1 | use super::plumbing::*; |
2 | use super::*; |
3 | |
4 | use std::fmt::{self, Debug}; |
5 | |
6 | /// The `split` function takes arbitrary data and a closure that knows how to |
7 | /// split it, and turns this into a `ParallelIterator`. |
8 | /// |
9 | /// # Examples |
10 | /// |
11 | /// As a simple example, Rayon can recursively split ranges of indices |
12 | /// |
13 | /// ``` |
14 | /// use rayon::iter; |
15 | /// use rayon::prelude::*; |
16 | /// use std::ops::Range; |
17 | /// |
18 | /// |
19 | /// // We define a range of indices as follows |
20 | /// type Range1D = Range<usize>; |
21 | /// |
22 | /// // Splitting it in two can be done like this |
23 | /// fn split_range1(r: Range1D) -> (Range1D, Option<Range1D>) { |
24 | /// // We are mathematically unable to split the range if there is only |
25 | /// // one point inside of it, but we could stop splitting before that. |
26 | /// if r.end - r.start <= 1 { return (r, None); } |
27 | /// |
28 | /// // Here, our range is considered large enough to be splittable |
29 | /// let midpoint = r.start + (r.end - r.start) / 2; |
30 | /// (r.start..midpoint, Some(midpoint..r.end)) |
31 | /// } |
32 | /// |
33 | /// // By using iter::split, Rayon will split the range until it has enough work |
34 | /// // to feed the CPU cores, then give us the resulting sub-ranges |
35 | /// iter::split(0..4096, split_range1).for_each(|sub_range| { |
36 | /// // As our initial range had a power-of-two size, the final sub-ranges |
37 | /// // should have power-of-two sizes too |
38 | /// assert!((sub_range.end - sub_range.start).is_power_of_two()); |
39 | /// }); |
40 | /// ``` |
41 | /// |
42 | /// This recursive splitting can be extended to two or three dimensions, |
43 | /// to reproduce a classic "block-wise" parallelization scheme of graphics and |
44 | /// numerical simulations: |
45 | /// |
46 | /// ``` |
47 | /// # use rayon::iter; |
48 | /// # use rayon::prelude::*; |
49 | /// # use std::ops::Range; |
50 | /// # type Range1D = Range<usize>; |
51 | /// # fn split_range1(r: Range1D) -> (Range1D, Option<Range1D>) { |
52 | /// # if r.end - r.start <= 1 { return (r, None); } |
53 | /// # let midpoint = r.start + (r.end - r.start) / 2; |
54 | /// # (r.start..midpoint, Some(midpoint..r.end)) |
55 | /// # } |
56 | /// # |
57 | /// // A two-dimensional range of indices can be built out of two 1D ones |
58 | /// struct Range2D { |
59 | /// // Range of horizontal indices |
60 | /// pub rx: Range1D, |
61 | /// |
62 | /// // Range of vertical indices |
63 | /// pub ry: Range1D, |
64 | /// } |
65 | /// |
66 | /// // We want to recursively split them by the largest dimension until we have |
67 | /// // enough sub-ranges to feed our mighty multi-core CPU. This function |
68 | /// // carries out one such split. |
69 | /// fn split_range2(r2: Range2D) -> (Range2D, Option<Range2D>) { |
70 | /// // Decide on which axis (horizontal/vertical) the range should be split |
71 | /// let width = r2.rx.end - r2.rx.start; |
72 | /// let height = r2.ry.end - r2.ry.start; |
73 | /// if width >= height { |
74 | /// // This is a wide range, split it on the horizontal axis |
75 | /// let (split_rx, ry) = (split_range1(r2.rx), r2.ry); |
76 | /// let out1 = Range2D { |
77 | /// rx: split_rx.0, |
78 | /// ry: ry.clone(), |
79 | /// }; |
80 | /// let out2 = split_rx.1.map(|rx| Range2D { rx, ry }); |
81 | /// (out1, out2) |
82 | /// } else { |
83 | /// // This is a tall range, split it on the vertical axis |
84 | /// let (rx, split_ry) = (r2.rx, split_range1(r2.ry)); |
85 | /// let out1 = Range2D { |
86 | /// rx: rx.clone(), |
87 | /// ry: split_ry.0, |
88 | /// }; |
89 | /// let out2 = split_ry.1.map(|ry| Range2D { rx, ry, }); |
90 | /// (out1, out2) |
91 | /// } |
92 | /// } |
93 | /// |
94 | /// // Again, rayon can handle the recursive splitting for us |
95 | /// let range = Range2D { rx: 0..800, ry: 0..600 }; |
96 | /// iter::split(range, split_range2).for_each(|sub_range| { |
97 | /// // If the sub-ranges were indeed split by the largest dimension, then |
98 | /// // if no dimension was twice larger than the other initially, this |
99 | /// // property will remain true in the final sub-ranges. |
100 | /// let width = sub_range.rx.end - sub_range.rx.start; |
101 | /// let height = sub_range.ry.end - sub_range.ry.start; |
102 | /// assert!((width / 2 <= height) && (height / 2 <= width)); |
103 | /// }); |
104 | /// ``` |
105 | /// |
106 | pub fn split<D, S>(data: D, splitter: S) -> Split<D, S> |
107 | where |
108 | D: Send, |
109 | S: Fn(D) -> (D, Option<D>) + Sync, |
110 | { |
111 | Split { data, splitter } |
112 | } |
113 | |
114 | /// `Split` is a parallel iterator using arbitrary data and a splitting function. |
115 | /// This struct is created by the [`split()`] function. |
116 | /// |
117 | /// [`split()`]: fn.split.html |
118 | #[derive(Clone)] |
119 | pub struct Split<D, S> { |
120 | data: D, |
121 | splitter: S, |
122 | } |
123 | |
124 | impl<D: Debug, S> Debug for Split<D, S> { |
125 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
126 | f.debug_struct("Split" ).field("data" , &self.data).finish() |
127 | } |
128 | } |
129 | |
130 | impl<D, S> ParallelIterator for Split<D, S> |
131 | where |
132 | D: Send, |
133 | S: Fn(D) -> (D, Option<D>) + Sync + Send, |
134 | { |
135 | type Item = D; |
136 | |
137 | fn drive_unindexed<C>(self, consumer: C) -> C::Result |
138 | where |
139 | C: UnindexedConsumer<Self::Item>, |
140 | { |
141 | let producer = SplitProducer { |
142 | data: self.data, |
143 | splitter: &self.splitter, |
144 | }; |
145 | bridge_unindexed(producer, consumer) |
146 | } |
147 | } |
148 | |
149 | struct SplitProducer<'a, D, S> { |
150 | data: D, |
151 | splitter: &'a S, |
152 | } |
153 | |
154 | impl<'a, D, S> UnindexedProducer for SplitProducer<'a, D, S> |
155 | where |
156 | D: Send, |
157 | S: Fn(D) -> (D, Option<D>) + Sync, |
158 | { |
159 | type Item = D; |
160 | |
161 | fn split(mut self) -> (Self, Option<Self>) { |
162 | let splitter = self.splitter; |
163 | let (left, right) = splitter(self.data); |
164 | self.data = left; |
165 | (self, right.map(|data| SplitProducer { data, splitter })) |
166 | } |
167 | |
168 | fn fold_with<F>(self, folder: F) -> F |
169 | where |
170 | F: Folder<Self::Item>, |
171 | { |
172 | folder.consume(self.data) |
173 | } |
174 | } |
175 | |