| 1 | use crate::BackendCoord; |
| 2 | |
| 3 | // Compute the tanginal and normal vectors of the given straight line. |
| 4 | fn get_dir_vector(from: BackendCoord, to: BackendCoord, flag: bool) -> ((f64, f64), (f64, f64)) { |
| 5 | let v = (i64::from(to.0 - from.0), i64::from(to.1 - from.1)); |
| 6 | let l = ((v.0 * v.0 + v.1 * v.1) as f64).sqrt(); |
| 7 | |
| 8 | let v = (v.0 as f64 / l, v.1 as f64 / l); |
| 9 | |
| 10 | if flag { |
| 11 | (v, (v.1, -v.0)) |
| 12 | } else { |
| 13 | (v, (-v.1, v.0)) |
| 14 | } |
| 15 | } |
| 16 | |
| 17 | // Compute the polygonized vertex of the given angle |
| 18 | // d is the distance between the polygon edge and the actual line. |
| 19 | // d can be negative, this will emit a vertex on the other side of the line. |
| 20 | fn compute_polygon_vertex(triple: &[BackendCoord; 3], d: f64, buf: &mut Vec<BackendCoord>) { |
| 21 | buf.clear(); |
| 22 | |
| 23 | // Compute the tanginal and normal vectors of the given straight line. |
| 24 | let (a_t, a_n) = get_dir_vector(triple[0], triple[1], false); |
| 25 | let (b_t, b_n) = get_dir_vector(triple[2], triple[1], true); |
| 26 | |
| 27 | // Compute a point that is d away from the line for line a and line b. |
| 28 | let a_p = ( |
| 29 | f64::from(triple[1].0) + d * a_n.0, |
| 30 | f64::from(triple[1].1) + d * a_n.1, |
| 31 | ); |
| 32 | let b_p = ( |
| 33 | f64::from(triple[1].0) + d * b_n.0, |
| 34 | f64::from(triple[1].1) + d * b_n.1, |
| 35 | ); |
| 36 | |
| 37 | // Check if 3 points are colinear. If so, just emit the point. |
| 38 | if a_t.1 * b_t.0 == a_t.0 * b_t.1 { |
| 39 | buf.push((a_p.0 as i32, a_p.1 as i32)); |
| 40 | return; |
| 41 | } |
| 42 | |
| 43 | // So we are actually computing the intersection of two lines: |
| 44 | // a_p + u * a_t and b_p + v * b_t. |
| 45 | // We can solve the following vector equation: |
| 46 | // u * a_t + a_p = v * b_t + b_p |
| 47 | // |
| 48 | // which is actually a equation system: |
| 49 | // u * a_t.0 - v * b_t.0 = b_p.0 - a_p.0 |
| 50 | // u * a_t.1 - v * b_t.1 = b_p.1 - a_p.1 |
| 51 | |
| 52 | // The following vars are coefficients of the linear equation system. |
| 53 | // a0*u + b0*v = c0 |
| 54 | // a1*u + b1*v = c1 |
| 55 | // in which x and y are the coordinates that two polygon edges intersect. |
| 56 | |
| 57 | let a0 = a_t.0; |
| 58 | let b0 = -b_t.0; |
| 59 | let c0 = b_p.0 - a_p.0; |
| 60 | let a1 = a_t.1; |
| 61 | let b1 = -b_t.1; |
| 62 | let c1 = b_p.1 - a_p.1; |
| 63 | |
| 64 | let mut x = f64::INFINITY; |
| 65 | let mut y = f64::INFINITY; |
| 66 | |
| 67 | // Well if the determinant is not 0, then we can actuall get a intersection point. |
| 68 | if (a0 * b1 - a1 * b0).abs() > f64::EPSILON { |
| 69 | let u = (c0 * b1 - c1 * b0) / (a0 * b1 - a1 * b0); |
| 70 | |
| 71 | x = a_p.0 + u * a_t.0; |
| 72 | y = a_p.1 + u * a_t.1; |
| 73 | } |
| 74 | |
| 75 | let cross_product = a_t.0 * b_t.1 - a_t.1 * b_t.0; |
| 76 | if (cross_product < 0.0 && d < 0.0) || (cross_product > 0.0 && d > 0.0) { |
| 77 | // Then we are at the outter side of the angle, so we need to consider a cap. |
| 78 | let dist_square = (x - triple[1].0 as f64).powi(2) + (y - triple[1].1 as f64).powi(2); |
| 79 | // If the point is too far away from the line, we need to cap it. |
| 80 | if dist_square > d * d * 16.0 { |
| 81 | buf.push((a_p.0.round() as i32, a_p.1.round() as i32)); |
| 82 | buf.push((b_p.0.round() as i32, b_p.1.round() as i32)); |
| 83 | return; |
| 84 | } |
| 85 | } |
| 86 | |
| 87 | buf.push((x.round() as i32, y.round() as i32)); |
| 88 | } |
| 89 | |
| 90 | fn traverse_vertices<'a>( |
| 91 | mut vertices: impl Iterator<Item = &'a BackendCoord>, |
| 92 | width: u32, |
| 93 | mut op: impl FnMut(BackendCoord), |
| 94 | ) { |
| 95 | let mut a = vertices.next().unwrap(); |
| 96 | let mut b = vertices.next().unwrap(); |
| 97 | |
| 98 | while a == b { |
| 99 | a = b; |
| 100 | if let Some(new_b) = vertices.next() { |
| 101 | b = new_b; |
| 102 | } else { |
| 103 | return; |
| 104 | } |
| 105 | } |
| 106 | |
| 107 | let (_, n) = get_dir_vector(*a, *b, false); |
| 108 | |
| 109 | op(( |
| 110 | (f64::from(a.0) + n.0 * f64::from(width) / 2.0).round() as i32, |
| 111 | (f64::from(a.1) + n.1 * f64::from(width) / 2.0).round() as i32, |
| 112 | )); |
| 113 | |
| 114 | let mut recent = [(0, 0), *a, *b]; |
| 115 | let mut vertex_buf = Vec::with_capacity(3); |
| 116 | |
| 117 | for p in vertices { |
| 118 | if *p == recent[2] { |
| 119 | continue; |
| 120 | } |
| 121 | recent.swap(0, 1); |
| 122 | recent.swap(1, 2); |
| 123 | recent[2] = *p; |
| 124 | compute_polygon_vertex(&recent, f64::from(width) / 2.0, &mut vertex_buf); |
| 125 | vertex_buf.iter().cloned().for_each(&mut op); |
| 126 | } |
| 127 | |
| 128 | let b = recent[1]; |
| 129 | let a = recent[2]; |
| 130 | |
| 131 | let (_, n) = get_dir_vector(a, b, true); |
| 132 | |
| 133 | op(( |
| 134 | (f64::from(a.0) + n.0 * f64::from(width) / 2.0).round() as i32, |
| 135 | (f64::from(a.1) + n.1 * f64::from(width) / 2.0).round() as i32, |
| 136 | )); |
| 137 | } |
| 138 | |
| 139 | /// Covert a path with >1px stroke width into polygon. |
| 140 | pub fn polygonize(vertices: &[BackendCoord], stroke_width: u32) -> Vec<BackendCoord> { |
| 141 | if vertices.len() < 2 { |
| 142 | return vec![]; |
| 143 | } |
| 144 | |
| 145 | let mut ret = vec![]; |
| 146 | |
| 147 | traverse_vertices(vertices.iter(), stroke_width, |v| ret.push(v)); |
| 148 | traverse_vertices(vertices.iter().rev(), stroke_width, |v| ret.push(v)); |
| 149 | |
| 150 | ret |
| 151 | } |
| 152 | |