1 | /*! |
2 | A lazy DFA backed `Regex`. |
3 | |
4 | This module provides a [`Regex`] backed by a lazy DFA. A `Regex` implements |
5 | convenience routines you might have come to expect, such as finding a match |
6 | and iterating over all non-overlapping matches. This `Regex` type is limited |
7 | in its capabilities to what a lazy DFA can provide. Therefore, APIs involving |
8 | capturing groups, for example, are not provided. |
9 | |
10 | Internally, a `Regex` is composed of two DFAs. One is a "forward" DFA that |
11 | finds the end offset of a match, where as the other is a "reverse" DFA that |
12 | find the start offset of a match. |
13 | |
14 | See the [parent module](crate::hybrid) for examples. |
15 | */ |
16 | |
17 | use crate::{ |
18 | hybrid::{ |
19 | dfa::{self, DFA}, |
20 | error::BuildError, |
21 | }, |
22 | nfa::thompson, |
23 | util::{ |
24 | iter, |
25 | search::{Anchored, Input, Match, MatchError, MatchKind}, |
26 | }, |
27 | }; |
28 | |
29 | /// A regular expression that uses hybrid NFA/DFAs (also called "lazy DFAs") |
30 | /// for searching. |
31 | /// |
32 | /// A regular expression is comprised of two lazy DFAs, a "forward" DFA and a |
33 | /// "reverse" DFA. The forward DFA is responsible for detecting the end of |
34 | /// a match while the reverse DFA is responsible for detecting the start |
35 | /// of a match. Thus, in order to find the bounds of any given match, a |
36 | /// forward search must first be run followed by a reverse search. A match |
37 | /// found by the forward DFA guarantees that the reverse DFA will also find |
38 | /// a match. |
39 | /// |
40 | /// # Fallibility |
41 | /// |
42 | /// Most of the search routines defined on this type will _panic_ when the |
43 | /// underlying search fails. This might be because the DFA gave up because it |
44 | /// saw a quit byte, whether configured explicitly or via heuristic Unicode |
45 | /// word boundary support, although neither are enabled by default. It might |
46 | /// also fail if the underlying DFA determines it isn't making effective use of |
47 | /// the cache (which also never happens by default). Or it might fail because |
48 | /// an invalid `Input` configuration is given, for example, with an unsupported |
49 | /// [`Anchored`] mode. |
50 | /// |
51 | /// If you need to handle these error cases instead of allowing them to trigger |
52 | /// a panic, then the lower level [`Regex::try_search`] provides a fallible API |
53 | /// that never panics. |
54 | /// |
55 | /// # Example |
56 | /// |
57 | /// This example shows how to cause a search to terminate if it sees a |
58 | /// `\n` byte, and handle the error returned. This could be useful if, for |
59 | /// example, you wanted to prevent a user supplied pattern from matching |
60 | /// across a line boundary. |
61 | /// |
62 | /// ``` |
63 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
64 | /// use regex_automata::{hybrid::{dfa, regex::Regex}, Input, MatchError}; |
65 | /// |
66 | /// let re = Regex::builder() |
67 | /// .dfa(dfa::Config::new().quit(b' \n' , true)) |
68 | /// .build(r"foo\p{any}+bar" )?; |
69 | /// let mut cache = re.create_cache(); |
70 | /// |
71 | /// let input = Input::new("foo \nbar" ); |
72 | /// // Normally this would produce a match, since \p{any} contains '\n'. |
73 | /// // But since we instructed the automaton to enter a quit state if a |
74 | /// // '\n' is observed, this produces a match error instead. |
75 | /// let expected = MatchError::quit(b' \n' , 3); |
76 | /// let got = re.try_search(&mut cache, &input).unwrap_err(); |
77 | /// assert_eq!(expected, got); |
78 | /// |
79 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
80 | /// ``` |
81 | #[derive(Debug)] |
82 | pub struct Regex { |
83 | /// The forward lazy DFA. This can only find the end of a match. |
84 | forward: DFA, |
85 | /// The reverse lazy DFA. This can only find the start of a match. |
86 | /// |
87 | /// This is built with 'all' match semantics (instead of leftmost-first) |
88 | /// so that it always finds the longest possible match (which corresponds |
89 | /// to the leftmost starting position). It is also compiled as an anchored |
90 | /// matcher and has 'starts_for_each_pattern' enabled. Including starting |
91 | /// states for each pattern is necessary to ensure that we only look for |
92 | /// matches of a pattern that matched in the forward direction. Otherwise, |
93 | /// we might wind up finding the "leftmost" starting position of a totally |
94 | /// different pattern! |
95 | reverse: DFA, |
96 | } |
97 | |
98 | /// Convenience routines for regex and cache construction. |
99 | impl Regex { |
100 | /// Parse the given regular expression using the default configuration and |
101 | /// return the corresponding regex. |
102 | /// |
103 | /// If you want a non-default configuration, then use the [`Builder`] to |
104 | /// set your own configuration. |
105 | /// |
106 | /// # Example |
107 | /// |
108 | /// ``` |
109 | /// use regex_automata::{hybrid::regex::Regex, Match}; |
110 | /// |
111 | /// let re = Regex::new("foo[0-9]+bar" )?; |
112 | /// let mut cache = re.create_cache(); |
113 | /// assert_eq!( |
114 | /// Some(Match::must(0, 3..14)), |
115 | /// re.find(&mut cache, "zzzfoo12345barzzz" ), |
116 | /// ); |
117 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
118 | /// ``` |
119 | #[cfg (feature = "syntax" )] |
120 | pub fn new(pattern: &str) -> Result<Regex, BuildError> { |
121 | Regex::builder().build(pattern) |
122 | } |
123 | |
124 | /// Like `new`, but parses multiple patterns into a single "multi regex." |
125 | /// This similarly uses the default regex configuration. |
126 | /// |
127 | /// # Example |
128 | /// |
129 | /// ``` |
130 | /// use regex_automata::{hybrid::regex::Regex, Match}; |
131 | /// |
132 | /// let re = Regex::new_many(&["[a-z]+" , "[0-9]+" ])?; |
133 | /// let mut cache = re.create_cache(); |
134 | /// |
135 | /// let mut it = re.find_iter(&mut cache, "abc 1 foo 4567 0 quux" ); |
136 | /// assert_eq!(Some(Match::must(0, 0..3)), it.next()); |
137 | /// assert_eq!(Some(Match::must(1, 4..5)), it.next()); |
138 | /// assert_eq!(Some(Match::must(0, 6..9)), it.next()); |
139 | /// assert_eq!(Some(Match::must(1, 10..14)), it.next()); |
140 | /// assert_eq!(Some(Match::must(1, 15..16)), it.next()); |
141 | /// assert_eq!(Some(Match::must(0, 17..21)), it.next()); |
142 | /// assert_eq!(None, it.next()); |
143 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
144 | /// ``` |
145 | #[cfg (feature = "syntax" )] |
146 | pub fn new_many<P: AsRef<str>>( |
147 | patterns: &[P], |
148 | ) -> Result<Regex, BuildError> { |
149 | Regex::builder().build_many(patterns) |
150 | } |
151 | |
152 | /// Return a builder for configuring the construction of a `Regex`. |
153 | /// |
154 | /// This is a convenience routine to avoid needing to import the |
155 | /// [`Builder`] type in common cases. |
156 | /// |
157 | /// # Example |
158 | /// |
159 | /// This example shows how to use the builder to disable UTF-8 mode |
160 | /// everywhere. |
161 | /// |
162 | /// ``` |
163 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
164 | /// use regex_automata::{ |
165 | /// hybrid::regex::Regex, nfa::thompson, util::syntax, Match, |
166 | /// }; |
167 | /// |
168 | /// let re = Regex::builder() |
169 | /// .syntax(syntax::Config::new().utf8(false)) |
170 | /// .thompson(thompson::Config::new().utf8(false)) |
171 | /// .build(r"foo(?-u:[^b])ar.*" )?; |
172 | /// let mut cache = re.create_cache(); |
173 | /// |
174 | /// let haystack = b" \xFEfoo \xFFarzz \xE2\x98\xFF\n" ; |
175 | /// let expected = Some(Match::must(0, 1..9)); |
176 | /// let got = re.find(&mut cache, haystack); |
177 | /// assert_eq!(expected, got); |
178 | /// |
179 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
180 | /// ``` |
181 | pub fn builder() -> Builder { |
182 | Builder::new() |
183 | } |
184 | |
185 | /// Create a new cache for this `Regex`. |
186 | /// |
187 | /// The cache returned should only be used for searches for this |
188 | /// `Regex`. If you want to reuse the cache for another `Regex`, then |
189 | /// you must call [`Cache::reset`] with that `Regex` (or, equivalently, |
190 | /// [`Regex::reset_cache`]). |
191 | pub fn create_cache(&self) -> Cache { |
192 | Cache::new(self) |
193 | } |
194 | |
195 | /// Reset the given cache such that it can be used for searching with the |
196 | /// this `Regex` (and only this `Regex`). |
197 | /// |
198 | /// A cache reset permits reusing memory already allocated in this cache |
199 | /// with a different `Regex`. |
200 | /// |
201 | /// Resetting a cache sets its "clear count" to 0. This is relevant if the |
202 | /// `Regex` has been configured to "give up" after it has cleared the cache |
203 | /// a certain number of times. |
204 | /// |
205 | /// # Example |
206 | /// |
207 | /// This shows how to re-purpose a cache for use with a different `Regex`. |
208 | /// |
209 | /// ``` |
210 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
211 | /// use regex_automata::{hybrid::regex::Regex, Match}; |
212 | /// |
213 | /// let re1 = Regex::new(r"\w" )?; |
214 | /// let re2 = Regex::new(r"\W" )?; |
215 | /// |
216 | /// let mut cache = re1.create_cache(); |
217 | /// assert_eq!( |
218 | /// Some(Match::must(0, 0..2)), |
219 | /// re1.find(&mut cache, "Δ" ), |
220 | /// ); |
221 | /// |
222 | /// // Using 'cache' with re2 is not allowed. It may result in panics or |
223 | /// // incorrect results. In order to re-purpose the cache, we must reset |
224 | /// // it with the Regex we'd like to use it with. |
225 | /// // |
226 | /// // Similarly, after this reset, using the cache with 're1' is also not |
227 | /// // allowed. |
228 | /// re2.reset_cache(&mut cache); |
229 | /// assert_eq!( |
230 | /// Some(Match::must(0, 0..3)), |
231 | /// re2.find(&mut cache, "☃" ), |
232 | /// ); |
233 | /// |
234 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
235 | /// ``` |
236 | pub fn reset_cache(&self, cache: &mut Cache) { |
237 | self.forward().reset_cache(&mut cache.forward); |
238 | self.reverse().reset_cache(&mut cache.reverse); |
239 | } |
240 | } |
241 | |
242 | /// Standard infallible search routines for finding and iterating over matches. |
243 | impl Regex { |
244 | /// Returns true if and only if this regex matches the given haystack. |
245 | /// |
246 | /// This routine may short circuit if it knows that scanning future input |
247 | /// will never lead to a different result. In particular, if the underlying |
248 | /// DFA enters a match state or a dead state, then this routine will return |
249 | /// `true` or `false`, respectively, without inspecting any future input. |
250 | /// |
251 | /// # Panics |
252 | /// |
253 | /// This routine panics if the search could not complete. This can occur |
254 | /// in a number of circumstances: |
255 | /// |
256 | /// * The configuration of the lazy DFA may permit it to "quit" the search. |
257 | /// For example, setting quit bytes or enabling heuristic support for |
258 | /// Unicode word boundaries. The default configuration does not enable any |
259 | /// option that could result in the lazy DFA quitting. |
260 | /// * The configuration of the lazy DFA may also permit it to "give up" |
261 | /// on a search if it makes ineffective use of its transition table |
262 | /// cache. The default configuration does not enable this by default, |
263 | /// although it is typically a good idea to. |
264 | /// * When the provided `Input` configuration is not supported. For |
265 | /// example, by providing an unsupported anchor mode. |
266 | /// |
267 | /// When a search panics, callers cannot know whether a match exists or |
268 | /// not. |
269 | /// |
270 | /// Use [`Regex::try_search`] if you want to handle these error conditions. |
271 | /// |
272 | /// # Example |
273 | /// |
274 | /// ``` |
275 | /// use regex_automata::hybrid::regex::Regex; |
276 | /// |
277 | /// let re = Regex::new("foo[0-9]+bar" )?; |
278 | /// let mut cache = re.create_cache(); |
279 | /// |
280 | /// assert!(re.is_match(&mut cache, "foo12345bar" )); |
281 | /// assert!(!re.is_match(&mut cache, "foobar" )); |
282 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
283 | /// ``` |
284 | #[inline ] |
285 | pub fn is_match<'h, I: Into<Input<'h>>>( |
286 | &self, |
287 | cache: &mut Cache, |
288 | input: I, |
289 | ) -> bool { |
290 | // Not only can we do an "earliest" search, but we can avoid doing a |
291 | // reverse scan too. |
292 | self.forward() |
293 | .try_search_fwd(&mut cache.forward, &input.into().earliest(true)) |
294 | .unwrap() |
295 | .is_some() |
296 | } |
297 | |
298 | /// Returns the start and end offset of the leftmost match. If no match |
299 | /// exists, then `None` is returned. |
300 | /// |
301 | /// # Panics |
302 | /// |
303 | /// This routine panics if the search could not complete. This can occur |
304 | /// in a number of circumstances: |
305 | /// |
306 | /// * The configuration of the lazy DFA may permit it to "quit" the search. |
307 | /// For example, setting quit bytes or enabling heuristic support for |
308 | /// Unicode word boundaries. The default configuration does not enable any |
309 | /// option that could result in the lazy DFA quitting. |
310 | /// * The configuration of the lazy DFA may also permit it to "give up" |
311 | /// on a search if it makes ineffective use of its transition table |
312 | /// cache. The default configuration does not enable this by default, |
313 | /// although it is typically a good idea to. |
314 | /// * When the provided `Input` configuration is not supported. For |
315 | /// example, by providing an unsupported anchor mode. |
316 | /// |
317 | /// When a search panics, callers cannot know whether a match exists or |
318 | /// not. |
319 | /// |
320 | /// Use [`Regex::try_search`] if you want to handle these error conditions. |
321 | /// |
322 | /// # Example |
323 | /// |
324 | /// ``` |
325 | /// use regex_automata::{Match, hybrid::regex::Regex}; |
326 | /// |
327 | /// let re = Regex::new("foo[0-9]+" )?; |
328 | /// let mut cache = re.create_cache(); |
329 | /// assert_eq!( |
330 | /// Some(Match::must(0, 3..11)), |
331 | /// re.find(&mut cache, "zzzfoo12345zzz" ), |
332 | /// ); |
333 | /// |
334 | /// // Even though a match is found after reading the first byte (`a`), |
335 | /// // the default leftmost-first match semantics demand that we find the |
336 | /// // earliest match that prefers earlier parts of the pattern over latter |
337 | /// // parts. |
338 | /// let re = Regex::new("abc|a" )?; |
339 | /// let mut cache = re.create_cache(); |
340 | /// assert_eq!(Some(Match::must(0, 0..3)), re.find(&mut cache, "abc" )); |
341 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
342 | /// ``` |
343 | #[inline ] |
344 | pub fn find<'h, I: Into<Input<'h>>>( |
345 | &self, |
346 | cache: &mut Cache, |
347 | input: I, |
348 | ) -> Option<Match> { |
349 | self.try_search(cache, &input.into()).unwrap() |
350 | } |
351 | |
352 | /// Returns an iterator over all non-overlapping leftmost matches in the |
353 | /// given bytes. If no match exists, then the iterator yields no elements. |
354 | /// |
355 | /// # Panics |
356 | /// |
357 | /// This routine panics if the search could not complete. This can occur |
358 | /// in a number of circumstances: |
359 | /// |
360 | /// * The configuration of the lazy DFA may permit it to "quit" the search. |
361 | /// For example, setting quit bytes or enabling heuristic support for |
362 | /// Unicode word boundaries. The default configuration does not enable any |
363 | /// option that could result in the lazy DFA quitting. |
364 | /// * The configuration of the lazy DFA may also permit it to "give up" |
365 | /// on a search if it makes ineffective use of its transition table |
366 | /// cache. The default configuration does not enable this by default, |
367 | /// although it is typically a good idea to. |
368 | /// * When the provided `Input` configuration is not supported. For |
369 | /// example, by providing an unsupported anchor mode. |
370 | /// |
371 | /// When a search panics, callers cannot know whether a match exists or |
372 | /// not. |
373 | /// |
374 | /// The above conditions also apply to the iterator returned as well. For |
375 | /// example, if the lazy DFA gives up or quits during a search using this |
376 | /// method, then a panic will occur during iteration. |
377 | /// |
378 | /// Use [`Regex::try_search`] with [`util::iter::Searcher`](iter::Searcher) |
379 | /// if you want to handle these error conditions. |
380 | /// |
381 | /// # Example |
382 | /// |
383 | /// ``` |
384 | /// use regex_automata::{hybrid::regex::Regex, Match}; |
385 | /// |
386 | /// let re = Regex::new("foo[0-9]+" )?; |
387 | /// let mut cache = re.create_cache(); |
388 | /// |
389 | /// let text = "foo1 foo12 foo123" ; |
390 | /// let matches: Vec<Match> = re.find_iter(&mut cache, text).collect(); |
391 | /// assert_eq!(matches, vec![ |
392 | /// Match::must(0, 0..4), |
393 | /// Match::must(0, 5..10), |
394 | /// Match::must(0, 11..17), |
395 | /// ]); |
396 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
397 | /// ``` |
398 | #[inline ] |
399 | pub fn find_iter<'r, 'c, 'h, I: Into<Input<'h>>>( |
400 | &'r self, |
401 | cache: &'c mut Cache, |
402 | input: I, |
403 | ) -> FindMatches<'r, 'c, 'h> { |
404 | let it = iter::Searcher::new(input.into()); |
405 | FindMatches { re: self, cache, it } |
406 | } |
407 | } |
408 | |
409 | /// Lower level "search" primitives that accept a `&Input` for cheap reuse |
410 | /// and return an error if one occurs instead of panicking. |
411 | impl Regex { |
412 | /// Returns the start and end offset of the leftmost match. If no match |
413 | /// exists, then `None` is returned. |
414 | /// |
415 | /// This is like [`Regex::find`] but with two differences: |
416 | /// |
417 | /// 1. It is not generic over `Into<Input>` and instead accepts a |
418 | /// `&Input`. This permits reusing the same `Input` for multiple searches |
419 | /// without needing to create a new one. This _may_ help with latency. |
420 | /// 2. It returns an error if the search could not complete where as |
421 | /// [`Regex::find`] will panic. |
422 | /// |
423 | /// # Errors |
424 | /// |
425 | /// This routine errors if the search could not complete. This can occur |
426 | /// in a number of circumstances: |
427 | /// |
428 | /// * The configuration of the lazy DFA may permit it to "quit" the search. |
429 | /// For example, setting quit bytes or enabling heuristic support for |
430 | /// Unicode word boundaries. The default configuration does not enable any |
431 | /// option that could result in the lazy DFA quitting. |
432 | /// * The configuration of the lazy DFA may also permit it to "give up" |
433 | /// on a search if it makes ineffective use of its transition table |
434 | /// cache. The default configuration does not enable this by default, |
435 | /// although it is typically a good idea to. |
436 | /// * When the provided `Input` configuration is not supported. For |
437 | /// example, by providing an unsupported anchor mode. |
438 | /// |
439 | /// When a search returns an error, callers cannot know whether a match |
440 | /// exists or not. |
441 | #[inline ] |
442 | pub fn try_search( |
443 | &self, |
444 | cache: &mut Cache, |
445 | input: &Input<'_>, |
446 | ) -> Result<Option<Match>, MatchError> { |
447 | let (fcache, rcache) = (&mut cache.forward, &mut cache.reverse); |
448 | let end = match self.forward().try_search_fwd(fcache, input)? { |
449 | None => return Ok(None), |
450 | Some(end) => end, |
451 | }; |
452 | // This special cases an empty match at the beginning of the search. If |
453 | // our end matches our start, then since a reverse DFA can't match past |
454 | // the start, it must follow that our starting position is also our end |
455 | // position. So short circuit and skip the reverse search. |
456 | if input.start() == end.offset() { |
457 | return Ok(Some(Match::new( |
458 | end.pattern(), |
459 | end.offset()..end.offset(), |
460 | ))); |
461 | } |
462 | // We can also skip the reverse search if we know our search was |
463 | // anchored. This occurs either when the input config is anchored or |
464 | // when we know the regex itself is anchored. In this case, we know the |
465 | // start of the match, if one is found, must be the start of the |
466 | // search. |
467 | if self.is_anchored(input) { |
468 | return Ok(Some(Match::new( |
469 | end.pattern(), |
470 | input.start()..end.offset(), |
471 | ))); |
472 | } |
473 | // N.B. I have tentatively convinced myself that it isn't necessary |
474 | // to specify the specific pattern for the reverse search since the |
475 | // reverse search will always find the same pattern to match as the |
476 | // forward search. But I lack a rigorous proof. Why not just provide |
477 | // the pattern anyway? Well, if it is needed, then leaving it out |
478 | // gives us a chance to find a witness. (Also, if we don't need to |
479 | // specify the pattern, then we don't need to build the reverse DFA |
480 | // with 'starts_for_each_pattern' enabled. It doesn't matter too much |
481 | // for the lazy DFA, but does make the overall DFA bigger.) |
482 | // |
483 | // We also need to be careful to disable 'earliest' for the reverse |
484 | // search, since it could be enabled for the forward search. In the |
485 | // reverse case, to satisfy "leftmost" criteria, we need to match as |
486 | // much as we can. We also need to be careful to make the search |
487 | // anchored. We don't want the reverse search to report any matches |
488 | // other than the one beginning at the end of our forward search. |
489 | let revsearch = input |
490 | .clone() |
491 | .span(input.start()..end.offset()) |
492 | .anchored(Anchored::Yes) |
493 | .earliest(false); |
494 | let start = self |
495 | .reverse() |
496 | .try_search_rev(rcache, &revsearch)? |
497 | .expect("reverse search must match if forward search does" ); |
498 | debug_assert_eq!( |
499 | start.pattern(), |
500 | end.pattern(), |
501 | "forward and reverse search must match same pattern" , |
502 | ); |
503 | debug_assert!(start.offset() <= end.offset()); |
504 | Ok(Some(Match::new(end.pattern(), start.offset()..end.offset()))) |
505 | } |
506 | |
507 | /// Returns true if either the given input specifies an anchored search |
508 | /// or if the underlying NFA is always anchored. |
509 | fn is_anchored(&self, input: &Input<'_>) -> bool { |
510 | match input.get_anchored() { |
511 | Anchored::No => { |
512 | self.forward().get_nfa().is_always_start_anchored() |
513 | } |
514 | Anchored::Yes | Anchored::Pattern(_) => true, |
515 | } |
516 | } |
517 | } |
518 | |
519 | /// Non-search APIs for querying information about the regex and setting a |
520 | /// prefilter. |
521 | impl Regex { |
522 | /// Return the underlying lazy DFA responsible for forward matching. |
523 | /// |
524 | /// This is useful for accessing the underlying lazy DFA and using it |
525 | /// directly if the situation calls for it. |
526 | pub fn forward(&self) -> &DFA { |
527 | &self.forward |
528 | } |
529 | |
530 | /// Return the underlying lazy DFA responsible for reverse matching. |
531 | /// |
532 | /// This is useful for accessing the underlying lazy DFA and using it |
533 | /// directly if the situation calls for it. |
534 | pub fn reverse(&self) -> &DFA { |
535 | &self.reverse |
536 | } |
537 | |
538 | /// Returns the total number of patterns matched by this regex. |
539 | /// |
540 | /// # Example |
541 | /// |
542 | /// ``` |
543 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
544 | /// use regex_automata::hybrid::regex::Regex; |
545 | /// |
546 | /// let re = Regex::new_many(&[r"[a-z]+" , r"[0-9]+" , r"\w+" ])?; |
547 | /// assert_eq!(3, re.pattern_len()); |
548 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
549 | /// ``` |
550 | pub fn pattern_len(&self) -> usize { |
551 | assert_eq!(self.forward().pattern_len(), self.reverse().pattern_len()); |
552 | self.forward().pattern_len() |
553 | } |
554 | } |
555 | |
556 | /// An iterator over all non-overlapping matches for an infallible search. |
557 | /// |
558 | /// The iterator yields a [`Match`] value until no more matches could be found. |
559 | /// If the underlying regex engine returns an error, then a panic occurs. |
560 | /// |
561 | /// The lifetime parameters are as follows: |
562 | /// |
563 | /// * `'r` represents the lifetime of the regex object. |
564 | /// * `'h` represents the lifetime of the haystack being searched. |
565 | /// * `'c` represents the lifetime of the regex cache. |
566 | /// |
567 | /// This iterator can be created with the [`Regex::find_iter`] method. |
568 | #[derive(Debug)] |
569 | pub struct FindMatches<'r, 'c, 'h> { |
570 | re: &'r Regex, |
571 | cache: &'c mut Cache, |
572 | it: iter::Searcher<'h>, |
573 | } |
574 | |
575 | impl<'r, 'c, 'h> Iterator for FindMatches<'r, 'c, 'h> { |
576 | type Item = Match; |
577 | |
578 | #[inline ] |
579 | fn next(&mut self) -> Option<Match> { |
580 | let FindMatches { re, ref mut cache, ref mut it } = *self; |
581 | it.advance(|input| re.try_search(cache, input)) |
582 | } |
583 | } |
584 | |
585 | /// A cache represents a partially computed forward and reverse DFA. |
586 | /// |
587 | /// A cache is the key component that differentiates a classical DFA and a |
588 | /// hybrid NFA/DFA (also called a "lazy DFA"). Where a classical DFA builds a |
589 | /// complete transition table that can handle all possible inputs, a hybrid |
590 | /// NFA/DFA starts with an empty transition table and builds only the parts |
591 | /// required during search. The parts that are built are stored in a cache. For |
592 | /// this reason, a cache is a required parameter for nearly every operation on |
593 | /// a [`Regex`]. |
594 | /// |
595 | /// Caches can be created from their corresponding `Regex` via |
596 | /// [`Regex::create_cache`]. A cache can only be used with either the `Regex` |
597 | /// that created it, or the `Regex` that was most recently used to reset it |
598 | /// with [`Cache::reset`]. Using a cache with any other `Regex` may result in |
599 | /// panics or incorrect results. |
600 | #[derive(Debug, Clone)] |
601 | pub struct Cache { |
602 | forward: dfa::Cache, |
603 | reverse: dfa::Cache, |
604 | } |
605 | |
606 | impl Cache { |
607 | /// Create a new cache for the given `Regex`. |
608 | /// |
609 | /// The cache returned should only be used for searches for the given |
610 | /// `Regex`. If you want to reuse the cache for another `Regex`, then you |
611 | /// must call [`Cache::reset`] with that `Regex`. |
612 | pub fn new(re: &Regex) -> Cache { |
613 | let forward = dfa::Cache::new(re.forward()); |
614 | let reverse = dfa::Cache::new(re.reverse()); |
615 | Cache { forward, reverse } |
616 | } |
617 | |
618 | /// Reset this cache such that it can be used for searching with the given |
619 | /// `Regex` (and only that `Regex`). |
620 | /// |
621 | /// A cache reset permits reusing memory already allocated in this cache |
622 | /// with a different `Regex`. |
623 | /// |
624 | /// Resetting a cache sets its "clear count" to 0. This is relevant if the |
625 | /// `Regex` has been configured to "give up" after it has cleared the cache |
626 | /// a certain number of times. |
627 | /// |
628 | /// # Example |
629 | /// |
630 | /// This shows how to re-purpose a cache for use with a different `Regex`. |
631 | /// |
632 | /// ``` |
633 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
634 | /// use regex_automata::{hybrid::regex::Regex, Match}; |
635 | /// |
636 | /// let re1 = Regex::new(r"\w" )?; |
637 | /// let re2 = Regex::new(r"\W" )?; |
638 | /// |
639 | /// let mut cache = re1.create_cache(); |
640 | /// assert_eq!( |
641 | /// Some(Match::must(0, 0..2)), |
642 | /// re1.find(&mut cache, "Δ" ), |
643 | /// ); |
644 | /// |
645 | /// // Using 'cache' with re2 is not allowed. It may result in panics or |
646 | /// // incorrect results. In order to re-purpose the cache, we must reset |
647 | /// // it with the Regex we'd like to use it with. |
648 | /// // |
649 | /// // Similarly, after this reset, using the cache with 're1' is also not |
650 | /// // allowed. |
651 | /// cache.reset(&re2); |
652 | /// assert_eq!( |
653 | /// Some(Match::must(0, 0..3)), |
654 | /// re2.find(&mut cache, "☃" ), |
655 | /// ); |
656 | /// |
657 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
658 | /// ``` |
659 | pub fn reset(&mut self, re: &Regex) { |
660 | self.forward.reset(re.forward()); |
661 | self.reverse.reset(re.reverse()); |
662 | } |
663 | |
664 | /// Return a reference to the forward cache. |
665 | pub fn forward(&mut self) -> &dfa::Cache { |
666 | &self.forward |
667 | } |
668 | |
669 | /// Return a reference to the reverse cache. |
670 | pub fn reverse(&mut self) -> &dfa::Cache { |
671 | &self.reverse |
672 | } |
673 | |
674 | /// Return a mutable reference to the forward cache. |
675 | /// |
676 | /// If you need mutable references to both the forward and reverse caches, |
677 | /// then use [`Cache::as_parts_mut`]. |
678 | pub fn forward_mut(&mut self) -> &mut dfa::Cache { |
679 | &mut self.forward |
680 | } |
681 | |
682 | /// Return a mutable reference to the reverse cache. |
683 | /// |
684 | /// If you need mutable references to both the forward and reverse caches, |
685 | /// then use [`Cache::as_parts_mut`]. |
686 | pub fn reverse_mut(&mut self) -> &mut dfa::Cache { |
687 | &mut self.reverse |
688 | } |
689 | |
690 | /// Return references to the forward and reverse caches, respectively. |
691 | pub fn as_parts(&self) -> (&dfa::Cache, &dfa::Cache) { |
692 | (&self.forward, &self.reverse) |
693 | } |
694 | |
695 | /// Return mutable references to the forward and reverse caches, |
696 | /// respectively. |
697 | pub fn as_parts_mut(&mut self) -> (&mut dfa::Cache, &mut dfa::Cache) { |
698 | (&mut self.forward, &mut self.reverse) |
699 | } |
700 | |
701 | /// Returns the heap memory usage, in bytes, as a sum of the forward and |
702 | /// reverse lazy DFA caches. |
703 | /// |
704 | /// This does **not** include the stack size used up by this cache. To |
705 | /// compute that, use `std::mem::size_of::<Cache>()`. |
706 | pub fn memory_usage(&self) -> usize { |
707 | self.forward.memory_usage() + self.reverse.memory_usage() |
708 | } |
709 | } |
710 | |
711 | /// A builder for a regex based on a hybrid NFA/DFA. |
712 | /// |
713 | /// This builder permits configuring options for the syntax of a pattern, the |
714 | /// NFA construction, the lazy DFA construction and finally the regex searching |
715 | /// itself. This builder is different from a general purpose regex builder |
716 | /// in that it permits fine grain configuration of the construction process. |
717 | /// The trade off for this is complexity, and the possibility of setting a |
718 | /// configuration that might not make sense. For example, there are two |
719 | /// different UTF-8 modes: |
720 | /// |
721 | /// * [`syntax::Config::utf8`](crate::util::syntax::Config::utf8) controls |
722 | /// whether the pattern itself can contain sub-expressions that match invalid |
723 | /// UTF-8. |
724 | /// * [`thompson::Config::utf8`] controls how the regex iterators themselves |
725 | /// advance the starting position of the next search when a match with zero |
726 | /// length is found. |
727 | /// |
728 | /// Generally speaking, callers will want to either enable all of these or |
729 | /// disable all of these. |
730 | /// |
731 | /// Internally, building a regex requires building two hybrid NFA/DFAs, |
732 | /// where one is responsible for finding the end of a match and the other is |
733 | /// responsible for finding the start of a match. If you only need to detect |
734 | /// whether something matched, or only the end of a match, then you should use |
735 | /// a [`dfa::Builder`] to construct a single hybrid NFA/DFA, which is cheaper |
736 | /// than building two of them. |
737 | /// |
738 | /// # Example |
739 | /// |
740 | /// This example shows how to disable UTF-8 mode in the syntax and the regex |
741 | /// itself. This is generally what you want for matching on arbitrary bytes. |
742 | /// |
743 | /// ``` |
744 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
745 | /// use regex_automata::{ |
746 | /// hybrid::regex::Regex, nfa::thompson, util::syntax, Match, |
747 | /// }; |
748 | /// |
749 | /// let re = Regex::builder() |
750 | /// .syntax(syntax::Config::new().utf8(false)) |
751 | /// .thompson(thompson::Config::new().utf8(false)) |
752 | /// .build(r"foo(?-u:[^b])ar.*" )?; |
753 | /// let mut cache = re.create_cache(); |
754 | /// |
755 | /// let haystack = b" \xFEfoo \xFFarzz \xE2\x98\xFF\n" ; |
756 | /// let expected = Some(Match::must(0, 1..9)); |
757 | /// let got = re.find(&mut cache, haystack); |
758 | /// assert_eq!(expected, got); |
759 | /// // Notice that `(?-u:[^b])` matches invalid UTF-8, |
760 | /// // but the subsequent `.*` does not! Disabling UTF-8 |
761 | /// // on the syntax permits this. |
762 | /// assert_eq!(b"foo \xFFarzz" , &haystack[got.unwrap().range()]); |
763 | /// |
764 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
765 | /// ``` |
766 | #[derive(Clone, Debug)] |
767 | pub struct Builder { |
768 | dfa: dfa::Builder, |
769 | } |
770 | |
771 | impl Builder { |
772 | /// Create a new regex builder with the default configuration. |
773 | pub fn new() -> Builder { |
774 | Builder { dfa: DFA::builder() } |
775 | } |
776 | |
777 | /// Build a regex from the given pattern. |
778 | /// |
779 | /// If there was a problem parsing or compiling the pattern, then an error |
780 | /// is returned. |
781 | #[cfg (feature = "syntax" )] |
782 | pub fn build(&self, pattern: &str) -> Result<Regex, BuildError> { |
783 | self.build_many(&[pattern]) |
784 | } |
785 | |
786 | /// Build a regex from the given patterns. |
787 | #[cfg (feature = "syntax" )] |
788 | pub fn build_many<P: AsRef<str>>( |
789 | &self, |
790 | patterns: &[P], |
791 | ) -> Result<Regex, BuildError> { |
792 | let forward = self.dfa.build_many(patterns)?; |
793 | let reverse = self |
794 | .dfa |
795 | .clone() |
796 | .configure( |
797 | DFA::config() |
798 | .prefilter(None) |
799 | .specialize_start_states(false) |
800 | .match_kind(MatchKind::All), |
801 | ) |
802 | .thompson(thompson::Config::new().reverse(true)) |
803 | .build_many(patterns)?; |
804 | Ok(self.build_from_dfas(forward, reverse)) |
805 | } |
806 | |
807 | /// Build a regex from its component forward and reverse hybrid NFA/DFAs. |
808 | /// |
809 | /// This is useful when you've built a forward and reverse lazy DFA |
810 | /// separately, and want to combine them into a single regex. Once build, |
811 | /// the individual DFAs given can still be accessed via [`Regex::forward`] |
812 | /// and [`Regex::reverse`]. |
813 | /// |
814 | /// It is important that the reverse lazy DFA be compiled under the |
815 | /// following conditions: |
816 | /// |
817 | /// * It should use [`MatchKind::All`] semantics. |
818 | /// * It should match in reverse. |
819 | /// * Otherwise, its configuration should match the forward DFA. |
820 | /// |
821 | /// If these conditions aren't satisfied, then the behavior of searches is |
822 | /// unspecified. |
823 | /// |
824 | /// Note that when using this constructor, no configuration is applied. |
825 | /// Since this routine provides the DFAs to the builder, there is no |
826 | /// opportunity to apply other configuration options. |
827 | /// |
828 | /// # Example |
829 | /// |
830 | /// This shows how to build individual lazy forward and reverse DFAs, and |
831 | /// then combine them into a single `Regex`. |
832 | /// |
833 | /// ``` |
834 | /// use regex_automata::{ |
835 | /// hybrid::{dfa::DFA, regex::Regex}, |
836 | /// nfa::thompson, |
837 | /// MatchKind, |
838 | /// }; |
839 | /// |
840 | /// let fwd = DFA::new(r"foo[0-9]+" )?; |
841 | /// let rev = DFA::builder() |
842 | /// .configure(DFA::config().match_kind(MatchKind::All)) |
843 | /// .thompson(thompson::Config::new().reverse(true)) |
844 | /// .build(r"foo[0-9]+" )?; |
845 | /// |
846 | /// let re = Regex::builder().build_from_dfas(fwd, rev); |
847 | /// let mut cache = re.create_cache(); |
848 | /// assert_eq!(true, re.is_match(&mut cache, "foo123" )); |
849 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
850 | /// ``` |
851 | pub fn build_from_dfas(&self, forward: DFA, reverse: DFA) -> Regex { |
852 | Regex { forward, reverse } |
853 | } |
854 | |
855 | /// Set the syntax configuration for this builder using |
856 | /// [`syntax::Config`](crate::util::syntax::Config). |
857 | /// |
858 | /// This permits setting things like case insensitivity, Unicode and multi |
859 | /// line mode. |
860 | #[cfg (feature = "syntax" )] |
861 | pub fn syntax( |
862 | &mut self, |
863 | config: crate::util::syntax::Config, |
864 | ) -> &mut Builder { |
865 | self.dfa.syntax(config); |
866 | self |
867 | } |
868 | |
869 | /// Set the Thompson NFA configuration for this builder using |
870 | /// [`nfa::thompson::Config`](thompson::Config). |
871 | /// |
872 | /// This permits setting things like whether additional time should be |
873 | /// spent shrinking the size of the NFA. |
874 | #[cfg (feature = "syntax" )] |
875 | pub fn thompson(&mut self, config: thompson::Config) -> &mut Builder { |
876 | self.dfa.thompson(config); |
877 | self |
878 | } |
879 | |
880 | /// Set the lazy DFA compilation configuration for this builder using |
881 | /// [`dfa::Config`]. |
882 | /// |
883 | /// This permits setting things like whether Unicode word boundaries should |
884 | /// be heuristically supported or settings how the behavior of the cache. |
885 | pub fn dfa(&mut self, config: dfa::Config) -> &mut Builder { |
886 | self.dfa.configure(config); |
887 | self |
888 | } |
889 | } |
890 | |
891 | impl Default for Builder { |
892 | fn default() -> Builder { |
893 | Builder::new() |
894 | } |
895 | } |
896 | |