1 | /*! |
2 | The one-dimensional coordinate system abstraction. |
3 | |
4 | Plotters build complex coordinate system with a combinator pattern and all the coordinate system is |
5 | built from the one dimensional coordinate system. This module defines the fundamental types used by |
6 | the one-dimensional coordinate system. |
7 | |
8 | The key trait for a one dimensional coordinate is [Ranged](trait.Ranged.html). This trait describes a |
9 | set of values which served as the 1D coordinate system in Plotters. In order to extend the coordinate system, |
10 | the new coordinate spec must implement this trait. |
11 | |
12 | The following example demonstrate how to make a customized coordinate specification |
13 | ``` |
14 | use plotters::coord::ranged1d::{Ranged, DefaultFormatting, KeyPointHint}; |
15 | use std::ops::Range; |
16 | |
17 | struct ZeroToOne; |
18 | |
19 | impl Ranged for ZeroToOne { |
20 | type ValueType = f64; |
21 | type FormatOption = DefaultFormatting; |
22 | |
23 | fn map(&self, &v: &f64, pixel_range: (i32, i32)) -> i32 { |
24 | let size = pixel_range.1 - pixel_range.0; |
25 | let v = v.min(1.0).max(0.0); |
26 | ((size as f64) * v).round() as i32 |
27 | } |
28 | |
29 | fn key_points<Hint:KeyPointHint>(&self, hint: Hint) -> Vec<f64> { |
30 | if hint.max_num_points() < 3 { |
31 | vec![] |
32 | } else { |
33 | vec![0.0, 0.5, 1.0] |
34 | } |
35 | } |
36 | |
37 | fn range(&self) -> Range<f64> { |
38 | 0.0..1.0 |
39 | } |
40 | } |
41 | |
42 | use plotters::prelude::*; |
43 | |
44 | let mut buffer = vec![0; 1024 * 768 * 3]; |
45 | let root = BitMapBackend::with_buffer(&mut buffer, (1024, 768)).into_drawing_area(); |
46 | |
47 | let chart = ChartBuilder::on(&root) |
48 | .build_cartesian_2d(ZeroToOne, ZeroToOne) |
49 | .unwrap(); |
50 | |
51 | ``` |
52 | */ |
53 | use std::fmt::Debug; |
54 | use std::ops::Range; |
55 | |
56 | pub(super) mod combinators; |
57 | pub(super) mod types; |
58 | |
59 | mod discrete; |
60 | pub use discrete::{DiscreteRanged, IntoSegmentedCoord, SegmentValue, SegmentedCoord}; |
61 | |
62 | /// Since stable Rust doesn't have specialization, it's very hard to make our own trait that |
63 | /// automatically implemented the value formatter. This trait uses as a marker indicates if we |
64 | /// should automatically implement the default value formater based on it's `Debug` trait |
65 | pub trait DefaultValueFormatOption {} |
66 | |
67 | /// This makes the ranged coord uses the default `Debug` based formatting |
68 | pub struct DefaultFormatting; |
69 | impl DefaultValueFormatOption for DefaultFormatting {} |
70 | |
71 | /// This markers prevent Plotters to implement the default `Debug` based formatting |
72 | pub struct NoDefaultFormatting; |
73 | impl DefaultValueFormatOption for NoDefaultFormatting {} |
74 | |
75 | /// Determine how we can format a value in a coordinate system by default |
76 | pub trait ValueFormatter<V> { |
77 | /// Format the value |
78 | fn format(_value: &V) -> String { |
79 | panic!("Unimplemented formatting method" ); |
80 | } |
81 | /// Determine how we can format a value in a coordinate system by default |
82 | fn format_ext(&self, value: &V) -> String { |
83 | Self::format(value) |
84 | } |
85 | } |
86 | |
87 | // By default the value is formatted by the debug trait |
88 | impl<R: Ranged<FormatOption = DefaultFormatting>> ValueFormatter<R::ValueType> for R |
89 | where |
90 | R::ValueType: Debug, |
91 | { |
92 | fn format(value: &R::ValueType) -> String { |
93 | format!("{:?}" , value) |
94 | } |
95 | } |
96 | |
97 | /// Specify the weight of key points. |
98 | pub enum KeyPointWeight { |
99 | /// Allows only bold key points |
100 | Bold, |
101 | /// Allows any key points |
102 | Any, |
103 | } |
104 | |
105 | impl KeyPointWeight { |
106 | /// Check if this key point weight setting allows light point |
107 | pub fn allow_light_points(&self) -> bool { |
108 | match self { |
109 | KeyPointWeight::Bold => false, |
110 | KeyPointWeight::Any => true, |
111 | } |
112 | } |
113 | } |
114 | |
115 | /// The trait for a hint provided to the key point algorithm used by the coordinate specs. |
116 | /// The most important constraint is the `max_num_points` which means the algorithm could emit no more than specific number of key points |
117 | /// `weight` is used to determine if this is used as a bold grid line or light grid line |
118 | /// `bold_points` returns the max number of coresponding bold grid lines |
119 | pub trait KeyPointHint { |
120 | /// Returns the max number of key points |
121 | fn max_num_points(&self) -> usize; |
122 | /// Returns the weight for this hint |
123 | fn weight(&self) -> KeyPointWeight; |
124 | /// Returns the point number constraint for the bold points |
125 | fn bold_points(&self) -> usize { |
126 | self.max_num_points() |
127 | } |
128 | } |
129 | |
130 | impl KeyPointHint for usize { |
131 | fn max_num_points(&self) -> usize { |
132 | *self |
133 | } |
134 | |
135 | fn weight(&self) -> KeyPointWeight { |
136 | KeyPointWeight::Any |
137 | } |
138 | } |
139 | |
140 | /// The key point hint indicates we only need key point for the bold grid lines |
141 | pub struct BoldPoints(pub usize); |
142 | |
143 | impl KeyPointHint for BoldPoints { |
144 | fn max_num_points(&self) -> usize { |
145 | self.0 |
146 | } |
147 | |
148 | fn weight(&self) -> KeyPointWeight { |
149 | KeyPointWeight::Bold |
150 | } |
151 | } |
152 | |
153 | /// The key point hint indicates that we are using the key points for the light grid lines |
154 | pub struct LightPoints { |
155 | bold_points_num: usize, |
156 | light_limit: usize, |
157 | } |
158 | |
159 | impl LightPoints { |
160 | /// Create a new light key point hind |
161 | pub fn new(bold_count: usize, requested: usize) -> Self { |
162 | Self { |
163 | bold_points_num: bold_count, |
164 | light_limit: requested, |
165 | } |
166 | } |
167 | } |
168 | |
169 | impl KeyPointHint for LightPoints { |
170 | fn max_num_points(&self) -> usize { |
171 | self.light_limit |
172 | } |
173 | |
174 | fn bold_points(&self) -> usize { |
175 | self.bold_points_num |
176 | } |
177 | |
178 | fn weight(&self) -> KeyPointWeight { |
179 | KeyPointWeight::Any |
180 | } |
181 | } |
182 | |
183 | /// The trait that indicates we have a ordered and ranged value |
184 | /// Which is used to describe any 1D axis. |
185 | pub trait Ranged { |
186 | /// This marker decides if Plotters default [ValueFormatter](trait.ValueFormatter.html) implementation should be used. |
187 | /// This associated type can be one of the following two types: |
188 | /// - [DefaultFormatting](struct.DefaultFormatting.html) will allow Plotters to automatically impl |
189 | /// the formatter based on `Debug` trait, if `Debug` trait is not impl for the `Self::Value`, |
190 | /// [ValueFormatter](trait.ValueFormatter.html) will not impl unless you impl it manually. |
191 | /// |
192 | /// - [NoDefaultFormatting](struct.NoDefaultFormatting.html) Disable the automatic `Debug` |
193 | /// based value formatting. Thus you have to impl the |
194 | /// [ValueFormatter](trait.ValueFormatter.html) manually. |
195 | /// |
196 | type FormatOption: DefaultValueFormatOption; |
197 | |
198 | /// The type of this value in this range specification |
199 | type ValueType; |
200 | |
201 | /// This function maps the value to i32, which is the drawing coordinate |
202 | fn map(&self, value: &Self::ValueType, limit: (i32, i32)) -> i32; |
203 | |
204 | /// This function gives the key points that we can draw a grid based on this |
205 | fn key_points<Hint: KeyPointHint>(&self, hint: Hint) -> Vec<Self::ValueType>; |
206 | |
207 | /// Get the range of this value |
208 | fn range(&self) -> Range<Self::ValueType>; |
209 | |
210 | /// This function provides the on-axis part of its range |
211 | #[allow (clippy::range_plus_one)] |
212 | fn axis_pixel_range(&self, limit: (i32, i32)) -> Range<i32> { |
213 | if limit.0 < limit.1 { |
214 | limit.0..limit.1 |
215 | } else { |
216 | limit.1..limit.0 |
217 | } |
218 | } |
219 | } |
220 | |
221 | /// The trait indicates the ranged value can be map reversely, which means |
222 | /// an pixel-based coordinate is given, it's possible to figure out the underlying |
223 | /// logic value. |
224 | pub trait ReversibleRanged: Ranged { |
225 | /// Perform the reverse mapping |
226 | fn unmap(&self, input: i32, limit: (i32, i32)) -> Option<Self::ValueType>; |
227 | } |
228 | |
229 | /// The trait for the type that can be converted into a ranged coordinate axis |
230 | pub trait AsRangedCoord: Sized { |
231 | /// Type to describe a coordinate system |
232 | type CoordDescType: Ranged<ValueType = Self::Value> + From<Self>; |
233 | /// Type for values in the given coordinate system |
234 | type Value; |
235 | } |
236 | |
237 | impl<T> AsRangedCoord for T |
238 | where |
239 | T: Ranged, |
240 | { |
241 | type CoordDescType = T; |
242 | type Value = T::ValueType; |
243 | } |
244 | |