1 | // Copyright 2018 Developers of the Rand project. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
4 | // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
5 | // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
6 | // option. This file may not be copied, modified, or distributed |
7 | // except according to those terms. |
8 | |
9 | //! Math helper functions |
10 | |
11 | #[cfg (feature = "simd_support" )] use packed_simd::*; |
12 | |
13 | |
14 | pub(crate) trait WideningMultiply<RHS = Self> { |
15 | type Output; |
16 | |
17 | fn wmul(self, x: RHS) -> Self::Output; |
18 | } |
19 | |
20 | macro_rules! wmul_impl { |
21 | ($ty:ty, $wide:ty, $shift:expr) => { |
22 | impl WideningMultiply for $ty { |
23 | type Output = ($ty, $ty); |
24 | |
25 | #[inline(always)] |
26 | fn wmul(self, x: $ty) -> Self::Output { |
27 | let tmp = (self as $wide) * (x as $wide); |
28 | ((tmp >> $shift) as $ty, tmp as $ty) |
29 | } |
30 | } |
31 | }; |
32 | |
33 | // simd bulk implementation |
34 | ($(($ty:ident, $wide:ident),)+, $shift:expr) => { |
35 | $( |
36 | impl WideningMultiply for $ty { |
37 | type Output = ($ty, $ty); |
38 | |
39 | #[inline(always)] |
40 | fn wmul(self, x: $ty) -> Self::Output { |
41 | // For supported vectors, this should compile to a couple |
42 | // supported multiply & swizzle instructions (no actual |
43 | // casting). |
44 | // TODO: optimize |
45 | let y: $wide = self.cast(); |
46 | let x: $wide = x.cast(); |
47 | let tmp = y * x; |
48 | let hi: $ty = (tmp >> $shift).cast(); |
49 | let lo: $ty = tmp.cast(); |
50 | (hi, lo) |
51 | } |
52 | } |
53 | )+ |
54 | }; |
55 | } |
56 | wmul_impl! { u8, u16, 8 } |
57 | wmul_impl! { u16, u32, 16 } |
58 | wmul_impl! { u32, u64, 32 } |
59 | wmul_impl! { u64, u128, 64 } |
60 | |
61 | // This code is a translation of the __mulddi3 function in LLVM's |
62 | // compiler-rt. It is an optimised variant of the common method |
63 | // `(a + b) * (c + d) = ac + ad + bc + bd`. |
64 | // |
65 | // For some reason LLVM can optimise the C version very well, but |
66 | // keeps shuffling registers in this Rust translation. |
67 | macro_rules! wmul_impl_large { |
68 | ($ty:ty, $half:expr) => { |
69 | impl WideningMultiply for $ty { |
70 | type Output = ($ty, $ty); |
71 | |
72 | #[inline(always)] |
73 | fn wmul(self, b: $ty) -> Self::Output { |
74 | const LOWER_MASK: $ty = !0 >> $half; |
75 | let mut low = (self & LOWER_MASK).wrapping_mul(b & LOWER_MASK); |
76 | let mut t = low >> $half; |
77 | low &= LOWER_MASK; |
78 | t += (self >> $half).wrapping_mul(b & LOWER_MASK); |
79 | low += (t & LOWER_MASK) << $half; |
80 | let mut high = t >> $half; |
81 | t = low >> $half; |
82 | low &= LOWER_MASK; |
83 | t += (b >> $half).wrapping_mul(self & LOWER_MASK); |
84 | low += (t & LOWER_MASK) << $half; |
85 | high += t >> $half; |
86 | high += (self >> $half).wrapping_mul(b >> $half); |
87 | |
88 | (high, low) |
89 | } |
90 | } |
91 | }; |
92 | |
93 | // simd bulk implementation |
94 | (($($ty:ty,)+) $scalar:ty, $half:expr) => { |
95 | $( |
96 | impl WideningMultiply for $ty { |
97 | type Output = ($ty, $ty); |
98 | |
99 | #[inline(always)] |
100 | fn wmul(self, b: $ty) -> Self::Output { |
101 | // needs wrapping multiplication |
102 | const LOWER_MASK: $scalar = !0 >> $half; |
103 | let mut low = (self & LOWER_MASK) * (b & LOWER_MASK); |
104 | let mut t = low >> $half; |
105 | low &= LOWER_MASK; |
106 | t += (self >> $half) * (b & LOWER_MASK); |
107 | low += (t & LOWER_MASK) << $half; |
108 | let mut high = t >> $half; |
109 | t = low >> $half; |
110 | low &= LOWER_MASK; |
111 | t += (b >> $half) * (self & LOWER_MASK); |
112 | low += (t & LOWER_MASK) << $half; |
113 | high += t >> $half; |
114 | high += (self >> $half) * (b >> $half); |
115 | |
116 | (high, low) |
117 | } |
118 | } |
119 | )+ |
120 | }; |
121 | } |
122 | wmul_impl_large! { u128, 64 } |
123 | |
124 | macro_rules! wmul_impl_usize { |
125 | ($ty:ty) => { |
126 | impl WideningMultiply for usize { |
127 | type Output = (usize, usize); |
128 | |
129 | #[inline(always)] |
130 | fn wmul(self, x: usize) -> Self::Output { |
131 | let (high, low) = (self as $ty).wmul(x as $ty); |
132 | (high as usize, low as usize) |
133 | } |
134 | } |
135 | }; |
136 | } |
137 | #[cfg (target_pointer_width = "16" )] |
138 | wmul_impl_usize! { u16 } |
139 | #[cfg (target_pointer_width = "32" )] |
140 | wmul_impl_usize! { u32 } |
141 | #[cfg (target_pointer_width = "64" )] |
142 | wmul_impl_usize! { u64 } |
143 | |
144 | #[cfg (feature = "simd_support" )] |
145 | mod simd_wmul { |
146 | use super::*; |
147 | #[cfg (target_arch = "x86" )] use core::arch::x86::*; |
148 | #[cfg (target_arch = "x86_64" )] use core::arch::x86_64::*; |
149 | |
150 | wmul_impl! { |
151 | (u8x2, u16x2), |
152 | (u8x4, u16x4), |
153 | (u8x8, u16x8), |
154 | (u8x16, u16x16), |
155 | (u8x32, u16x32),, |
156 | 8 |
157 | } |
158 | |
159 | wmul_impl! { (u16x2, u32x2),, 16 } |
160 | wmul_impl! { (u16x4, u32x4),, 16 } |
161 | #[cfg (not(target_feature = "sse2" ))] |
162 | wmul_impl! { (u16x8, u32x8),, 16 } |
163 | #[cfg (not(target_feature = "avx2" ))] |
164 | wmul_impl! { (u16x16, u32x16),, 16 } |
165 | |
166 | // 16-bit lane widths allow use of the x86 `mulhi` instructions, which |
167 | // means `wmul` can be implemented with only two instructions. |
168 | #[allow (unused_macros)] |
169 | macro_rules! wmul_impl_16 { |
170 | ($ty:ident, $intrinsic:ident, $mulhi:ident, $mullo:ident) => { |
171 | impl WideningMultiply for $ty { |
172 | type Output = ($ty, $ty); |
173 | |
174 | #[inline(always)] |
175 | fn wmul(self, x: $ty) -> Self::Output { |
176 | let b = $intrinsic::from_bits(x); |
177 | let a = $intrinsic::from_bits(self); |
178 | let hi = $ty::from_bits(unsafe { $mulhi(a, b) }); |
179 | let lo = $ty::from_bits(unsafe { $mullo(a, b) }); |
180 | (hi, lo) |
181 | } |
182 | } |
183 | }; |
184 | } |
185 | |
186 | #[cfg (target_feature = "sse2" )] |
187 | wmul_impl_16! { u16x8, __m128i, _mm_mulhi_epu16, _mm_mullo_epi16 } |
188 | #[cfg (target_feature = "avx2" )] |
189 | wmul_impl_16! { u16x16, __m256i, _mm256_mulhi_epu16, _mm256_mullo_epi16 } |
190 | // FIXME: there are no `__m512i` types in stdsimd yet, so `wmul::<u16x32>` |
191 | // cannot use the same implementation. |
192 | |
193 | wmul_impl! { |
194 | (u32x2, u64x2), |
195 | (u32x4, u64x4), |
196 | (u32x8, u64x8),, |
197 | 32 |
198 | } |
199 | |
200 | // TODO: optimize, this seems to seriously slow things down |
201 | wmul_impl_large! { (u8x64,) u8, 4 } |
202 | wmul_impl_large! { (u16x32,) u16, 8 } |
203 | wmul_impl_large! { (u32x16,) u32, 16 } |
204 | wmul_impl_large! { (u64x2, u64x4, u64x8,) u64, 32 } |
205 | } |
206 | |
207 | /// Helper trait when dealing with scalar and SIMD floating point types. |
208 | pub(crate) trait FloatSIMDUtils { |
209 | // `PartialOrd` for vectors compares lexicographically. We want to compare all |
210 | // the individual SIMD lanes instead, and get the combined result over all |
211 | // lanes. This is possible using something like `a.lt(b).all()`, but we |
212 | // implement it as a trait so we can write the same code for `f32` and `f64`. |
213 | // Only the comparison functions we need are implemented. |
214 | fn all_lt(self, other: Self) -> bool; |
215 | fn all_le(self, other: Self) -> bool; |
216 | fn all_finite(self) -> bool; |
217 | |
218 | type Mask; |
219 | fn finite_mask(self) -> Self::Mask; |
220 | fn gt_mask(self, other: Self) -> Self::Mask; |
221 | fn ge_mask(self, other: Self) -> Self::Mask; |
222 | |
223 | // Decrease all lanes where the mask is `true` to the next lower value |
224 | // representable by the floating-point type. At least one of the lanes |
225 | // must be set. |
226 | fn decrease_masked(self, mask: Self::Mask) -> Self; |
227 | |
228 | // Convert from int value. Conversion is done while retaining the numerical |
229 | // value, not by retaining the binary representation. |
230 | type UInt; |
231 | fn cast_from_int(i: Self::UInt) -> Self; |
232 | } |
233 | |
234 | /// Implement functions available in std builds but missing from core primitives |
235 | #[cfg (not(std))] |
236 | // False positive: We are following `std` here. |
237 | #[allow (clippy::wrong_self_convention)] |
238 | pub(crate) trait Float: Sized { |
239 | fn is_nan(self) -> bool; |
240 | fn is_infinite(self) -> bool; |
241 | fn is_finite(self) -> bool; |
242 | } |
243 | |
244 | /// Implement functions on f32/f64 to give them APIs similar to SIMD types |
245 | pub(crate) trait FloatAsSIMD: Sized { |
246 | #[inline (always)] |
247 | fn lanes() -> usize { |
248 | 1 |
249 | } |
250 | #[inline (always)] |
251 | fn splat(scalar: Self) -> Self { |
252 | scalar |
253 | } |
254 | #[inline (always)] |
255 | fn extract(self, index: usize) -> Self { |
256 | debug_assert_eq!(index, 0); |
257 | self |
258 | } |
259 | #[inline (always)] |
260 | fn replace(self, index: usize, new_value: Self) -> Self { |
261 | debug_assert_eq!(index, 0); |
262 | new_value |
263 | } |
264 | } |
265 | |
266 | pub(crate) trait BoolAsSIMD: Sized { |
267 | fn any(self) -> bool; |
268 | fn all(self) -> bool; |
269 | fn none(self) -> bool; |
270 | } |
271 | |
272 | impl BoolAsSIMD for bool { |
273 | #[inline (always)] |
274 | fn any(self) -> bool { |
275 | self |
276 | } |
277 | |
278 | #[inline (always)] |
279 | fn all(self) -> bool { |
280 | self |
281 | } |
282 | |
283 | #[inline (always)] |
284 | fn none(self) -> bool { |
285 | !self |
286 | } |
287 | } |
288 | |
289 | macro_rules! scalar_float_impl { |
290 | ($ty:ident, $uty:ident) => { |
291 | #[cfg(not(std))] |
292 | impl Float for $ty { |
293 | #[inline] |
294 | fn is_nan(self) -> bool { |
295 | self != self |
296 | } |
297 | |
298 | #[inline] |
299 | fn is_infinite(self) -> bool { |
300 | self == ::core::$ty::INFINITY || self == ::core::$ty::NEG_INFINITY |
301 | } |
302 | |
303 | #[inline] |
304 | fn is_finite(self) -> bool { |
305 | !(self.is_nan() || self.is_infinite()) |
306 | } |
307 | } |
308 | |
309 | impl FloatSIMDUtils for $ty { |
310 | type Mask = bool; |
311 | type UInt = $uty; |
312 | |
313 | #[inline(always)] |
314 | fn all_lt(self, other: Self) -> bool { |
315 | self < other |
316 | } |
317 | |
318 | #[inline(always)] |
319 | fn all_le(self, other: Self) -> bool { |
320 | self <= other |
321 | } |
322 | |
323 | #[inline(always)] |
324 | fn all_finite(self) -> bool { |
325 | self.is_finite() |
326 | } |
327 | |
328 | #[inline(always)] |
329 | fn finite_mask(self) -> Self::Mask { |
330 | self.is_finite() |
331 | } |
332 | |
333 | #[inline(always)] |
334 | fn gt_mask(self, other: Self) -> Self::Mask { |
335 | self > other |
336 | } |
337 | |
338 | #[inline(always)] |
339 | fn ge_mask(self, other: Self) -> Self::Mask { |
340 | self >= other |
341 | } |
342 | |
343 | #[inline(always)] |
344 | fn decrease_masked(self, mask: Self::Mask) -> Self { |
345 | debug_assert!(mask, "At least one lane must be set" ); |
346 | <$ty>::from_bits(self.to_bits() - 1) |
347 | } |
348 | |
349 | #[inline] |
350 | fn cast_from_int(i: Self::UInt) -> Self { |
351 | i as $ty |
352 | } |
353 | } |
354 | |
355 | impl FloatAsSIMD for $ty {} |
356 | }; |
357 | } |
358 | |
359 | scalar_float_impl!(f32, u32); |
360 | scalar_float_impl!(f64, u64); |
361 | |
362 | |
363 | #[cfg (feature = "simd_support" )] |
364 | macro_rules! simd_impl { |
365 | ($ty:ident, $f_scalar:ident, $mty:ident, $uty:ident) => { |
366 | impl FloatSIMDUtils for $ty { |
367 | type Mask = $mty; |
368 | type UInt = $uty; |
369 | |
370 | #[inline(always)] |
371 | fn all_lt(self, other: Self) -> bool { |
372 | self.lt(other).all() |
373 | } |
374 | |
375 | #[inline(always)] |
376 | fn all_le(self, other: Self) -> bool { |
377 | self.le(other).all() |
378 | } |
379 | |
380 | #[inline(always)] |
381 | fn all_finite(self) -> bool { |
382 | self.finite_mask().all() |
383 | } |
384 | |
385 | #[inline(always)] |
386 | fn finite_mask(self) -> Self::Mask { |
387 | // This can possibly be done faster by checking bit patterns |
388 | let neg_inf = $ty::splat(::core::$f_scalar::NEG_INFINITY); |
389 | let pos_inf = $ty::splat(::core::$f_scalar::INFINITY); |
390 | self.gt(neg_inf) & self.lt(pos_inf) |
391 | } |
392 | |
393 | #[inline(always)] |
394 | fn gt_mask(self, other: Self) -> Self::Mask { |
395 | self.gt(other) |
396 | } |
397 | |
398 | #[inline(always)] |
399 | fn ge_mask(self, other: Self) -> Self::Mask { |
400 | self.ge(other) |
401 | } |
402 | |
403 | #[inline(always)] |
404 | fn decrease_masked(self, mask: Self::Mask) -> Self { |
405 | // Casting a mask into ints will produce all bits set for |
406 | // true, and 0 for false. Adding that to the binary |
407 | // representation of a float means subtracting one from |
408 | // the binary representation, resulting in the next lower |
409 | // value representable by $ty. This works even when the |
410 | // current value is infinity. |
411 | debug_assert!(mask.any(), "At least one lane must be set" ); |
412 | <$ty>::from_bits(<$uty>::from_bits(self) + <$uty>::from_bits(mask)) |
413 | } |
414 | |
415 | #[inline] |
416 | fn cast_from_int(i: Self::UInt) -> Self { |
417 | i.cast() |
418 | } |
419 | } |
420 | }; |
421 | } |
422 | |
423 | #[cfg (feature="simd_support" )] simd_impl! { f32x2, f32, m32x2, u32x2 } |
424 | #[cfg (feature="simd_support" )] simd_impl! { f32x4, f32, m32x4, u32x4 } |
425 | #[cfg (feature="simd_support" )] simd_impl! { f32x8, f32, m32x8, u32x8 } |
426 | #[cfg (feature="simd_support" )] simd_impl! { f32x16, f32, m32x16, u32x16 } |
427 | #[cfg (feature="simd_support" )] simd_impl! { f64x2, f64, m64x2, u64x2 } |
428 | #[cfg (feature="simd_support" )] simd_impl! { f64x4, f64, m64x4, u64x4 } |
429 | #[cfg (feature="simd_support" )] simd_impl! { f64x8, f64, m64x8, u64x8 } |
430 | |