| 1 | //! A tiny, robust PRNG implementation. |
| 2 | //! |
| 3 | //! More specifically, it implements a single GOOD PRNG algorithm, |
| 4 | //! which is currently a permuted congruential generator. It has two |
| 5 | //! implementations, one that returns `u32` and one that returns |
| 6 | //! `u64`. It also has functions that return floats or integer |
| 7 | //! ranges. And that's it. What more do you need? |
| 8 | //! |
| 9 | //! For more info on PCG generators, see http://www.pcg-random.org/ |
| 10 | //! |
| 11 | //! This was designed as a minimalist utility for video games. No |
| 12 | //! promises are made about its quality, and if you use it for |
| 13 | //! cryptography you will get what you deserve. |
| 14 | //! |
| 15 | //! Works with `#![no_std]`, has no global state, no dependencies |
| 16 | //! apart from some in the unit tests, and is generally neato. |
| 17 | |
| 18 | #![forbid (unsafe_code)] |
| 19 | #![forbid (missing_docs)] |
| 20 | #![forbid (missing_debug_implementations)] |
| 21 | #![forbid (unused_results)] |
| 22 | #![no_std ] |
| 23 | use core::ops::Range; |
| 24 | |
| 25 | /// A PRNG producing a 32-bit output. |
| 26 | /// |
| 27 | /// The current implementation is `PCG-XSH-RR`. |
| 28 | #[derive(Copy, Clone, Debug, PartialEq)] |
| 29 | pub struct Rand32 { |
| 30 | state: u64, |
| 31 | inc: u64, |
| 32 | } |
| 33 | |
| 34 | impl Rand32 { |
| 35 | /// The default value for `increment`. |
| 36 | /// This is basically arbitrary, it comes from the |
| 37 | /// PCG reference C implementation: |
| 38 | /// https://github.com/imneme/pcg-c/blob/master/include/pcg_variants.h#L284 |
| 39 | pub const DEFAULT_INC: u64 = 1442695040888963407; |
| 40 | |
| 41 | /// This is the number that you have to Really Get Right. |
| 42 | /// |
| 43 | /// The value used here is from the PCG C implementation: |
| 44 | /// https://github.com/imneme/pcg-c/blob/master/include/pcg_variants.h#L278 |
| 45 | pub(crate) const MULTIPLIER: u64 = 6364136223846793005; |
| 46 | |
| 47 | /// Creates a new PRNG with the given seed and a default increment. |
| 48 | pub fn new(seed: u64) -> Self { |
| 49 | Self::new_inc(seed, Self::DEFAULT_INC) |
| 50 | } |
| 51 | |
| 52 | /// Creates a new PRNG. The two inputs, `seed` and `increment`, |
| 53 | /// determine what you get; `increment` basically selects which |
| 54 | /// sequence of all those possible the PRNG will produce, and the |
| 55 | /// `seed` selects where in that sequence you start. |
| 56 | /// |
| 57 | /// Both are arbitrary; increment must be an odd number but this |
| 58 | /// handles that for you |
| 59 | pub fn new_inc(seed: u64, increment: u64) -> Self { |
| 60 | let mut rng = Self { |
| 61 | state: 0, |
| 62 | inc: increment.wrapping_shl(1) | 1, |
| 63 | }; |
| 64 | // This initialization song-and-dance is a little odd, |
| 65 | // but seems to be just how things go. |
| 66 | let _ = rng.rand_u32(); |
| 67 | rng.state = rng.state.wrapping_add(seed); |
| 68 | let _ = rng.rand_u32(); |
| 69 | rng |
| 70 | } |
| 71 | |
| 72 | /// Returns the internal state of the PRNG. This allows |
| 73 | /// you to save a PRNG and create a new one that will resume |
| 74 | /// from the same spot in the sequence. |
| 75 | pub fn state(&self) -> (u64, u64) { |
| 76 | (self.state, self.inc) |
| 77 | } |
| 78 | |
| 79 | /// Creates a new PRNG from a saved state from `Rand32::state()`. |
| 80 | /// This is NOT quite the same as `new_inc()` because `new_inc()` does |
| 81 | /// a little extra setup work to initialize the state. |
| 82 | pub fn from_state(state: (u64, u64)) -> Self { |
| 83 | let (state, inc) = state; |
| 84 | Self { state, inc } |
| 85 | } |
| 86 | |
| 87 | /// Produces a random `u32` in the range `[0, u32::MAX]`. |
| 88 | pub fn rand_u32(&mut self) -> u32 { |
| 89 | let oldstate: u64 = self.state; |
| 90 | self.state = oldstate |
| 91 | .wrapping_mul(Self::MULTIPLIER) |
| 92 | .wrapping_add(self.inc); |
| 93 | let xorshifted: u32 = (((oldstate >> 18) ^ oldstate) >> 27) as u32; |
| 94 | let rot: u32 = (oldstate >> 59) as u32; |
| 95 | xorshifted.rotate_right(rot) |
| 96 | } |
| 97 | |
| 98 | /// Produces a random `i32` in the range `[i32::MIN, i32::MAX]`. |
| 99 | pub fn rand_i32(&mut self) -> i32 { |
| 100 | self.rand_u32() as i32 |
| 101 | } |
| 102 | |
| 103 | /// Produces a random `f32` in the range `[0.0, 1.0)`. |
| 104 | pub fn rand_float(&mut self) -> f32 { |
| 105 | // This impl was taken more or less from `rand`, see |
| 106 | // <https://docs.rs/rand/0.7.0/src/rand/distributions/float.rs.html#104-117> |
| 107 | // There MAY be better ways to do this, see: |
| 108 | // https://mumble.net/~campbell/2014/04/28/uniform-random-float |
| 109 | // https://mumble.net/~campbell/2014/04/28/random_real.c |
| 110 | // https://github.com/Lokathor/randomize/issues/34 |
| 111 | const TOTAL_BITS: u32 = 32; |
| 112 | const PRECISION: u32 = core::f32::MANTISSA_DIGITS + 1; |
| 113 | const MANTISSA_SCALE: f32 = 1.0 / ((1u32 << PRECISION) as f32); |
| 114 | let mut u = self.rand_u32(); |
| 115 | u >>= TOTAL_BITS - PRECISION; |
| 116 | u as f32 * MANTISSA_SCALE |
| 117 | } |
| 118 | |
| 119 | /// Produces a random within the given bounds. Like any `Range`, |
| 120 | /// it includes the lower bound and excludes the upper one. |
| 121 | /// |
| 122 | /// This should be faster than `Self::rand() % end + start`, but the |
| 123 | /// real advantage is it's more convenient. Requires that |
| 124 | /// `range.end <= range.start`. |
| 125 | pub fn rand_range(&mut self, range: Range<u32>) -> u32 { |
| 126 | // This is harder to do well than it looks, it seems. I don't |
| 127 | // trust Lokathor's implementation 'cause I don't understand |
| 128 | // it, so I went to numpy's, which points me to "Lemire's |
| 129 | // rejection algorithm": http://arxiv.org/abs/1805.10941 |
| 130 | // |
| 131 | // Algorithms 3, 4 and 5 in that paper all seem fine modulo |
| 132 | // minor performance differences, so this is algorithm 5. |
| 133 | // It uses numpy's implementation, `buffered_bounded_lemire_uint32()` |
| 134 | |
| 135 | debug_assert!(range.start < range.end); |
| 136 | let range_starting_from_zero = 0..(range.end - range.start); |
| 137 | |
| 138 | let s: u32 = range_starting_from_zero.end; |
| 139 | let mut m: u64 = u64::from(self.rand_u32()) * u64::from(s); |
| 140 | let mut leftover: u32 = (m & 0xFFFF_FFFF) as u32; |
| 141 | |
| 142 | if leftover < s { |
| 143 | // TODO: verify the wrapping_neg() here |
| 144 | let threshold: u32 = s.wrapping_neg() % s; |
| 145 | while leftover < threshold { |
| 146 | m = u64::from(self.rand_u32()).wrapping_mul(u64::from(s)); |
| 147 | leftover = (m & 0xFFFF_FFFF) as u32; |
| 148 | } |
| 149 | } |
| 150 | (m >> 32) as u32 + range.start |
| 151 | } |
| 152 | } |
| 153 | |
| 154 | /// A PRNG producing a 64-bit output. |
| 155 | /// |
| 156 | /// The current implementation is `PCG-XSH-RR`. |
| 157 | // BUGGO: The recommended algorithm is PCG-XSL-RR? |
| 158 | // See https://github.com/imneme/pcg-c/blob/master/include/pcg_variants.h#L2405 |
| 159 | // Not sure if it matters? |
| 160 | #[derive(Copy, Clone, Debug, PartialEq)] |
| 161 | pub struct Rand64 { |
| 162 | state: u128, |
| 163 | inc: u128, |
| 164 | } |
| 165 | |
| 166 | impl Rand64 { |
| 167 | /// The default value for `increment`. |
| 168 | /// |
| 169 | /// The value used here is from the PCG default C implementation: http://www.pcg-random.org/download.html |
| 170 | pub const DEFAULT_INC: u128 = 0x2FE0E169_FFBD06E3_5BC307BD_4D2F814F; |
| 171 | |
| 172 | /// This is the number that you have to Really Get Right. |
| 173 | /// |
| 174 | /// The value used here is from the PCG C implementation: |
| 175 | /// https://github.com/imneme/pcg-c/blob/master/include/pcg_variants.h#L288 |
| 176 | pub(crate) const MULTIPLIER: u128 = 47026247687942121848144207491837523525; |
| 177 | |
| 178 | /// Creates a new PRNG with the given seed and a default increment. |
| 179 | pub fn new(seed: u128) -> Self { |
| 180 | Self::new_inc(seed, Self::DEFAULT_INC) |
| 181 | } |
| 182 | |
| 183 | /// Same as `Rand32::new_inc()` |
| 184 | pub fn new_inc(seed: u128, increment: u128) -> Self { |
| 185 | let mut rng = Self { |
| 186 | state: 0, |
| 187 | inc: increment.wrapping_shl(1) | 1, |
| 188 | }; |
| 189 | let _ = rng.rand_u64(); |
| 190 | rng.state = rng.state.wrapping_add(seed); |
| 191 | let _ = rng.rand_u64(); |
| 192 | rng |
| 193 | } |
| 194 | |
| 195 | /// Returns the internal state of the PRNG. This allows |
| 196 | /// you to save a PRNG and create a new one that will resume |
| 197 | /// from the same spot in the sequence. |
| 198 | pub fn state(&self) -> (u128, u128) { |
| 199 | (self.state, self.inc) |
| 200 | } |
| 201 | |
| 202 | /// Creates a new PRNG from a saved state from `Rand32::state()`. |
| 203 | /// This is NOT quite the same as `new_inc()` because `new_inc()` does |
| 204 | /// a little extra setup work to initialize the state. |
| 205 | pub fn from_state(state: (u128, u128)) -> Self { |
| 206 | let (state, inc) = state; |
| 207 | Self { state, inc } |
| 208 | } |
| 209 | |
| 210 | /// Produces a random `u64` in the range`[0, u64::MAX]`. |
| 211 | pub fn rand_u64(&mut self) -> u64 { |
| 212 | let oldstate: u128 = self.state; |
| 213 | self.state = oldstate |
| 214 | .wrapping_mul(Self::MULTIPLIER) |
| 215 | .wrapping_add(self.inc); |
| 216 | let xorshifted: u64 = (((oldstate >> 29) ^ oldstate) >> 58) as u64; |
| 217 | let rot: u32 = (oldstate >> 122) as u32; |
| 218 | xorshifted.rotate_right(rot) |
| 219 | } |
| 220 | |
| 221 | /// Produces a random `i64` in the range `[i64::MIN, i64::MAX]`. |
| 222 | pub fn rand_i64(&mut self) -> i64 { |
| 223 | self.rand_u64() as i64 |
| 224 | } |
| 225 | |
| 226 | /// Produces a random `f64` in the range `[0.0, 1.0)`. |
| 227 | pub fn rand_float(&mut self) -> f64 { |
| 228 | const TOTAL_BITS: u32 = 64; |
| 229 | const PRECISION: u32 = core::f64::MANTISSA_DIGITS + 1; |
| 230 | const MANTISSA_SCALE: f64 = 1.0 / ((1u64 << PRECISION) as f64); |
| 231 | let mut u = self.rand_u64(); |
| 232 | u >>= TOTAL_BITS - PRECISION; |
| 233 | u as f64 * MANTISSA_SCALE |
| 234 | } |
| 235 | |
| 236 | /// Produces a random within the given bounds. Like any `Range`, |
| 237 | /// it includes the lower bound and excludes the upper one. |
| 238 | /// |
| 239 | /// This should be faster than `Self::rand() % end + start`, but the |
| 240 | /// real advantage is it's more convenient. Requires that |
| 241 | /// `range.end <= range.start`. |
| 242 | pub fn rand_range(&mut self, range: Range<u64>) -> u64 { |
| 243 | // Same as `Rand32::rand_range()` |
| 244 | debug_assert!(range.start < range.end); |
| 245 | let range_starting_from_zero = 0..(range.end - range.start); |
| 246 | |
| 247 | let s: u64 = range_starting_from_zero.end; |
| 248 | let mut m: u128 = u128::from(self.rand_u64()) * u128::from(s); |
| 249 | let mut leftover: u64 = (m & 0xFFFFFFFF_FFFFFFFF) as u64; |
| 250 | |
| 251 | if leftover < s { |
| 252 | // TODO: Verify the wrapping_negate() here |
| 253 | let threshold: u64 = s.wrapping_neg() % s; |
| 254 | while leftover < threshold { |
| 255 | m = u128::from(self.rand_u64()) * u128::from(s); |
| 256 | leftover = (m & 0xFFFFFFFF_FFFFFFFF) as u64; |
| 257 | } |
| 258 | } |
| 259 | (m.wrapping_shr(64)) as u64 + range.start |
| 260 | } |
| 261 | } |
| 262 | |
| 263 | #[cfg (test)] |
| 264 | mod tests { |
| 265 | use super::*; |
| 266 | use randomize::{self, PCG32, PCG64}; |
| 267 | |
| 268 | #[test] |
| 269 | fn test_rand32_vs_randomize() { |
| 270 | // Generate some random numbers and validate them against |
| 271 | // a known-good generator. |
| 272 | { |
| 273 | let seed = 54321; |
| 274 | let mut r1 = Rand32::new(seed); |
| 275 | let mut r2 = PCG32::seed(seed, Rand32::DEFAULT_INC); |
| 276 | for _ in 0..1000 { |
| 277 | assert_eq!(r1.rand_u32(), r2.next_u32()); |
| 278 | assert_eq!(r1.rand_i32(), r2.next_u32() as i32); |
| 279 | } |
| 280 | } |
| 281 | |
| 282 | { |
| 283 | let seed = 3141592653; |
| 284 | let inc = 0xDEADBEEF; |
| 285 | let mut r1 = Rand32::new_inc(seed, inc); |
| 286 | let mut r2 = PCG32::seed(seed, inc); |
| 287 | for _ in 0..1000 { |
| 288 | assert_eq!(r1.rand_u32(), r2.next_u32()); |
| 289 | assert_eq!(r1.rand_i32(), r2.next_u32() as i32); |
| 290 | } |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | #[test] |
| 295 | fn test_rand64_vs_randomize() { |
| 296 | // Generate some random numbers and validate them against |
| 297 | // a known-good generator. |
| 298 | { |
| 299 | let seed = 54321; |
| 300 | let mut r1 = Rand64::new(seed); |
| 301 | let mut r2 = PCG64::seed(seed, Rand64::DEFAULT_INC); |
| 302 | for _ in 0..1000 { |
| 303 | assert_eq!(r1.rand_u64(), r2.next_u64()); |
| 304 | assert_eq!(r1.rand_i64(), r2.next_u64() as i64); |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | { |
| 309 | let seed = 3141592653; |
| 310 | let inc = 0xDEADBEEF; |
| 311 | let mut r1 = Rand64::new_inc(seed, inc); |
| 312 | let mut r2 = PCG64::seed(seed, inc); |
| 313 | for _ in 0..1000 { |
| 314 | assert_eq!(r1.rand_u64(), r2.next_u64()); |
| 315 | assert_eq!(r1.rand_i64(), r2.next_u64() as i64); |
| 316 | } |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | #[test] |
| 321 | fn test_float32() { |
| 322 | { |
| 323 | let seed = 2718281828; |
| 324 | let mut r1 = Rand32::new(seed); |
| 325 | let mut r2 = PCG32::seed(seed, Rand32::DEFAULT_INC); |
| 326 | for _ in 0..1000 { |
| 327 | // First just make sure they both work with randomize's |
| 328 | // f32 conversion function -- sanity checks. |
| 329 | let i1 = r1.rand_u32(); |
| 330 | let i2 = r2.next_u32(); |
| 331 | assert_eq!(i1, i2); |
| 332 | let f1 = randomize::f32_half_open_right(i1); |
| 333 | let f2 = randomize::f32_half_open_right(i2); |
| 334 | // We can directly compare floats 'cause we do no math, it's |
| 335 | // literally the same bitwise algorithm with the same inputs. |
| 336 | assert_eq!(f1, f2); |
| 337 | |
| 338 | // Make sure result is in [0.0, 1.0) |
| 339 | assert!(f1 >= 0.0); |
| 340 | assert!(f1 < 1.0); |
| 341 | } |
| 342 | |
| 343 | // At least make sure our float's from rand_float() are in the valid range. |
| 344 | for _ in 0..1000 { |
| 345 | let f1 = r1.rand_float(); |
| 346 | assert!(f1 >= 0.0); |
| 347 | assert!(f1 < 1.0); |
| 348 | } |
| 349 | |
| 350 | /* |
| 351 | TODO: Randomize changed its int-to-float conversion functions and now they don't |
| 352 | match ours. |
| 353 | for _ in 0..1000 { |
| 354 | // Now make sure our own float conversion function works. |
| 355 | let f1 = r1.rand_float(); |
| 356 | //let f2 = randomize::f32_half_open_right(r2.next_u32()); |
| 357 | let f2 = randomize::f32_open(r2.next_u32()); |
| 358 | assert_eq!(f1, f2); |
| 359 | assert!(f1 >= 0.0); |
| 360 | assert!(f1 < 1.0); |
| 361 | } |
| 362 | */ |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | #[test] |
| 367 | fn test_float64() { |
| 368 | { |
| 369 | let seed = 2718281828; |
| 370 | let mut r1 = Rand64::new(seed); |
| 371 | let mut r2 = PCG64::seed(seed, Rand64::DEFAULT_INC); |
| 372 | for _ in 0..1000 { |
| 373 | // First just make sure they both work with randomize's |
| 374 | // f64 conversion function -- sanity checks. |
| 375 | let i1 = r1.rand_u64(); |
| 376 | let i2 = r2.next_u64(); |
| 377 | assert_eq!(i1, i2); |
| 378 | let f1 = randomize::f64_half_open_right(i1); |
| 379 | let f2 = randomize::f64_half_open_right(i2); |
| 380 | // We can directly compare floats 'cause we do no math, it's |
| 381 | // literally the same bitwise algorithm with the same inputs. |
| 382 | assert_eq!(f1, f2); |
| 383 | |
| 384 | // Make sure result is in [0.0, 1.0) |
| 385 | assert!(f1 >= 0.0); |
| 386 | assert!(f1 < 1.0); |
| 387 | } |
| 388 | |
| 389 | // At least make sure our float's from rand_float() are in the valid range. |
| 390 | for _ in 0..1000 { |
| 391 | let f1 = r1.rand_float(); |
| 392 | assert!(f1 >= 0.0); |
| 393 | assert!(f1 < 1.0); |
| 394 | } |
| 395 | |
| 396 | /* |
| 397 | TODO: Randomize changed its int-to-float conversion functions and now they don't |
| 398 | match ours. |
| 399 | for _ in 0..1000 { |
| 400 | // Now make sure our own float conversion function works. |
| 401 | let f1 = r1.rand_float(); |
| 402 | //let f2 = randomize::f32_half_open_right(r2.next_u32()); |
| 403 | let f2 = randomize::f32_open(r2.next_u32()); |
| 404 | assert_eq!(f1, f2); |
| 405 | assert!(f1 >= 0.0); |
| 406 | assert!(f1 < 1.0); |
| 407 | } |
| 408 | */ |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | #[test] |
| 413 | fn test_randrange32() { |
| 414 | // Make sure ranges are valid and in the given range |
| 415 | let seed = 2342_3141; |
| 416 | let mut r1 = Rand32::new(seed); |
| 417 | for _ in 0..1000 { |
| 418 | // Generate our bounds at random |
| 419 | let a = r1.rand_u32(); |
| 420 | let b = r1.rand_u32(); |
| 421 | if a == b { |
| 422 | continue; |
| 423 | } |
| 424 | let (low, high) = if a < b { (a, b) } else { (b, a) }; |
| 425 | |
| 426 | // Get a number in that range |
| 427 | let in_range = r1.rand_range(low..high); |
| 428 | assert!(in_range >= low); |
| 429 | assert!(in_range < high); |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | #[test] |
| 434 | fn test_randrange64() { |
| 435 | // Make sure ranges are valid and in the given range |
| 436 | let seed = 2342_2718; |
| 437 | let mut r1 = Rand64::new(seed); |
| 438 | for _ in 0..1000 { |
| 439 | // Generate our bounds at random |
| 440 | let a = r1.rand_u64(); |
| 441 | let b = r1.rand_u64(); |
| 442 | if a == b { |
| 443 | continue; |
| 444 | } |
| 445 | let (low, high) = if a < b { (a, b) } else { (b, a) }; |
| 446 | |
| 447 | // Get a number in that range |
| 448 | let in_range = r1.rand_range(low..high); |
| 449 | assert!(in_range >= low); |
| 450 | assert!(in_range < high); |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | #[test] |
| 455 | fn test_rand32_vs_rand() { |
| 456 | use rand_core::RngCore; |
| 457 | use rand_pcg; |
| 458 | { |
| 459 | let seed = 54321; |
| 460 | let mut r1 = Rand32::new(seed); |
| 461 | let mut r2 = rand_pcg::Pcg32::new(seed, Rand32::DEFAULT_INC); |
| 462 | for _ in 0..1000 { |
| 463 | assert_eq!(r1.rand_u32(), r2.next_u32()); |
| 464 | } |
| 465 | } |
| 466 | |
| 467 | { |
| 468 | let seed = 3141592653; |
| 469 | let inc = 0xDEADBEEF; |
| 470 | let mut r1 = Rand32::new_inc(seed, inc); |
| 471 | let mut r2 = rand_pcg::Pcg32::new(seed, inc); |
| 472 | for _ in 0..1000 { |
| 473 | assert_eq!(r1.rand_u32(), r2.next_u32()); |
| 474 | } |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | // This doesn't work 'cause for 64-bit output `rand` uses |
| 479 | // PCG-XSL-RR |
| 480 | // and we use |
| 481 | // PCG-XSH-RR |
| 482 | /* |
| 483 | #[test] |
| 484 | fn test_rand64_vs_rand() { |
| 485 | use rand_pcg; |
| 486 | use rand_core::RngCore; |
| 487 | { |
| 488 | let seed = 54321; |
| 489 | let mut r1 = Rand64::new(seed); |
| 490 | let mut r2 = rand_pcg::Pcg64::new(seed, Rand64::DEFAULT_INC); |
| 491 | for _ in 0..1000 { |
| 492 | assert_eq!(r1.rand(), r2.next_u64()); |
| 493 | } |
| 494 | } |
| 495 | |
| 496 | { |
| 497 | let seed = 3141592653; |
| 498 | let inc = 0xDEADBEEF; |
| 499 | let mut r1 = Rand64::new_inc(seed, inc); |
| 500 | let mut r2 = rand_pcg::Pcg64::new(seed, inc); |
| 501 | for _ in 0..1000 { |
| 502 | assert_eq!(r1.rand(), r2.next_u64()); |
| 503 | } |
| 504 | } |
| 505 | } |
| 506 | */ |
| 507 | |
| 508 | // Test vs. random-fast-rng, which I will call rfr |
| 509 | // rfr's float conversion uses yet a different algorithm |
| 510 | // than ours, so we can't really check that. |
| 511 | #[test] |
| 512 | fn test_rand32_vs_rfr() { |
| 513 | use random_fast_rng as rfr; |
| 514 | use rfr::Random; |
| 515 | { |
| 516 | let seed = 54321; |
| 517 | let mut r1 = Rand32::new(seed); |
| 518 | let mut r2 = rfr::FastRng::seed(seed, Rand32::DEFAULT_INC); |
| 519 | for _ in 0..1000 { |
| 520 | assert_eq!(r1.rand_u32(), r2.get_u32()); |
| 521 | } |
| 522 | } |
| 523 | |
| 524 | { |
| 525 | let seed = 3141592653; |
| 526 | let inc = 0xDEADBEEF; |
| 527 | let mut r1 = Rand32::new_inc(seed, inc); |
| 528 | let mut r2 = rfr::FastRng::seed(seed, inc); |
| 529 | for _ in 0..1000 { |
| 530 | assert_eq!(r1.rand_u32(), r2.get_u32()); |
| 531 | } |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | /// Make sure that saving a RNG state and restoring |
| 536 | /// it works. |
| 537 | /// See https://todo.sr.ht/~icefox/oorandom/1 |
| 538 | #[test] |
| 539 | fn test_save_restore() { |
| 540 | { |
| 541 | let seed = 54321; |
| 542 | let mut r1 = Rand32::new(seed); |
| 543 | let s1 = r1.state(); |
| 544 | let mut r2 = Rand32::from_state(s1); |
| 545 | assert_eq!(r1, r2); |
| 546 | for _ in 0..1000 { |
| 547 | assert_eq!(r1.rand_u32(), r2.rand_u32()); |
| 548 | } |
| 549 | } |
| 550 | |
| 551 | { |
| 552 | let seed = 3141592653; |
| 553 | let inc = 0xDEADBEEF; |
| 554 | let mut r1 = Rand32::new_inc(seed, inc); |
| 555 | let s1 = r1.state(); |
| 556 | let mut r2 = Rand32::from_state(s1); |
| 557 | assert_eq!(r1, r2); |
| 558 | for _ in 0..1000 { |
| 559 | assert_eq!(r1.rand_u32(), r2.rand_u32()); |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | { |
| 564 | let seed = 54321; |
| 565 | let mut r1 = Rand64::new(seed); |
| 566 | let s1 = r1.state(); |
| 567 | let mut r2 = Rand64::from_state(s1); |
| 568 | assert_eq!(r1, r2); |
| 569 | for _ in 0..1000 { |
| 570 | assert_eq!(r1.rand_u64(), r2.rand_u64()); |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | { |
| 575 | let seed = 3141592653; |
| 576 | let inc = 0xDEADBEEF; |
| 577 | let mut r1 = Rand64::new_inc(seed, inc); |
| 578 | let s1 = r1.state(); |
| 579 | let mut r2 = Rand64::from_state(s1); |
| 580 | assert_eq!(r1, r2); |
| 581 | for _ in 0..1000 { |
| 582 | assert_eq!(r1.rand_u64(), r2.rand_u64()); |
| 583 | } |
| 584 | } |
| 585 | } |
| 586 | } |
| 587 | |