)`. |
227 | pub fn rand_float(&mut self) -> f64 { |
228 | const TOTAL_BITS: u32 = 64; |
229 | const PRECISION: u32 = core::f64::MANTISSA_DIGITS + 1; |
230 | const MANTISSA_SCALE: f64 = 1.0 / ((1u64 << PRECISION) as f64); |
231 | let mut u = self.rand_u64(); |
232 | u >>= TOTAL_BITS - PRECISION; |
233 | u as f64 * MANTISSA_SCALE |
234 | } |
235 | |
236 | /// Produces a random within the given bounds. Like any `Range`, |
237 | /// it includes the lower bound and excludes the upper one. |
238 | /// |
239 | /// This should be faster than `Self::rand() % end + start`, but the |
240 | /// real advantage is it's more convenient. Requires that |
241 | /// `range.end <= range.start`. |
242 | pub fn rand_range(&mut self, range: Range<u64>) -> u64 { |
243 | // Same as `Rand32::rand_range()` |
244 | debug_assert!(range.start < range.end); |
245 | let range_starting_from_zero = 0..(range.end - range.start); |
246 | |
247 | let s: u64 = range_starting_from_zero.end; |
248 | let mut m: u128 = u128::from(self.rand_u64()) * u128::from(s); |
249 | let mut leftover: u64 = (m & 0xFFFFFFFF_FFFFFFFF) as u64; |
250 | |
251 | if leftover < s { |
252 | // TODO: Verify the wrapping_negate() here |
253 | let threshold: u64 = s.wrapping_neg() % s; |
254 | while leftover < threshold { |
255 | m = u128::from(self.rand_u64()) * u128::from(s); |
256 | leftover = (m & 0xFFFFFFFF_FFFFFFFF) as u64; |
257 | } |
258 | } |
259 | (m.wrapping_shr(64)) as u64 + range.start |
260 | } |
261 | } |
262 | |
263 | #[cfg (test)] |
264 | mod tests { |
265 | use super::*; |
266 | use randomize::{self, PCG32, PCG64}; |
267 | |
268 | #[test] |
269 | fn test_rand32_vs_randomize() { |
270 | // Generate some random numbers and validate them against |
271 | // a known-good generator. |
272 | { |
273 | let seed = 54321; |
274 | let mut r1 = Rand32::new(seed); |
275 | let mut r2 = PCG32::seed(seed, Rand32::DEFAULT_INC); |
276 | for _ in 0..1000 { |
277 | assert_eq!(r1.rand_u32(), r2.next_u32()); |
278 | assert_eq!(r1.rand_i32(), r2.next_u32() as i32); |
279 | } |
280 | } |
281 | |
282 | { |
283 | let seed = 3141592653; |
284 | let inc = 0xDEADBEEF; |
285 | let mut r1 = Rand32::new_inc(seed, inc); |
286 | let mut r2 = PCG32::seed(seed, inc); |
287 | for _ in 0..1000 { |
288 | assert_eq!(r1.rand_u32(), r2.next_u32()); |
289 | assert_eq!(r1.rand_i32(), r2.next_u32() as i32); |
290 | } |
291 | } |
292 | } |
293 | |
294 | #[test] |
295 | fn test_rand64_vs_randomize() { |
296 | // Generate some random numbers and validate them against |
297 | // a known-good generator. |
298 | { |
299 | let seed = 54321; |
300 | let mut r1 = Rand64::new(seed); |
301 | let mut r2 = PCG64::seed(seed, Rand64::DEFAULT_INC); |
302 | for _ in 0..1000 { |
303 | assert_eq!(r1.rand_u64(), r2.next_u64()); |
304 | assert_eq!(r1.rand_i64(), r2.next_u64() as i64); |
305 | } |
306 | } |
307 | |
308 | { |
309 | let seed = 3141592653; |
310 | let inc = 0xDEADBEEF; |
311 | let mut r1 = Rand64::new_inc(seed, inc); |
312 | let mut r2 = PCG64::seed(seed, inc); |
313 | for _ in 0..1000 { |
314 | assert_eq!(r1.rand_u64(), r2.next_u64()); |
315 | assert_eq!(r1.rand_i64(), r2.next_u64() as i64); |
316 | } |
317 | } |
318 | } |
319 | |
320 | #[test] |
321 | fn test_float32() { |
322 | { |
323 | let seed = 2718281828; |
324 | let mut r1 = Rand32::new(seed); |
325 | let mut r2 = PCG32::seed(seed, Rand32::DEFAULT_INC); |
326 | for _ in 0..1000 { |
327 | // First just make sure they both work with randomize's |
328 | // f32 conversion function -- sanity checks. |
329 | let i1 = r1.rand_u32(); |
330 | let i2 = r2.next_u32(); |
331 | assert_eq!(i1, i2); |
332 | let f1 = randomize::f32_half_open_right(i1); |
333 | let f2 = randomize::f32_half_open_right(i2); |
334 | // We can directly compare floats 'cause we do no math, it's |
335 | // literally the same bitwise algorithm with the same inputs. |
336 | assert_eq!(f1, f2); |
337 | |
338 | // Make sure result is in [0.0, 1.0) |
339 | assert!(f1 >= 0.0); |
340 | assert!(f1 < 1.0); |
341 | } |
342 | |
343 | // At least make sure our float's from rand_float() are in the valid range. |
344 | for _ in 0..1000 { |
345 | let f1 = r1.rand_float(); |
346 | assert!(f1 >= 0.0); |
347 | assert!(f1 < 1.0); |
348 | } |
349 | |
350 | /* |
351 | TODO: Randomize changed its int-to-float conversion functions and now they don't |
352 | match ours. |
353 | for _ in 0..1000 { |
354 | // Now make sure our own float conversion function works. |
355 | let f1 = r1.rand_float(); |
356 | //let f2 = randomize::f32_half_open_right(r2.next_u32()); |
357 | let f2 = randomize::f32_open(r2.next_u32()); |
358 | assert_eq!(f1, f2); |
359 | assert!(f1 >= 0.0); |
360 | assert!(f1 < 1.0); |
361 | } |
362 | */ |
363 | } |
364 | } |
365 | |
366 | #[test] |
367 | fn test_float64() { |
368 | { |
369 | let seed = 2718281828; |
370 | let mut r1 = Rand64::new(seed); |
371 | let mut r2 = PCG64::seed(seed, Rand64::DEFAULT_INC); |
372 | for _ in 0..1000 { |
373 | // First just make sure they both work with randomize's |
374 | // f64 conversion function -- sanity checks. |
375 | let i1 = r1.rand_u64(); |
376 | let i2 = r2.next_u64(); |
377 | assert_eq!(i1, i2); |
378 | let f1 = randomize::f64_half_open_right(i1); |
379 | let f2 = randomize::f64_half_open_right(i2); |
380 | // We can directly compare floats 'cause we do no math, it's |
381 | // literally the same bitwise algorithm with the same inputs. |
382 | assert_eq!(f1, f2); |
383 | |
384 | // Make sure result is in [0.0, 1.0) |
385 | assert!(f1 >= 0.0); |
386 | assert!(f1 < 1.0); |
387 | } |
388 | |
389 | // At least make sure our float's from rand_float() are in the valid range. |
390 | for _ in 0..1000 { |
391 | let f1 = r1.rand_float(); |
392 | assert!(f1 >= 0.0); |
393 | assert!(f1 < 1.0); |
394 | } |
395 | |
396 | /* |
397 | TODO: Randomize changed its int-to-float conversion functions and now they don't |
398 | match ours. |
399 | for _ in 0..1000 { |
400 | // Now make sure our own float conversion function works. |
401 | let f1 = r1.rand_float(); |
402 | //let f2 = randomize::f32_half_open_right(r2.next_u32()); |
403 | let f2 = randomize::f32_open(r2.next_u32()); |
404 | assert_eq!(f1, f2); |
405 | assert!(f1 >= 0.0); |
406 | assert!(f1 < 1.0); |
407 | } |
408 | */ |
409 | } |
410 | } |
411 | |
412 | #[test] |
413 | fn test_randrange32() { |
414 | // Make sure ranges are valid and in the given range |
415 | let seed = 2342_3141; |
416 | let mut r1 = Rand32::new(seed); |
417 | for _ in 0..1000 { |
418 | // Generate our bounds at random |
419 | let a = r1.rand_u32(); |
420 | let b = r1.rand_u32(); |
421 | if a == b { |
422 | continue; |
423 | } |
424 | let (low, high) = if a < b { (a, b) } else { (b, a) }; |
425 | |
426 | // Get a number in that range |
427 | let in_range = r1.rand_range(low..high); |
428 | assert!(in_range >= low); |
429 | assert!(in_range < high); |
430 | } |
431 | } |
432 | |
433 | #[test] |
434 | fn test_randrange64() { |
435 | // Make sure ranges are valid and in the given range |
436 | let seed = 2342_2718; |
437 | let mut r1 = Rand64::new(seed); |
438 | for _ in 0..1000 { |
439 | // Generate our bounds at random |
440 | let a = r1.rand_u64(); |
441 | let b = r1.rand_u64(); |
442 | if a == b { |
443 | continue; |
444 | } |
445 | let (low, high) = if a < b { (a, b) } else { (b, a) }; |
446 | |
447 | // Get a number in that range |
448 | let in_range = r1.rand_range(low..high); |
449 | assert!(in_range >= low); |
450 | assert!(in_range < high); |
451 | } |
452 | } |
453 | |
454 | #[test] |
455 | fn test_rand32_vs_rand() { |
456 | use rand_core::RngCore; |
457 | use rand_pcg; |
458 | { |
459 | let seed = 54321; |
460 | let mut r1 = Rand32::new(seed); |
461 | let mut r2 = rand_pcg::Pcg32::new(seed, Rand32::DEFAULT_INC); |
462 | for _ in 0..1000 { |
463 | assert_eq!(r1.rand_u32(), r2.next_u32()); |
464 | } |
465 | } |
466 | |
467 | { |
468 | let seed = 3141592653; |
469 | let inc = 0xDEADBEEF; |
470 | let mut r1 = Rand32::new_inc(seed, inc); |
471 | let mut r2 = rand_pcg::Pcg32::new(seed, inc); |
472 | for _ in 0..1000 { |
473 | assert_eq!(r1.rand_u32(), r2.next_u32()); |
474 | } |
475 | } |
476 | } |
477 | |
478 | // This doesn't work 'cause for 64-bit output `rand` uses |
479 | // PCG-XSL-RR |
480 | // and we use |
481 | // PCG-XSH-RR |
482 | /* |
483 | #[test] |
484 | fn test_rand64_vs_rand() { |
485 | use rand_pcg; |
486 | use rand_core::RngCore; |
487 | { |
488 | let seed = 54321; |
489 | let mut r1 = Rand64::new(seed); |
490 | let mut r2 = rand_pcg::Pcg64::new(seed, Rand64::DEFAULT_INC); |
491 | for _ in 0..1000 { |
492 | assert_eq!(r1.rand(), r2.next_u64()); |
493 | } |
494 | } |
495 | |
496 | { |
497 | let seed = 3141592653; |
498 | let inc = 0xDEADBEEF; |
499 | let mut r1 = Rand64::new_inc(seed, inc); |
500 | let mut r2 = rand_pcg::Pcg64::new(seed, inc); |
501 | for _ in 0..1000 { |
502 | assert_eq!(r1.rand(), r2.next_u64()); |
503 | } |
504 | } |
505 | } |
506 | */ |
507 | |
508 | // Test vs. random-fast-rng, which I will call rfr |
509 | // rfr's float conversion uses yet a different algorithm |
510 | // than ours, so we can't really check that. |
511 | #[test] |
512 | fn test_rand32_vs_rfr() { |
513 | use random_fast_rng as rfr; |
514 | use rfr::Random; |
515 | { |
516 | let seed = 54321; |
517 | let mut r1 = Rand32::new(seed); |
518 | let mut r2 = rfr::FastRng::seed(seed, Rand32::DEFAULT_INC); |
519 | for _ in 0..1000 { |
520 | assert_eq!(r1.rand_u32(), r2.get_u32()); |
521 | } |
522 | } |
523 | |
524 | { |
525 | let seed = 3141592653; |
526 | let inc = 0xDEADBEEF; |
527 | let mut r1 = Rand32::new_inc(seed, inc); |
528 | let mut r2 = rfr::FastRng::seed(seed, inc); |
529 | for _ in 0..1000 { |
530 | assert_eq!(r1.rand_u32(), r2.get_u32()); |
531 | } |
532 | } |
533 | } |
534 | |
535 | /// Make sure that saving a RNG state and restoring |
536 | /// it works. |
537 | /// See https://todo.sr.ht/~icefox/oorandom/1 |
538 | #[test] |
539 | fn test_save_restore() { |
540 | { |
541 | let seed = 54321; |
542 | let mut r1 = Rand32::new(seed); |
543 | let s1 = r1.state(); |
544 | let mut r2 = Rand32::from_state(s1); |
545 | assert_eq!(r1, r2); |
546 | for _ in 0..1000 { |
547 | assert_eq!(r1.rand_u32(), r2.rand_u32()); |
548 | } |
549 | } |
550 | |
551 | { |
552 | let seed = 3141592653; |
553 | let inc = 0xDEADBEEF; |
554 | let mut r1 = Rand32::new_inc(seed, inc); |
555 | let s1 = r1.state(); |
556 | let mut r2 = Rand32::from_state(s1); |
557 | assert_eq!(r1, r2); |
558 | for _ in 0..1000 { |
559 | assert_eq!(r1.rand_u32(), r2.rand_u32()); |
560 | } |
561 | } |
562 | |
563 | { |
564 | let seed = 54321; |
565 | let mut r1 = Rand64::new(seed); |
566 | let s1 = r1.state(); |
567 | let mut r2 = Rand64::from_state(s1); |
568 | assert_eq!(r1, r2); |
569 | for _ in 0..1000 { |
570 | assert_eq!(r1.rand_u64(), r2.rand_u64()); |
571 | } |
572 | } |
573 | |
574 | { |
575 | let seed = 3141592653; |
576 | let inc = 0xDEADBEEF; |
577 | let mut r1 = Rand64::new_inc(seed, inc); |
578 | let s1 = r1.state(); |
579 | let mut r2 = Rand64::from_state(s1); |
580 | assert_eq!(r1, r2); |
581 | for _ in 0..1000 { |
582 | assert_eq!(r1.rand_u64(), r2.rand_u64()); |
583 | } |
584 | } |
585 | } |
586 | } |
587 | |