1 | /*! |
2 | Provides types for dealing with capturing groups. |
3 | |
4 | Capturing groups refer to sub-patterns of regexes that some regex engines can |
5 | report matching offsets for. For example, matching `[a-z]([0-9]+)` against |
6 | `a789` would give `a789` as the overall match (for the implicit capturing group |
7 | at index `0`) and `789` as the match for the capturing group `([0-9]+)` (an |
8 | explicit capturing group at index `1`). |
9 | |
10 | Not all regex engines can report match offsets for capturing groups. Indeed, |
11 | to a first approximation, regex engines that can report capturing group offsets |
12 | tend to be quite a bit slower than regex engines that can't. This is because |
13 | tracking capturing groups at search time usually requires more "power" that |
14 | in turn adds overhead. |
15 | |
16 | Other regex implementations might call capturing groups "submatches." |
17 | |
18 | # Overview |
19 | |
20 | The main types in this module are: |
21 | |
22 | * [`Captures`] records the capturing group offsets found during a search. It |
23 | provides convenience routines for looking up capturing group offsets by either |
24 | index or name. |
25 | * [`GroupInfo`] records the mapping between capturing groups and "slots," |
26 | where the latter are how capturing groups are recorded during a regex search. |
27 | This also keeps a mapping from capturing group name to index, and capture |
28 | group index to name. A `GroupInfo` is used by `Captures` internally to |
29 | provide a convenient API. It is unlikely that you'll use a `GroupInfo` |
30 | directly, but for example, if you've compiled an Thompson NFA, then you can use |
31 | [`thompson::NFA::group_info`](crate::nfa::thompson::NFA::group_info) to get its |
32 | underlying `GroupInfo`. |
33 | */ |
34 | |
35 | use alloc::{string::String, sync::Arc, vec, vec::Vec}; |
36 | |
37 | use crate::util::{ |
38 | interpolate, |
39 | primitives::{ |
40 | NonMaxUsize, PatternID, PatternIDError, PatternIDIter, SmallIndex, |
41 | }, |
42 | search::{Match, Span}, |
43 | }; |
44 | |
45 | /// The span offsets of capturing groups after a match has been found. |
46 | /// |
47 | /// This type represents the output of regex engines that can report the |
48 | /// offsets at which capturing groups matches or "submatches" occur. For |
49 | /// example, the [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM). When a match |
50 | /// occurs, it will at minimum contain the [`PatternID`] of the pattern that |
51 | /// matched. Depending upon how it was constructed, it may also contain the |
52 | /// start/end offsets of the entire match of the pattern and the start/end |
53 | /// offsets of each capturing group that participated in the match. |
54 | /// |
55 | /// Values of this type are always created for a specific [`GroupInfo`]. It is |
56 | /// unspecified behavior to use a `Captures` value in a search with any regex |
57 | /// engine that has a different `GroupInfo` than the one the `Captures` were |
58 | /// created with. |
59 | /// |
60 | /// # Constructors |
61 | /// |
62 | /// There are three constructors for this type that control what kind of |
63 | /// information is available upon a match: |
64 | /// |
65 | /// * [`Captures::all`]: Will store overall pattern match offsets in addition |
66 | /// to the offsets of capturing groups that participated in the match. |
67 | /// * [`Captures::matches`]: Will store only the overall pattern |
68 | /// match offsets. The offsets of capturing groups (even ones that participated |
69 | /// in the match) are not available. |
70 | /// * [`Captures::empty`]: Will only store the pattern ID that matched. No |
71 | /// match offsets are available at all. |
72 | /// |
73 | /// If you aren't sure which to choose, then pick the first one. The first one |
74 | /// is what convenience routines like, |
75 | /// [`PikeVM::create_captures`](crate::nfa::thompson::pikevm::PikeVM::create_captures), |
76 | /// will use automatically. |
77 | /// |
78 | /// The main difference between these choices is performance. Namely, if you |
79 | /// ask for _less_ information, then the execution of regex search may be able |
80 | /// to run more quickly. |
81 | /// |
82 | /// # Notes |
83 | /// |
84 | /// It is worth pointing out that this type is not coupled to any one specific |
85 | /// regex engine. Instead, its coupling is with [`GroupInfo`], which is the |
86 | /// thing that is responsible for mapping capturing groups to "slot" offsets. |
87 | /// Slot offsets are indices into a single sequence of memory at which matching |
88 | /// haystack offsets for the corresponding group are written by regex engines. |
89 | /// |
90 | /// # Example |
91 | /// |
92 | /// This example shows how to parse a simple date and extract the components of |
93 | /// the date via capturing groups: |
94 | /// |
95 | /// ``` |
96 | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span}; |
97 | /// |
98 | /// let re = PikeVM::new(r"^([0-9]{4})-([0-9]{2})-([0-9]{2})$" )?; |
99 | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
100 | /// |
101 | /// re.captures(&mut cache, "2010-03-14" , &mut caps); |
102 | /// assert!(caps.is_match()); |
103 | /// assert_eq!(Some(Span::from(0..4)), caps.get_group(1)); |
104 | /// assert_eq!(Some(Span::from(5..7)), caps.get_group(2)); |
105 | /// assert_eq!(Some(Span::from(8..10)), caps.get_group(3)); |
106 | /// |
107 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
108 | /// ``` |
109 | /// |
110 | /// # Example: named capturing groups |
111 | /// |
112 | /// This example is like the one above, but leverages the ability to name |
113 | /// capturing groups in order to make the code a bit clearer: |
114 | /// |
115 | /// ``` |
116 | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span}; |
117 | /// |
118 | /// let re = PikeVM::new(r"^(?P<y>[0-9]{4})-(?P<m>[0-9]{2})-(?P<d>[0-9]{2})$" )?; |
119 | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
120 | /// |
121 | /// re.captures(&mut cache, "2010-03-14" , &mut caps); |
122 | /// assert!(caps.is_match()); |
123 | /// assert_eq!(Some(Span::from(0..4)), caps.get_group_by_name("y" )); |
124 | /// assert_eq!(Some(Span::from(5..7)), caps.get_group_by_name("m" )); |
125 | /// assert_eq!(Some(Span::from(8..10)), caps.get_group_by_name("d" )); |
126 | /// |
127 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
128 | /// ``` |
129 | #[derive(Clone)] |
130 | pub struct Captures { |
131 | /// The group info that these capture groups are coupled to. This is what |
132 | /// gives the "convenience" of the `Captures` API. Namely, it provides the |
133 | /// slot mapping and the name|-->index mapping for capture lookups by name. |
134 | group_info: GroupInfo, |
135 | /// The ID of the pattern that matched. Regex engines must set this to |
136 | /// None when no match occurs. |
137 | pid: Option<PatternID>, |
138 | /// The slot values, i.e., submatch offsets. |
139 | /// |
140 | /// In theory, the smallest sequence of slots would be something like |
141 | /// `max(groups(pattern) for pattern in regex) * 2`, but instead, we use |
142 | /// `sum(groups(pattern) for pattern in regex) * 2`. Why? |
143 | /// |
144 | /// Well, the former could be used in theory, because we don't generally |
145 | /// have any overlapping APIs that involve capturing groups. Therefore, |
146 | /// there's technically never any need to have slots set for multiple |
147 | /// patterns. However, this might change some day, in which case, we would |
148 | /// need to have slots available. |
149 | /// |
150 | /// The other reason is that during the execution of some regex engines, |
151 | /// there exists a point in time where multiple slots for different |
152 | /// patterns may be written to before knowing which pattern has matched. |
153 | /// Therefore, the regex engines themselves, in order to support multiple |
154 | /// patterns correctly, must have all slots available. If `Captures` |
155 | /// doesn't have all slots available, then regex engines can't write |
156 | /// directly into the caller provided `Captures` and must instead write |
157 | /// into some other storage and then copy the slots involved in the match |
158 | /// at the end of the search. |
159 | /// |
160 | /// So overall, at least as of the time of writing, it seems like the path |
161 | /// of least resistance is to just require allocating all possible slots |
162 | /// instead of the conceptual minimum. Another way to justify this is that |
163 | /// the most common case is a single pattern, in which case, there is no |
164 | /// inefficiency here since the 'max' and 'sum' calculations above are |
165 | /// equivalent in that case. |
166 | /// |
167 | /// N.B. The mapping from group index to slot is maintained by `GroupInfo` |
168 | /// and is considered an API guarantee. See `GroupInfo` for more details on |
169 | /// that mapping. |
170 | /// |
171 | /// N.B. `Option<NonMaxUsize>` has the same size as a `usize`. |
172 | slots: Vec<Option<NonMaxUsize>>, |
173 | } |
174 | |
175 | impl Captures { |
176 | /// Create new storage for the offsets of all matching capturing groups. |
177 | /// |
178 | /// This routine provides the most information for matches---namely, the |
179 | /// spans of matching capturing groups---but also requires the regex search |
180 | /// routines to do the most work. |
181 | /// |
182 | /// It is unspecified behavior to use the returned `Captures` value in a |
183 | /// search with a `GroupInfo` other than the one that is provided to this |
184 | /// constructor. |
185 | /// |
186 | /// # Example |
187 | /// |
188 | /// This example shows that all capturing groups---but only ones that |
189 | /// participated in a match---are available to query after a match has |
190 | /// been found: |
191 | /// |
192 | /// ``` |
193 | /// use regex_automata::{ |
194 | /// nfa::thompson::pikevm::PikeVM, |
195 | /// util::captures::Captures, |
196 | /// Span, Match, |
197 | /// }; |
198 | /// |
199 | /// let re = PikeVM::new( |
200 | /// r"^(?:(?P<lower>[a-z]+)|(?P<upper>[A-Z]+))(?P<digits>[0-9]+)$" , |
201 | /// )?; |
202 | /// let mut cache = re.create_cache(); |
203 | /// let mut caps = Captures::all(re.get_nfa().group_info().clone()); |
204 | /// |
205 | /// re.captures(&mut cache, "ABC123" , &mut caps); |
206 | /// assert!(caps.is_match()); |
207 | /// assert_eq!(Some(Match::must(0, 0..6)), caps.get_match()); |
208 | /// // The 'lower' group didn't match, so it won't have any offsets. |
209 | /// assert_eq!(None, caps.get_group_by_name("lower" )); |
210 | /// assert_eq!(Some(Span::from(0..3)), caps.get_group_by_name("upper" )); |
211 | /// assert_eq!(Some(Span::from(3..6)), caps.get_group_by_name("digits" )); |
212 | /// |
213 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
214 | /// ``` |
215 | pub fn all(group_info: GroupInfo) -> Captures { |
216 | let slots = group_info.slot_len(); |
217 | Captures { group_info, pid: None, slots: vec![None; slots] } |
218 | } |
219 | |
220 | /// Create new storage for only the full match spans of a pattern. This |
221 | /// does not include any capturing group offsets. |
222 | /// |
223 | /// It is unspecified behavior to use the returned `Captures` value in a |
224 | /// search with a `GroupInfo` other than the one that is provided to this |
225 | /// constructor. |
226 | /// |
227 | /// # Example |
228 | /// |
229 | /// This example shows that only overall match offsets are reported when |
230 | /// this constructor is used. Accessing any capturing groups other than |
231 | /// the 0th will always return `None`. |
232 | /// |
233 | /// ``` |
234 | /// use regex_automata::{ |
235 | /// nfa::thompson::pikevm::PikeVM, |
236 | /// util::captures::Captures, |
237 | /// Match, |
238 | /// }; |
239 | /// |
240 | /// let re = PikeVM::new( |
241 | /// r"^(?:(?P<lower>[a-z]+)|(?P<upper>[A-Z]+))(?P<digits>[0-9]+)$" , |
242 | /// )?; |
243 | /// let mut cache = re.create_cache(); |
244 | /// let mut caps = Captures::matches(re.get_nfa().group_info().clone()); |
245 | /// |
246 | /// re.captures(&mut cache, "ABC123" , &mut caps); |
247 | /// assert!(caps.is_match()); |
248 | /// assert_eq!(Some(Match::must(0, 0..6)), caps.get_match()); |
249 | /// // We didn't ask for capturing group offsets, so they aren't available. |
250 | /// assert_eq!(None, caps.get_group_by_name("lower" )); |
251 | /// assert_eq!(None, caps.get_group_by_name("upper" )); |
252 | /// assert_eq!(None, caps.get_group_by_name("digits" )); |
253 | /// |
254 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
255 | /// ``` |
256 | pub fn matches(group_info: GroupInfo) -> Captures { |
257 | // This is OK because we know there are at least this many slots, |
258 | // and GroupInfo construction guarantees that the number of slots fits |
259 | // into a usize. |
260 | let slots = group_info.pattern_len().checked_mul(2).unwrap(); |
261 | Captures { group_info, pid: None, slots: vec![None; slots] } |
262 | } |
263 | |
264 | /// Create new storage for only tracking which pattern matched. No offsets |
265 | /// are stored at all. |
266 | /// |
267 | /// It is unspecified behavior to use the returned `Captures` value in a |
268 | /// search with a `GroupInfo` other than the one that is provided to this |
269 | /// constructor. |
270 | /// |
271 | /// # Example |
272 | /// |
273 | /// This example shows that only the pattern that matched can be accessed |
274 | /// from a `Captures` value created via this constructor. |
275 | /// |
276 | /// ``` |
277 | /// use regex_automata::{ |
278 | /// nfa::thompson::pikevm::PikeVM, |
279 | /// util::captures::Captures, |
280 | /// PatternID, |
281 | /// }; |
282 | /// |
283 | /// let re = PikeVM::new_many(&[r"[a-z]+" , r"[A-Z]+" ])?; |
284 | /// let mut cache = re.create_cache(); |
285 | /// let mut caps = Captures::empty(re.get_nfa().group_info().clone()); |
286 | /// |
287 | /// re.captures(&mut cache, "aABCz" , &mut caps); |
288 | /// assert!(caps.is_match()); |
289 | /// assert_eq!(Some(PatternID::must(0)), caps.pattern()); |
290 | /// // We didn't ask for any offsets, so they aren't available. |
291 | /// assert_eq!(None, caps.get_match()); |
292 | /// |
293 | /// re.captures(&mut cache, &"aABCz" [1..], &mut caps); |
294 | /// assert!(caps.is_match()); |
295 | /// assert_eq!(Some(PatternID::must(1)), caps.pattern()); |
296 | /// // We didn't ask for any offsets, so they aren't available. |
297 | /// assert_eq!(None, caps.get_match()); |
298 | /// |
299 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
300 | /// ``` |
301 | pub fn empty(group_info: GroupInfo) -> Captures { |
302 | Captures { group_info, pid: None, slots: vec![] } |
303 | } |
304 | |
305 | /// Returns true if and only if this capturing group represents a match. |
306 | /// |
307 | /// This is a convenience routine for `caps.pattern().is_some()`. |
308 | /// |
309 | /// # Example |
310 | /// |
311 | /// When using the PikeVM (for example), the lightest weight way of |
312 | /// detecting whether a match exists is to create capturing groups that |
313 | /// only track the ID of the pattern that match (if any): |
314 | /// |
315 | /// ``` |
316 | /// use regex_automata::{ |
317 | /// nfa::thompson::pikevm::PikeVM, |
318 | /// util::captures::Captures, |
319 | /// }; |
320 | /// |
321 | /// let re = PikeVM::new(r"[a-z]+" )?; |
322 | /// let mut cache = re.create_cache(); |
323 | /// let mut caps = Captures::empty(re.get_nfa().group_info().clone()); |
324 | /// |
325 | /// re.captures(&mut cache, "aABCz" , &mut caps); |
326 | /// assert!(caps.is_match()); |
327 | /// |
328 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
329 | /// ``` |
330 | #[inline ] |
331 | pub fn is_match(&self) -> bool { |
332 | self.pid.is_some() |
333 | } |
334 | |
335 | /// Returns the identifier of the pattern that matched when this |
336 | /// capturing group represents a match. If no match was found, then this |
337 | /// always returns `None`. |
338 | /// |
339 | /// This returns a pattern ID in precisely the cases in which `is_match` |
340 | /// returns `true`. Similarly, the pattern ID returned is always the |
341 | /// same pattern ID found in the `Match` returned by `get_match`. |
342 | /// |
343 | /// # Example |
344 | /// |
345 | /// When using the PikeVM (for example), the lightest weight way of |
346 | /// detecting which pattern matched is to create capturing groups that only |
347 | /// track the ID of the pattern that match (if any): |
348 | /// |
349 | /// ``` |
350 | /// use regex_automata::{ |
351 | /// nfa::thompson::pikevm::PikeVM, |
352 | /// util::captures::Captures, |
353 | /// PatternID, |
354 | /// }; |
355 | /// |
356 | /// let re = PikeVM::new_many(&[r"[a-z]+" , r"[A-Z]+" ])?; |
357 | /// let mut cache = re.create_cache(); |
358 | /// let mut caps = Captures::empty(re.get_nfa().group_info().clone()); |
359 | /// |
360 | /// re.captures(&mut cache, "ABC" , &mut caps); |
361 | /// assert_eq!(Some(PatternID::must(1)), caps.pattern()); |
362 | /// // Recall that offsets are only available when using a non-empty |
363 | /// // Captures value. So even though a match occurred, this returns None! |
364 | /// assert_eq!(None, caps.get_match()); |
365 | /// |
366 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
367 | /// ``` |
368 | #[inline ] |
369 | pub fn pattern(&self) -> Option<PatternID> { |
370 | self.pid |
371 | } |
372 | |
373 | /// Returns the pattern ID and the span of the match, if one occurred. |
374 | /// |
375 | /// This always returns `None` when `Captures` was created with |
376 | /// [`Captures::empty`], even if a match was found. |
377 | /// |
378 | /// If this routine returns a non-`None` value, then `is_match` is |
379 | /// guaranteed to return `true` and `pattern` is also guaranteed to return |
380 | /// a non-`None` value. |
381 | /// |
382 | /// # Example |
383 | /// |
384 | /// This example shows how to get the full match from a search: |
385 | /// |
386 | /// ``` |
387 | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Match}; |
388 | /// |
389 | /// let re = PikeVM::new_many(&[r"[a-z]+" , r"[A-Z]+" ])?; |
390 | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
391 | /// |
392 | /// re.captures(&mut cache, "ABC" , &mut caps); |
393 | /// assert_eq!(Some(Match::must(1, 0..3)), caps.get_match()); |
394 | /// |
395 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
396 | /// ``` |
397 | #[inline ] |
398 | pub fn get_match(&self) -> Option<Match> { |
399 | Some(Match::new(self.pattern()?, self.get_group(0)?)) |
400 | } |
401 | |
402 | /// Returns the span of a capturing group match corresponding to the group |
403 | /// index given, only if both the overall pattern matched and the capturing |
404 | /// group participated in that match. |
405 | /// |
406 | /// This returns `None` if `index` is invalid. `index` is valid if and only |
407 | /// if it's less than [`Captures::group_len`] for the matching pattern. |
408 | /// |
409 | /// This always returns `None` when `Captures` was created with |
410 | /// [`Captures::empty`], even if a match was found. This also always |
411 | /// returns `None` for any `index > 0` when `Captures` was created with |
412 | /// [`Captures::matches`]. |
413 | /// |
414 | /// If this routine returns a non-`None` value, then `is_match` is |
415 | /// guaranteed to return `true`, `pattern` is guaranteed to return a |
416 | /// non-`None` value and `get_match` is guaranteed to return a non-`None` |
417 | /// value. |
418 | /// |
419 | /// By convention, the 0th capture group will always return the same |
420 | /// span as the span returned by `get_match`. This is because the 0th |
421 | /// capture group always corresponds to the entirety of the pattern's |
422 | /// match. (It is similarly always unnamed because it is implicit.) This |
423 | /// isn't necessarily true of all regex engines. For example, one can |
424 | /// hand-compile a [`thompson::NFA`](crate::nfa::thompson::NFA) via a |
425 | /// [`thompson::Builder`](crate::nfa::thompson::Builder), which isn't |
426 | /// technically forced to make the 0th capturing group always correspond to |
427 | /// the entire match. |
428 | /// |
429 | /// # Example |
430 | /// |
431 | /// This example shows how to get the capturing groups, by index, from a |
432 | /// match: |
433 | /// |
434 | /// ``` |
435 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
436 | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span, Match}; |
437 | /// |
438 | /// let re = PikeVM::new(r"^(?P<first>\pL+)\s+(?P<last>\pL+)$" )?; |
439 | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
440 | /// |
441 | /// re.captures(&mut cache, "Bruce Springsteen" , &mut caps); |
442 | /// assert_eq!(Some(Match::must(0, 0..17)), caps.get_match()); |
443 | /// assert_eq!(Some(Span::from(0..5)), caps.get_group(1)); |
444 | /// assert_eq!(Some(Span::from(6..17)), caps.get_group(2)); |
445 | /// // Looking for a non-existent capturing group will return None: |
446 | /// assert_eq!(None, caps.get_group(3)); |
447 | /// # // literals are too big for 32-bit usize: #1039 |
448 | /// # #[cfg (target_pointer_width = "64" )] |
449 | /// assert_eq!(None, caps.get_group(9944060567225171988)); |
450 | /// |
451 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
452 | /// ``` |
453 | #[inline ] |
454 | pub fn get_group(&self, index: usize) -> Option<Span> { |
455 | let pid = self.pattern()?; |
456 | // There's a little bit of work needed to map captures to slots in the |
457 | // fully general case. But in the overwhelming common case of a single |
458 | // pattern, we can just do some simple arithmetic. |
459 | let (slot_start, slot_end) = if self.group_info().pattern_len() == 1 { |
460 | (index.checked_mul(2)?, index.checked_mul(2)?.checked_add(1)?) |
461 | } else { |
462 | self.group_info().slots(pid, index)? |
463 | }; |
464 | let start = self.slots.get(slot_start).copied()??; |
465 | let end = self.slots.get(slot_end).copied()??; |
466 | Some(Span { start: start.get(), end: end.get() }) |
467 | } |
468 | |
469 | /// Returns the span of a capturing group match corresponding to the group |
470 | /// name given, only if both the overall pattern matched and the capturing |
471 | /// group participated in that match. |
472 | /// |
473 | /// This returns `None` if `name` does not correspond to a valid capturing |
474 | /// group for the pattern that matched. |
475 | /// |
476 | /// This always returns `None` when `Captures` was created with |
477 | /// [`Captures::empty`], even if a match was found. This also always |
478 | /// returns `None` for any `index > 0` when `Captures` was created with |
479 | /// [`Captures::matches`]. |
480 | /// |
481 | /// If this routine returns a non-`None` value, then `is_match` is |
482 | /// guaranteed to return `true`, `pattern` is guaranteed to return a |
483 | /// non-`None` value and `get_match` is guaranteed to return a non-`None` |
484 | /// value. |
485 | /// |
486 | /// # Example |
487 | /// |
488 | /// This example shows how to get the capturing groups, by name, from a |
489 | /// match: |
490 | /// |
491 | /// ``` |
492 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
493 | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span, Match}; |
494 | /// |
495 | /// let re = PikeVM::new(r"^(?P<first>\pL+)\s+(?P<last>\pL+)$" )?; |
496 | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
497 | /// |
498 | /// re.captures(&mut cache, "Bruce Springsteen" , &mut caps); |
499 | /// assert_eq!(Some(Match::must(0, 0..17)), caps.get_match()); |
500 | /// assert_eq!(Some(Span::from(0..5)), caps.get_group_by_name("first" )); |
501 | /// assert_eq!(Some(Span::from(6..17)), caps.get_group_by_name("last" )); |
502 | /// // Looking for a non-existent capturing group will return None: |
503 | /// assert_eq!(None, caps.get_group_by_name("middle" )); |
504 | /// |
505 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
506 | /// ``` |
507 | pub fn get_group_by_name(&self, name: &str) -> Option<Span> { |
508 | let index = self.group_info().to_index(self.pattern()?, name)?; |
509 | self.get_group(index) |
510 | } |
511 | |
512 | /// Returns an iterator of possible spans for every capturing group in the |
513 | /// matching pattern. |
514 | /// |
515 | /// If this `Captures` value does not correspond to a match, then the |
516 | /// iterator returned yields no elements. |
517 | /// |
518 | /// Note that the iterator returned yields elements of type `Option<Span>`. |
519 | /// A span is present if and only if it corresponds to a capturing group |
520 | /// that participated in a match. |
521 | /// |
522 | /// # Example |
523 | /// |
524 | /// This example shows how to collect all capturing groups: |
525 | /// |
526 | /// ``` |
527 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
528 | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span}; |
529 | /// |
530 | /// let re = PikeVM::new( |
531 | /// // Matches first/last names, with an optional middle name. |
532 | /// r"^(?P<first>\pL+)\s+(?:(?P<middle>\pL+)\s+)?(?P<last>\pL+)$" , |
533 | /// )?; |
534 | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
535 | /// |
536 | /// re.captures(&mut cache, "Harry James Potter" , &mut caps); |
537 | /// assert!(caps.is_match()); |
538 | /// let groups: Vec<Option<Span>> = caps.iter().collect(); |
539 | /// assert_eq!(groups, vec![ |
540 | /// Some(Span::from(0..18)), |
541 | /// Some(Span::from(0..5)), |
542 | /// Some(Span::from(6..11)), |
543 | /// Some(Span::from(12..18)), |
544 | /// ]); |
545 | /// |
546 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
547 | /// ``` |
548 | /// |
549 | /// This example uses the same regex as the previous example, but with a |
550 | /// haystack that omits the middle name. This results in a capturing group |
551 | /// that is present in the elements yielded by the iterator but without a |
552 | /// match: |
553 | /// |
554 | /// ``` |
555 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
556 | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span}; |
557 | /// |
558 | /// let re = PikeVM::new( |
559 | /// // Matches first/last names, with an optional middle name. |
560 | /// r"^(?P<first>\pL+)\s+(?:(?P<middle>\pL+)\s+)?(?P<last>\pL+)$" , |
561 | /// )?; |
562 | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
563 | /// |
564 | /// re.captures(&mut cache, "Harry Potter" , &mut caps); |
565 | /// assert!(caps.is_match()); |
566 | /// let groups: Vec<Option<Span>> = caps.iter().collect(); |
567 | /// assert_eq!(groups, vec![ |
568 | /// Some(Span::from(0..12)), |
569 | /// Some(Span::from(0..5)), |
570 | /// None, |
571 | /// Some(Span::from(6..12)), |
572 | /// ]); |
573 | /// |
574 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
575 | /// ``` |
576 | pub fn iter(&self) -> CapturesPatternIter<'_> { |
577 | let names = self |
578 | .pattern() |
579 | .map_or(GroupInfoPatternNames::empty().enumerate(), |pid| { |
580 | self.group_info().pattern_names(pid).enumerate() |
581 | }); |
582 | CapturesPatternIter { caps: self, names } |
583 | } |
584 | |
585 | /// Return the total number of capturing groups for the matching pattern. |
586 | /// |
587 | /// If this `Captures` value does not correspond to a match, then this |
588 | /// always returns `0`. |
589 | /// |
590 | /// This always returns the same number of elements yielded by |
591 | /// [`Captures::iter`]. That is, the number includes capturing groups even |
592 | /// if they don't participate in the match. |
593 | /// |
594 | /// # Example |
595 | /// |
596 | /// This example shows how to count the total number of capturing groups |
597 | /// associated with a pattern. Notice that it includes groups that did not |
598 | /// participate in a match (just like `Captures::iter` does). |
599 | /// |
600 | /// ``` |
601 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
602 | /// use regex_automata::nfa::thompson::pikevm::PikeVM; |
603 | /// |
604 | /// let re = PikeVM::new( |
605 | /// // Matches first/last names, with an optional middle name. |
606 | /// r"^(?P<first>\pL+)\s+(?:(?P<middle>\pL+)\s+)?(?P<last>\pL+)$" , |
607 | /// )?; |
608 | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
609 | /// |
610 | /// re.captures(&mut cache, "Harry Potter" , &mut caps); |
611 | /// assert_eq!(4, caps.group_len()); |
612 | /// |
613 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
614 | /// ``` |
615 | pub fn group_len(&self) -> usize { |
616 | let pid = match self.pattern() { |
617 | None => return 0, |
618 | Some(pid) => pid, |
619 | }; |
620 | self.group_info().group_len(pid) |
621 | } |
622 | |
623 | /// Returns a reference to the underlying group info on which these |
624 | /// captures are based. |
625 | /// |
626 | /// The difference between `GroupInfo` and `Captures` is that the former |
627 | /// defines the structure of capturing groups where as the latter is what |
628 | /// stores the actual match information. So where as `Captures` only gives |
629 | /// you access to the current match, `GroupInfo` lets you query any |
630 | /// information about all capturing groups, even ones for patterns that |
631 | /// weren't involved in a match. |
632 | /// |
633 | /// Note that a `GroupInfo` uses reference counting internally, so it may |
634 | /// be cloned cheaply. |
635 | /// |
636 | /// # Example |
637 | /// |
638 | /// This example shows how to get all capturing group names from the |
639 | /// underlying `GroupInfo`. Notice that we don't even need to run a |
640 | /// search. |
641 | /// |
642 | /// ``` |
643 | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID}; |
644 | /// |
645 | /// let re = PikeVM::new_many(&[ |
646 | /// r"(?P<foo>a)" , |
647 | /// r"(a)(b)" , |
648 | /// r"ab" , |
649 | /// r"(?P<bar>a)(?P<quux>a)" , |
650 | /// r"(?P<foo>z)" , |
651 | /// ])?; |
652 | /// let caps = re.create_captures(); |
653 | /// |
654 | /// let expected = vec![ |
655 | /// (PatternID::must(0), 0, None), |
656 | /// (PatternID::must(0), 1, Some("foo" )), |
657 | /// (PatternID::must(1), 0, None), |
658 | /// (PatternID::must(1), 1, None), |
659 | /// (PatternID::must(1), 2, None), |
660 | /// (PatternID::must(2), 0, None), |
661 | /// (PatternID::must(3), 0, None), |
662 | /// (PatternID::must(3), 1, Some("bar" )), |
663 | /// (PatternID::must(3), 2, Some("quux" )), |
664 | /// (PatternID::must(4), 0, None), |
665 | /// (PatternID::must(4), 1, Some("foo" )), |
666 | /// ]; |
667 | /// // We could also just use 're.get_nfa().group_info()'. |
668 | /// let got: Vec<(PatternID, usize, Option<&str>)> = |
669 | /// caps.group_info().all_names().collect(); |
670 | /// assert_eq!(expected, got); |
671 | /// |
672 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
673 | /// ``` |
674 | pub fn group_info(&self) -> &GroupInfo { |
675 | &self.group_info |
676 | } |
677 | |
678 | /// Interpolates the capture references in `replacement` with the |
679 | /// corresponding substrings in `haystack` matched by each reference. The |
680 | /// interpolated string is returned. |
681 | /// |
682 | /// See the [`interpolate` module](interpolate) for documentation on the |
683 | /// format of the replacement string. |
684 | /// |
685 | /// # Example |
686 | /// |
687 | /// This example shows how to use interpolation, and also shows how it |
688 | /// can work with multi-pattern regexes. |
689 | /// |
690 | /// ``` |
691 | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID}; |
692 | /// |
693 | /// let re = PikeVM::new_many(&[ |
694 | /// r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})" , |
695 | /// r"(?<year>[0-9]{4})-(?<month>[0-9]{2})-(?<day>[0-9]{2})" , |
696 | /// ])?; |
697 | /// let mut cache = re.create_cache(); |
698 | /// let mut caps = re.create_captures(); |
699 | /// |
700 | /// let replacement = "year=$year, month=$month, day=$day" ; |
701 | /// |
702 | /// // This matches the first pattern. |
703 | /// let hay = "On 14-03-2010, I became a Tenneessee lamb." ; |
704 | /// re.captures(&mut cache, hay, &mut caps); |
705 | /// let result = caps.interpolate_string(hay, replacement); |
706 | /// assert_eq!("year=2010, month=03, day=14" , result); |
707 | /// |
708 | /// // And this matches the second pattern. |
709 | /// let hay = "On 2010-03-14, I became a Tenneessee lamb." ; |
710 | /// re.captures(&mut cache, hay, &mut caps); |
711 | /// let result = caps.interpolate_string(hay, replacement); |
712 | /// assert_eq!("year=2010, month=03, day=14" , result); |
713 | /// |
714 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
715 | /// ``` |
716 | pub fn interpolate_string( |
717 | &self, |
718 | haystack: &str, |
719 | replacement: &str, |
720 | ) -> String { |
721 | let mut dst = String::new(); |
722 | self.interpolate_string_into(haystack, replacement, &mut dst); |
723 | dst |
724 | } |
725 | |
726 | /// Interpolates the capture references in `replacement` with the |
727 | /// corresponding substrings in `haystack` matched by each reference. The |
728 | /// interpolated string is written to `dst`. |
729 | /// |
730 | /// See the [`interpolate` module](interpolate) for documentation on the |
731 | /// format of the replacement string. |
732 | /// |
733 | /// # Example |
734 | /// |
735 | /// This example shows how to use interpolation, and also shows how it |
736 | /// can work with multi-pattern regexes. |
737 | /// |
738 | /// ``` |
739 | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID}; |
740 | /// |
741 | /// let re = PikeVM::new_many(&[ |
742 | /// r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})" , |
743 | /// r"(?<year>[0-9]{4})-(?<month>[0-9]{2})-(?<day>[0-9]{2})" , |
744 | /// ])?; |
745 | /// let mut cache = re.create_cache(); |
746 | /// let mut caps = re.create_captures(); |
747 | /// |
748 | /// let replacement = "year=$year, month=$month, day=$day" ; |
749 | /// |
750 | /// // This matches the first pattern. |
751 | /// let hay = "On 14-03-2010, I became a Tenneessee lamb." ; |
752 | /// re.captures(&mut cache, hay, &mut caps); |
753 | /// let mut dst = String::new(); |
754 | /// caps.interpolate_string_into(hay, replacement, &mut dst); |
755 | /// assert_eq!("year=2010, month=03, day=14" , dst); |
756 | /// |
757 | /// // And this matches the second pattern. |
758 | /// let hay = "On 2010-03-14, I became a Tenneessee lamb." ; |
759 | /// re.captures(&mut cache, hay, &mut caps); |
760 | /// let mut dst = String::new(); |
761 | /// caps.interpolate_string_into(hay, replacement, &mut dst); |
762 | /// assert_eq!("year=2010, month=03, day=14" , dst); |
763 | /// |
764 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
765 | /// ``` |
766 | pub fn interpolate_string_into( |
767 | &self, |
768 | haystack: &str, |
769 | replacement: &str, |
770 | dst: &mut String, |
771 | ) { |
772 | interpolate::string( |
773 | replacement, |
774 | |index, dst| { |
775 | let span = match self.get_group(index) { |
776 | None => return, |
777 | Some(span) => span, |
778 | }; |
779 | dst.push_str(&haystack[span]); |
780 | }, |
781 | |name| self.group_info().to_index(self.pattern()?, name), |
782 | dst, |
783 | ); |
784 | } |
785 | |
786 | /// Interpolates the capture references in `replacement` with the |
787 | /// corresponding substrings in `haystack` matched by each reference. The |
788 | /// interpolated byte string is returned. |
789 | /// |
790 | /// See the [`interpolate` module](interpolate) for documentation on the |
791 | /// format of the replacement string. |
792 | /// |
793 | /// # Example |
794 | /// |
795 | /// This example shows how to use interpolation, and also shows how it |
796 | /// can work with multi-pattern regexes. |
797 | /// |
798 | /// ``` |
799 | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID}; |
800 | /// |
801 | /// let re = PikeVM::new_many(&[ |
802 | /// r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})" , |
803 | /// r"(?<year>[0-9]{4})-(?<month>[0-9]{2})-(?<day>[0-9]{2})" , |
804 | /// ])?; |
805 | /// let mut cache = re.create_cache(); |
806 | /// let mut caps = re.create_captures(); |
807 | /// |
808 | /// let replacement = b"year=$year, month=$month, day=$day" ; |
809 | /// |
810 | /// // This matches the first pattern. |
811 | /// let hay = b"On 14-03-2010, I became a Tenneessee lamb." ; |
812 | /// re.captures(&mut cache, hay, &mut caps); |
813 | /// let result = caps.interpolate_bytes(hay, replacement); |
814 | /// assert_eq!(&b"year=2010, month=03, day=14" [..], result); |
815 | /// |
816 | /// // And this matches the second pattern. |
817 | /// let hay = b"On 2010-03-14, I became a Tenneessee lamb." ; |
818 | /// re.captures(&mut cache, hay, &mut caps); |
819 | /// let result = caps.interpolate_bytes(hay, replacement); |
820 | /// assert_eq!(&b"year=2010, month=03, day=14" [..], result); |
821 | /// |
822 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
823 | /// ``` |
824 | pub fn interpolate_bytes( |
825 | &self, |
826 | haystack: &[u8], |
827 | replacement: &[u8], |
828 | ) -> Vec<u8> { |
829 | let mut dst = vec![]; |
830 | self.interpolate_bytes_into(haystack, replacement, &mut dst); |
831 | dst |
832 | } |
833 | |
834 | /// Interpolates the capture references in `replacement` with the |
835 | /// corresponding substrings in `haystack` matched by each reference. The |
836 | /// interpolated byte string is written to `dst`. |
837 | /// |
838 | /// See the [`interpolate` module](interpolate) for documentation on the |
839 | /// format of the replacement string. |
840 | /// |
841 | /// # Example |
842 | /// |
843 | /// This example shows how to use interpolation, and also shows how it |
844 | /// can work with multi-pattern regexes. |
845 | /// |
846 | /// ``` |
847 | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID}; |
848 | /// |
849 | /// let re = PikeVM::new_many(&[ |
850 | /// r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})" , |
851 | /// r"(?<year>[0-9]{4})-(?<month>[0-9]{2})-(?<day>[0-9]{2})" , |
852 | /// ])?; |
853 | /// let mut cache = re.create_cache(); |
854 | /// let mut caps = re.create_captures(); |
855 | /// |
856 | /// let replacement = b"year=$year, month=$month, day=$day" ; |
857 | /// |
858 | /// // This matches the first pattern. |
859 | /// let hay = b"On 14-03-2010, I became a Tenneessee lamb." ; |
860 | /// re.captures(&mut cache, hay, &mut caps); |
861 | /// let mut dst = vec![]; |
862 | /// caps.interpolate_bytes_into(hay, replacement, &mut dst); |
863 | /// assert_eq!(&b"year=2010, month=03, day=14" [..], dst); |
864 | /// |
865 | /// // And this matches the second pattern. |
866 | /// let hay = b"On 2010-03-14, I became a Tenneessee lamb." ; |
867 | /// re.captures(&mut cache, hay, &mut caps); |
868 | /// let mut dst = vec![]; |
869 | /// caps.interpolate_bytes_into(hay, replacement, &mut dst); |
870 | /// assert_eq!(&b"year=2010, month=03, day=14" [..], dst); |
871 | /// |
872 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
873 | /// ``` |
874 | pub fn interpolate_bytes_into( |
875 | &self, |
876 | haystack: &[u8], |
877 | replacement: &[u8], |
878 | dst: &mut Vec<u8>, |
879 | ) { |
880 | interpolate::bytes( |
881 | replacement, |
882 | |index, dst| { |
883 | let span = match self.get_group(index) { |
884 | None => return, |
885 | Some(span) => span, |
886 | }; |
887 | dst.extend_from_slice(&haystack[span]); |
888 | }, |
889 | |name| self.group_info().to_index(self.pattern()?, name), |
890 | dst, |
891 | ); |
892 | } |
893 | |
894 | /// This is a convenience routine for extracting the substrings |
895 | /// corresponding to matching capture groups in the given `haystack`. The |
896 | /// `haystack` should be the same substring used to find the match spans in |
897 | /// this `Captures` value. |
898 | /// |
899 | /// This is identical to [`Captures::extract_bytes`], except it works with |
900 | /// `&str` instead of `&[u8]`. |
901 | /// |
902 | /// # Panics |
903 | /// |
904 | /// This panics if the number of explicit matching groups in this |
905 | /// `Captures` value is less than `N`. This also panics if this `Captures` |
906 | /// value does not correspond to a match. |
907 | /// |
908 | /// Note that this does *not* panic if the number of explicit matching |
909 | /// groups is bigger than `N`. In that case, only the first `N` matching |
910 | /// groups are extracted. |
911 | /// |
912 | /// # Example |
913 | /// |
914 | /// ``` |
915 | /// use regex_automata::nfa::thompson::pikevm::PikeVM; |
916 | /// |
917 | /// let re = PikeVM::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})" )?; |
918 | /// let mut cache = re.create_cache(); |
919 | /// let mut caps = re.create_captures(); |
920 | /// |
921 | /// let hay = "On 2010-03-14, I became a Tenneessee lamb." ; |
922 | /// re.captures(&mut cache, hay, &mut caps); |
923 | /// assert!(caps.is_match()); |
924 | /// let (full, [year, month, day]) = caps.extract(hay); |
925 | /// assert_eq!("2010-03-14" , full); |
926 | /// assert_eq!("2010" , year); |
927 | /// assert_eq!("03" , month); |
928 | /// assert_eq!("14" , day); |
929 | /// |
930 | /// // We can also ask for fewer than all capture groups. |
931 | /// let (full, [year]) = caps.extract(hay); |
932 | /// assert_eq!("2010-03-14" , full); |
933 | /// assert_eq!("2010" , year); |
934 | /// |
935 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
936 | /// ``` |
937 | pub fn extract<'h, const N: usize>( |
938 | &self, |
939 | haystack: &'h str, |
940 | ) -> (&'h str, [&'h str; N]) { |
941 | let mut matched = self.iter().flatten(); |
942 | let whole_match = &haystack[matched.next().expect("a match" )]; |
943 | let group_matches = [0; N].map(|_| { |
944 | let sp = matched.next().expect("too few matching groups" ); |
945 | &haystack[sp] |
946 | }); |
947 | (whole_match, group_matches) |
948 | } |
949 | |
950 | /// This is a convenience routine for extracting the substrings |
951 | /// corresponding to matching capture groups in the given `haystack`. The |
952 | /// `haystack` should be the same substring used to find the match spans in |
953 | /// this `Captures` value. |
954 | /// |
955 | /// This is identical to [`Captures::extract`], except it works with |
956 | /// `&[u8]` instead of `&str`. |
957 | /// |
958 | /// # Panics |
959 | /// |
960 | /// This panics if the number of explicit matching groups in this |
961 | /// `Captures` value is less than `N`. This also panics if this `Captures` |
962 | /// value does not correspond to a match. |
963 | /// |
964 | /// Note that this does *not* panic if the number of explicit matching |
965 | /// groups is bigger than `N`. In that case, only the first `N` matching |
966 | /// groups are extracted. |
967 | /// |
968 | /// # Example |
969 | /// |
970 | /// ``` |
971 | /// use regex_automata::nfa::thompson::pikevm::PikeVM; |
972 | /// |
973 | /// let re = PikeVM::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})" )?; |
974 | /// let mut cache = re.create_cache(); |
975 | /// let mut caps = re.create_captures(); |
976 | /// |
977 | /// let hay = b"On 2010-03-14, I became a Tenneessee lamb." ; |
978 | /// re.captures(&mut cache, hay, &mut caps); |
979 | /// assert!(caps.is_match()); |
980 | /// let (full, [year, month, day]) = caps.extract_bytes(hay); |
981 | /// assert_eq!(b"2010-03-14" , full); |
982 | /// assert_eq!(b"2010" , year); |
983 | /// assert_eq!(b"03" , month); |
984 | /// assert_eq!(b"14" , day); |
985 | /// |
986 | /// // We can also ask for fewer than all capture groups. |
987 | /// let (full, [year]) = caps.extract_bytes(hay); |
988 | /// assert_eq!(b"2010-03-14" , full); |
989 | /// assert_eq!(b"2010" , year); |
990 | /// |
991 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
992 | /// ``` |
993 | pub fn extract_bytes<'h, const N: usize>( |
994 | &self, |
995 | haystack: &'h [u8], |
996 | ) -> (&'h [u8], [&'h [u8]; N]) { |
997 | let mut matched = self.iter().flatten(); |
998 | let whole_match = &haystack[matched.next().expect("a match" )]; |
999 | let group_matches = [0; N].map(|_| { |
1000 | let sp = matched.next().expect("too few matching groups" ); |
1001 | &haystack[sp] |
1002 | }); |
1003 | (whole_match, group_matches) |
1004 | } |
1005 | } |
1006 | |
1007 | /// Lower level "slot" oriented APIs. One does not typically need to use these |
1008 | /// when executing a search. They are instead mostly intended for folks that |
1009 | /// are writing their own regex engine while reusing this `Captures` type. |
1010 | impl Captures { |
1011 | /// Clear this `Captures` value. |
1012 | /// |
1013 | /// After clearing, all slots inside this `Captures` value will be set to |
1014 | /// `None`. Similarly, any pattern ID that it was previously associated |
1015 | /// with (for a match) is erased. |
1016 | /// |
1017 | /// It is not usually necessary to call this routine. Namely, a `Captures` |
1018 | /// value only provides high level access to the capturing groups of the |
1019 | /// pattern that matched, and only low level access to individual slots. |
1020 | /// Thus, even if slots corresponding to groups that aren't associated |
1021 | /// with the matching pattern are set, then it won't impact the higher |
1022 | /// level APIs. Namely, higher level APIs like [`Captures::get_group`] will |
1023 | /// return `None` if no pattern ID is present, even if there are spans set |
1024 | /// in the underlying slots. |
1025 | /// |
1026 | /// Thus, to "clear" a `Captures` value of a match, it is usually only |
1027 | /// necessary to call [`Captures::set_pattern`] with `None`. |
1028 | /// |
1029 | /// # Example |
1030 | /// |
1031 | /// This example shows what happens when a `Captures` value is cleared. |
1032 | /// |
1033 | /// ``` |
1034 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
1035 | /// use regex_automata::nfa::thompson::pikevm::PikeVM; |
1036 | /// |
1037 | /// let re = PikeVM::new(r"^(?P<first>\pL+)\s+(?P<last>\pL+)$" )?; |
1038 | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
1039 | /// |
1040 | /// re.captures(&mut cache, "Bruce Springsteen" , &mut caps); |
1041 | /// assert!(caps.is_match()); |
1042 | /// let slots: Vec<Option<usize>> = |
1043 | /// caps.slots().iter().map(|s| s.map(|x| x.get())).collect(); |
1044 | /// // Note that the following ordering is considered an API guarantee. |
1045 | /// assert_eq!(slots, vec![ |
1046 | /// Some(0), |
1047 | /// Some(17), |
1048 | /// Some(0), |
1049 | /// Some(5), |
1050 | /// Some(6), |
1051 | /// Some(17), |
1052 | /// ]); |
1053 | /// |
1054 | /// // Now clear the slots. Everything is gone and it is no longer a match. |
1055 | /// caps.clear(); |
1056 | /// assert!(!caps.is_match()); |
1057 | /// let slots: Vec<Option<usize>> = |
1058 | /// caps.slots().iter().map(|s| s.map(|x| x.get())).collect(); |
1059 | /// assert_eq!(slots, vec![ |
1060 | /// None, |
1061 | /// None, |
1062 | /// None, |
1063 | /// None, |
1064 | /// None, |
1065 | /// None, |
1066 | /// ]); |
1067 | /// |
1068 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1069 | /// ``` |
1070 | #[inline ] |
1071 | pub fn clear(&mut self) { |
1072 | self.pid = None; |
1073 | for slot in self.slots.iter_mut() { |
1074 | *slot = None; |
1075 | } |
1076 | } |
1077 | |
1078 | /// Set the pattern on this `Captures` value. |
1079 | /// |
1080 | /// When the pattern ID is `None`, then this `Captures` value does not |
1081 | /// correspond to a match (`is_match` will return `false`). Otherwise, it |
1082 | /// corresponds to a match. |
1083 | /// |
1084 | /// This is useful in search implementations where you might want to |
1085 | /// initially call `set_pattern(None)` in order to avoid the cost of |
1086 | /// calling `clear()` if it turns out to not be necessary. |
1087 | /// |
1088 | /// # Example |
1089 | /// |
1090 | /// This example shows that `set_pattern` merely overwrites the pattern ID. |
1091 | /// It does not actually change the underlying slot values. |
1092 | /// |
1093 | /// ``` |
1094 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
1095 | /// use regex_automata::nfa::thompson::pikevm::PikeVM; |
1096 | /// |
1097 | /// let re = PikeVM::new(r"^(?P<first>\pL+)\s+(?P<last>\pL+)$" )?; |
1098 | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
1099 | /// |
1100 | /// re.captures(&mut cache, "Bruce Springsteen" , &mut caps); |
1101 | /// assert!(caps.is_match()); |
1102 | /// assert!(caps.pattern().is_some()); |
1103 | /// let slots: Vec<Option<usize>> = |
1104 | /// caps.slots().iter().map(|s| s.map(|x| x.get())).collect(); |
1105 | /// // Note that the following ordering is considered an API guarantee. |
1106 | /// assert_eq!(slots, vec![ |
1107 | /// Some(0), |
1108 | /// Some(17), |
1109 | /// Some(0), |
1110 | /// Some(5), |
1111 | /// Some(6), |
1112 | /// Some(17), |
1113 | /// ]); |
1114 | /// |
1115 | /// // Now set the pattern to None. Note that the slot values remain. |
1116 | /// caps.set_pattern(None); |
1117 | /// assert!(!caps.is_match()); |
1118 | /// assert!(!caps.pattern().is_some()); |
1119 | /// let slots: Vec<Option<usize>> = |
1120 | /// caps.slots().iter().map(|s| s.map(|x| x.get())).collect(); |
1121 | /// // Note that the following ordering is considered an API guarantee. |
1122 | /// assert_eq!(slots, vec![ |
1123 | /// Some(0), |
1124 | /// Some(17), |
1125 | /// Some(0), |
1126 | /// Some(5), |
1127 | /// Some(6), |
1128 | /// Some(17), |
1129 | /// ]); |
1130 | /// |
1131 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1132 | /// ``` |
1133 | #[inline ] |
1134 | pub fn set_pattern(&mut self, pid: Option<PatternID>) { |
1135 | self.pid = pid; |
1136 | } |
1137 | |
1138 | /// Returns the underlying slots, where each slot stores a single offset. |
1139 | /// |
1140 | /// Every matching capturing group generally corresponds to two slots: one |
1141 | /// slot for the starting position and another for the ending position. |
1142 | /// Typically, either both are present or neither are. (The weasel word |
1143 | /// "typically" is used here because it really depends on the regex engine |
1144 | /// implementation. Every sensible regex engine likely adheres to this |
1145 | /// invariant, and every regex engine in this crate is sensible.) |
1146 | /// |
1147 | /// Generally speaking, callers should prefer to use higher level routines |
1148 | /// like [`Captures::get_match`] or [`Captures::get_group`]. |
1149 | /// |
1150 | /// An important note here is that a regex engine may not reset all of the |
1151 | /// slots to `None` values when no match occurs, or even when a match of |
1152 | /// a different pattern occurs. But this depends on how the regex engine |
1153 | /// implementation deals with slots. |
1154 | /// |
1155 | /// # Example |
1156 | /// |
1157 | /// This example shows how to get the underlying slots from a regex match. |
1158 | /// |
1159 | /// ``` |
1160 | /// use regex_automata::{ |
1161 | /// nfa::thompson::pikevm::PikeVM, |
1162 | /// util::primitives::{PatternID, NonMaxUsize}, |
1163 | /// }; |
1164 | /// |
1165 | /// let re = PikeVM::new_many(&[ |
1166 | /// r"[a-z]+" , |
1167 | /// r"[0-9]+" , |
1168 | /// ])?; |
1169 | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
1170 | /// |
1171 | /// re.captures(&mut cache, "123" , &mut caps); |
1172 | /// assert_eq!(Some(PatternID::must(1)), caps.pattern()); |
1173 | /// // Note that the only guarantee we have here is that slots 2 and 3 |
1174 | /// // are set to correct values. The contents of the first two slots are |
1175 | /// // unspecified since the 0th pattern did not match. |
1176 | /// let expected = &[ |
1177 | /// None, |
1178 | /// None, |
1179 | /// NonMaxUsize::new(0), |
1180 | /// NonMaxUsize::new(3), |
1181 | /// ]; |
1182 | /// assert_eq!(expected, caps.slots()); |
1183 | /// |
1184 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1185 | /// ``` |
1186 | #[inline ] |
1187 | pub fn slots(&self) -> &[Option<NonMaxUsize>] { |
1188 | &self.slots |
1189 | } |
1190 | |
1191 | /// Returns the underlying slots as a mutable slice, where each slot stores |
1192 | /// a single offset. |
1193 | /// |
1194 | /// This tends to be most useful for regex engine implementations for |
1195 | /// writing offsets for matching capturing groups to slots. |
1196 | /// |
1197 | /// See [`Captures::slots`] for more information about slots. |
1198 | #[inline ] |
1199 | pub fn slots_mut(&mut self) -> &mut [Option<NonMaxUsize>] { |
1200 | &mut self.slots |
1201 | } |
1202 | } |
1203 | |
1204 | impl core::fmt::Debug for Captures { |
1205 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
1206 | let mut dstruct = f.debug_struct("Captures" ); |
1207 | dstruct.field("pid" , &self.pid); |
1208 | if let Some(pid) = self.pid { |
1209 | dstruct.field("spans" , &CapturesDebugMap { pid, caps: self }); |
1210 | } |
1211 | dstruct.finish() |
1212 | } |
1213 | } |
1214 | |
1215 | /// A little helper type to provide a nice map-like debug representation for |
1216 | /// our capturing group spans. |
1217 | struct CapturesDebugMap<'a> { |
1218 | pid: PatternID, |
1219 | caps: &'a Captures, |
1220 | } |
1221 | |
1222 | impl<'a> core::fmt::Debug for CapturesDebugMap<'a> { |
1223 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
1224 | struct Key<'a>(usize, Option<&'a str>); |
1225 | |
1226 | impl<'a> core::fmt::Debug for Key<'a> { |
1227 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
1228 | write!(f, "{}" , self.0)?; |
1229 | if let Some(name) = self.1 { |
1230 | write!(f, "/{:?}" , name)?; |
1231 | } |
1232 | Ok(()) |
1233 | } |
1234 | } |
1235 | |
1236 | let mut map = f.debug_map(); |
1237 | let names = self.caps.group_info().pattern_names(self.pid); |
1238 | for (group_index, maybe_name) in names.enumerate() { |
1239 | let key = Key(group_index, maybe_name); |
1240 | match self.caps.get_group(group_index) { |
1241 | None => map.entry(&key, &None::<()>), |
1242 | Some(span) => map.entry(&key, &span), |
1243 | }; |
1244 | } |
1245 | map.finish() |
1246 | } |
1247 | } |
1248 | |
1249 | /// An iterator over all capturing groups in a `Captures` value. |
1250 | /// |
1251 | /// This iterator includes capturing groups that did not participate in a |
1252 | /// match. See the [`Captures::iter`] method documentation for more details |
1253 | /// and examples. |
1254 | /// |
1255 | /// The lifetime parameter `'a` refers to the lifetime of the underlying |
1256 | /// `Captures` value. |
1257 | #[derive(Clone, Debug)] |
1258 | pub struct CapturesPatternIter<'a> { |
1259 | caps: &'a Captures, |
1260 | names: core::iter::Enumerate<GroupInfoPatternNames<'a>>, |
1261 | } |
1262 | |
1263 | impl<'a> Iterator for CapturesPatternIter<'a> { |
1264 | type Item = Option<Span>; |
1265 | |
1266 | fn next(&mut self) -> Option<Option<Span>> { |
1267 | let (group_index, _) = self.names.next()?; |
1268 | Some(self.caps.get_group(group_index)) |
1269 | } |
1270 | |
1271 | fn size_hint(&self) -> (usize, Option<usize>) { |
1272 | self.names.size_hint() |
1273 | } |
1274 | |
1275 | fn count(self) -> usize { |
1276 | self.names.count() |
1277 | } |
1278 | } |
1279 | |
1280 | impl<'a> ExactSizeIterator for CapturesPatternIter<'a> {} |
1281 | impl<'a> core::iter::FusedIterator for CapturesPatternIter<'a> {} |
1282 | |
1283 | /// Represents information about capturing groups in a compiled regex. |
1284 | /// |
1285 | /// The information encapsulated by this type consists of the following. For |
1286 | /// each pattern: |
1287 | /// |
1288 | /// * A map from every capture group name to its corresponding capture group |
1289 | /// index. |
1290 | /// * A map from every capture group index to its corresponding capture group |
1291 | /// name. |
1292 | /// * A map from capture group index to its corresponding slot index. A slot |
1293 | /// refers to one half of a capturing group. That is, a capture slot is either |
1294 | /// the start or end of a capturing group. A slot is usually the mechanism |
1295 | /// by which a regex engine records offsets for each capturing group during a |
1296 | /// search. |
1297 | /// |
1298 | /// A `GroupInfo` uses reference counting internally and is thus cheap to |
1299 | /// clone. |
1300 | /// |
1301 | /// # Mapping from capture groups to slots |
1302 | /// |
1303 | /// One of the main responsibilities of a `GroupInfo` is to build a mapping |
1304 | /// from `(PatternID, u32)` (where the `u32` is a capture index) to something |
1305 | /// called a "slot." As mentioned above, a slot refers to one half of a |
1306 | /// capturing group. Both combined provide the start and end offsets of |
1307 | /// a capturing group that participated in a match. |
1308 | /// |
1309 | /// **The mapping between group indices and slots is an API guarantee.** That |
1310 | /// is, the mapping won't change within a semver compatible release. |
1311 | /// |
1312 | /// Slots exist primarily because this is a convenient mechanism by which |
1313 | /// regex engines report group offsets at search time. For example, the |
1314 | /// [`nfa::thompson::State::Capture`](crate::nfa::thompson::State::Capture) |
1315 | /// NFA state includes the slot index. When a regex engine transitions through |
1316 | /// this state, it will likely use the slot index to write the current haystack |
1317 | /// offset to some region of memory. When a match is found, those slots are |
1318 | /// then reported to the caller, typically via a convenient abstraction like a |
1319 | /// [`Captures`] value. |
1320 | /// |
1321 | /// Because this crate provides first class support for multi-pattern regexes, |
1322 | /// and because of some performance related reasons, the mapping between |
1323 | /// capturing groups and slots is a little complex. However, in the case of a |
1324 | /// single pattern, the mapping can be described very simply: for all capture |
1325 | /// group indices `i`, its corresponding slots are at `i * 2` and `i * 2 + 1`. |
1326 | /// Notice that the pattern ID isn't involved at all here, because it only |
1327 | /// applies to a single-pattern regex, it is therefore always `0`. |
1328 | /// |
1329 | /// In the multi-pattern case, the mapping is a bit more complicated. To talk |
1330 | /// about it, we must define what we mean by "implicit" vs "explicit" |
1331 | /// capturing groups: |
1332 | /// |
1333 | /// * An **implicit** capturing group refers to the capturing group that is |
1334 | /// present for every pattern automatically, and corresponds to the overall |
1335 | /// match of a pattern. Every pattern has precisely one implicit capturing |
1336 | /// group. It is always unnamed and it always corresponds to the capture group |
1337 | /// index `0`. |
1338 | /// * An **explicit** capturing group refers to any capturing group that |
1339 | /// appears in the concrete syntax of the pattern. (Or, if an NFA was hand |
1340 | /// built without any concrete syntax, it refers to any capturing group with an |
1341 | /// index greater than `0`.) |
1342 | /// |
1343 | /// Some examples: |
1344 | /// |
1345 | /// * `\w+` has one implicit capturing group and zero explicit capturing |
1346 | /// groups. |
1347 | /// * `(\w+)` has one implicit group and one explicit group. |
1348 | /// * `foo(\d+)(?:\pL+)(\d+)` has one implicit group and two explicit groups. |
1349 | /// |
1350 | /// Turning back to the slot mapping, we can now state it as follows: |
1351 | /// |
1352 | /// * Given a pattern ID `pid`, the slots for its implicit group are always |
1353 | /// at `pid * 2` and `pid * 2 + 1`. |
1354 | /// * Given a pattern ID `0`, the slots for its explicit groups start |
1355 | /// at `group_info.pattern_len() * 2`. |
1356 | /// * Given a pattern ID `pid > 0`, the slots for its explicit groups start |
1357 | /// immediately following where the slots for the explicit groups of `pid - 1` |
1358 | /// end. |
1359 | /// |
1360 | /// In particular, while there is a concrete formula one can use to determine |
1361 | /// where the slots for the implicit group of any pattern are, there is no |
1362 | /// general formula for determining where the slots for explicit capturing |
1363 | /// groups are. This is because each pattern can contain a different number |
1364 | /// of groups. |
1365 | /// |
1366 | /// The intended way of getting the slots for a particular capturing group |
1367 | /// (whether implicit or explicit) is via the [`GroupInfo::slot`] or |
1368 | /// [`GroupInfo::slots`] method. |
1369 | /// |
1370 | /// See below for a concrete example of how capturing groups get mapped to |
1371 | /// slots. |
1372 | /// |
1373 | /// # Example |
1374 | /// |
1375 | /// This example shows how to build a new `GroupInfo` and query it for |
1376 | /// information. |
1377 | /// |
1378 | /// ``` |
1379 | /// use regex_automata::util::{captures::GroupInfo, primitives::PatternID}; |
1380 | /// |
1381 | /// let info = GroupInfo::new(vec![ |
1382 | /// vec![None, Some("foo" )], |
1383 | /// vec![None], |
1384 | /// vec![None, None, None, Some("bar" ), None], |
1385 | /// vec![None, None, Some("foo" )], |
1386 | /// ])?; |
1387 | /// // The number of patterns being tracked. |
1388 | /// assert_eq!(4, info.pattern_len()); |
1389 | /// // We can query the number of groups for any pattern. |
1390 | /// assert_eq!(2, info.group_len(PatternID::must(0))); |
1391 | /// assert_eq!(1, info.group_len(PatternID::must(1))); |
1392 | /// assert_eq!(5, info.group_len(PatternID::must(2))); |
1393 | /// assert_eq!(3, info.group_len(PatternID::must(3))); |
1394 | /// // An invalid pattern always has zero groups. |
1395 | /// assert_eq!(0, info.group_len(PatternID::must(999))); |
1396 | /// // 2 slots per group |
1397 | /// assert_eq!(22, info.slot_len()); |
1398 | /// |
1399 | /// // We can map a group index for a particular pattern to its name, if |
1400 | /// // one exists. |
1401 | /// assert_eq!(Some("foo" ), info.to_name(PatternID::must(3), 2)); |
1402 | /// assert_eq!(None, info.to_name(PatternID::must(2), 4)); |
1403 | /// // Or map a name to its group index. |
1404 | /// assert_eq!(Some(1), info.to_index(PatternID::must(0), "foo" )); |
1405 | /// assert_eq!(Some(2), info.to_index(PatternID::must(3), "foo" )); |
1406 | /// |
1407 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1408 | /// ``` |
1409 | /// |
1410 | /// # Example: mapping from capture groups to slots |
1411 | /// |
1412 | /// This example shows the specific mapping from capture group indices for |
1413 | /// each pattern to their corresponding slots. The slot values shown in this |
1414 | /// example are considered an API guarantee. |
1415 | /// |
1416 | /// ``` |
1417 | /// use regex_automata::util::{captures::GroupInfo, primitives::PatternID}; |
1418 | /// |
1419 | /// let info = GroupInfo::new(vec![ |
1420 | /// vec![None, Some("foo" )], |
1421 | /// vec![None], |
1422 | /// vec![None, None, None, Some("bar" ), None], |
1423 | /// vec![None, None, Some("foo" )], |
1424 | /// ])?; |
1425 | /// |
1426 | /// // We first show the slots for each pattern's implicit group. |
1427 | /// assert_eq!(Some((0, 1)), info.slots(PatternID::must(0), 0)); |
1428 | /// assert_eq!(Some((2, 3)), info.slots(PatternID::must(1), 0)); |
1429 | /// assert_eq!(Some((4, 5)), info.slots(PatternID::must(2), 0)); |
1430 | /// assert_eq!(Some((6, 7)), info.slots(PatternID::must(3), 0)); |
1431 | /// |
1432 | /// // And now we show the slots for each pattern's explicit group. |
1433 | /// assert_eq!(Some((8, 9)), info.slots(PatternID::must(0), 1)); |
1434 | /// assert_eq!(Some((10, 11)), info.slots(PatternID::must(2), 1)); |
1435 | /// assert_eq!(Some((12, 13)), info.slots(PatternID::must(2), 2)); |
1436 | /// assert_eq!(Some((14, 15)), info.slots(PatternID::must(2), 3)); |
1437 | /// assert_eq!(Some((16, 17)), info.slots(PatternID::must(2), 4)); |
1438 | /// assert_eq!(Some((18, 19)), info.slots(PatternID::must(3), 1)); |
1439 | /// assert_eq!(Some((20, 21)), info.slots(PatternID::must(3), 2)); |
1440 | /// |
1441 | /// // Asking for the slots for an invalid pattern ID or even for an invalid |
1442 | /// // group index for a specific pattern will return None. So for example, |
1443 | /// // you're guaranteed to not get the slots for a different pattern than the |
1444 | /// // one requested. |
1445 | /// assert_eq!(None, info.slots(PatternID::must(5), 0)); |
1446 | /// assert_eq!(None, info.slots(PatternID::must(1), 1)); |
1447 | /// |
1448 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1449 | /// ``` |
1450 | #[derive(Clone, Debug, Default)] |
1451 | pub struct GroupInfo(Arc<GroupInfoInner>); |
1452 | |
1453 | impl GroupInfo { |
1454 | /// Creates a new group info from a sequence of patterns, where each |
1455 | /// sequence of patterns yields a sequence of possible group names. The |
1456 | /// index of each pattern in the sequence corresponds to its `PatternID`, |
1457 | /// and the index of each group in each pattern's sequence corresponds to |
1458 | /// its corresponding group index. |
1459 | /// |
1460 | /// While this constructor is very generic and therefore perhaps hard to |
1461 | /// chew on, an example of a valid concrete type that can be passed to |
1462 | /// this constructor is `Vec<Vec<Option<String>>>`. The outer `Vec` |
1463 | /// corresponds to the patterns, i.e., one `Vec<Option<String>>` per |
1464 | /// pattern. The inner `Vec` corresponds to the capturing groups for |
1465 | /// each pattern. The `Option<String>` corresponds to the name of the |
1466 | /// capturing group, if present. |
1467 | /// |
1468 | /// It is legal to pass an empty iterator to this constructor. It will |
1469 | /// return an empty group info with zero slots. An empty group info is |
1470 | /// useful for cases where you have no patterns or for cases where slots |
1471 | /// aren't being used at all (e.g., for most DFAs in this crate). |
1472 | /// |
1473 | /// # Errors |
1474 | /// |
1475 | /// This constructor returns an error if the given capturing groups are |
1476 | /// invalid in some way. Those reasons include, but are not necessarily |
1477 | /// limited to: |
1478 | /// |
1479 | /// * Too many patterns (i.e., `PatternID` would overflow). |
1480 | /// * Too many capturing groups (e.g., `u32` would overflow). |
1481 | /// * A pattern is given that has no capturing groups. (All patterns must |
1482 | /// have at least an implicit capturing group at index `0`.) |
1483 | /// * The capturing group at index `0` has a name. It must be unnamed. |
1484 | /// * There are duplicate capturing group names within the same pattern. |
1485 | /// (Multiple capturing groups with the same name may exist, but they |
1486 | /// must be in different patterns.) |
1487 | /// |
1488 | /// An example below shows how to trigger some of the above error |
1489 | /// conditions. |
1490 | /// |
1491 | /// # Example |
1492 | /// |
1493 | /// This example shows how to build a new `GroupInfo` and query it for |
1494 | /// information. |
1495 | /// |
1496 | /// ``` |
1497 | /// use regex_automata::util::captures::GroupInfo; |
1498 | /// |
1499 | /// let info = GroupInfo::new(vec![ |
1500 | /// vec![None, Some("foo" )], |
1501 | /// vec![None], |
1502 | /// vec![None, None, None, Some("bar" ), None], |
1503 | /// vec![None, None, Some("foo" )], |
1504 | /// ])?; |
1505 | /// // The number of patterns being tracked. |
1506 | /// assert_eq!(4, info.pattern_len()); |
1507 | /// // 2 slots per group |
1508 | /// assert_eq!(22, info.slot_len()); |
1509 | /// |
1510 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1511 | /// ``` |
1512 | /// |
1513 | /// # Example: empty `GroupInfo` |
1514 | /// |
1515 | /// This example shows how to build a new `GroupInfo` and query it for |
1516 | /// information. |
1517 | /// |
1518 | /// ``` |
1519 | /// use regex_automata::util::captures::GroupInfo; |
1520 | /// |
1521 | /// let info = GroupInfo::empty(); |
1522 | /// // Everything is zero. |
1523 | /// assert_eq!(0, info.pattern_len()); |
1524 | /// assert_eq!(0, info.slot_len()); |
1525 | /// |
1526 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1527 | /// ``` |
1528 | /// |
1529 | /// # Example: error conditions |
1530 | /// |
1531 | /// This example shows how to provoke some of the ways in which building |
1532 | /// a `GroupInfo` can fail. |
1533 | /// |
1534 | /// ``` |
1535 | /// use regex_automata::util::captures::GroupInfo; |
1536 | /// |
1537 | /// // Either the group info is empty, or all patterns must have at least |
1538 | /// // one capturing group. |
1539 | /// assert!(GroupInfo::new(vec![ |
1540 | /// vec![None, Some("a" )], // ok |
1541 | /// vec![None], // ok |
1542 | /// vec![], // not ok |
1543 | /// ]).is_err()); |
1544 | /// // Note that building an empty group info is OK. |
1545 | /// assert!(GroupInfo::new(Vec::<Vec<Option<String>>>::new()).is_ok()); |
1546 | /// |
1547 | /// // The first group in each pattern must correspond to an implicit |
1548 | /// // anonymous group. i.e., One that is not named. By convention, this |
1549 | /// // group corresponds to the overall match of a regex. Every other group |
1550 | /// // in a pattern is explicit and optional. |
1551 | /// assert!(GroupInfo::new(vec![vec![Some("foo" )]]).is_err()); |
1552 | /// |
1553 | /// // There must not be duplicate group names within the same pattern. |
1554 | /// assert!(GroupInfo::new(vec![ |
1555 | /// vec![None, Some("foo" ), Some("foo" )], |
1556 | /// ]).is_err()); |
1557 | /// // But duplicate names across distinct patterns is OK. |
1558 | /// assert!(GroupInfo::new(vec![ |
1559 | /// vec![None, Some("foo" )], |
1560 | /// vec![None, Some("foo" )], |
1561 | /// ]).is_ok()); |
1562 | /// |
1563 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1564 | /// ``` |
1565 | /// |
1566 | /// There are other ways for building a `GroupInfo` to fail but are |
1567 | /// difficult to show. For example, if the number of patterns given would |
1568 | /// overflow `PatternID`. |
1569 | pub fn new<P, G, N>(pattern_groups: P) -> Result<GroupInfo, GroupInfoError> |
1570 | where |
1571 | P: IntoIterator<Item = G>, |
1572 | G: IntoIterator<Item = Option<N>>, |
1573 | N: AsRef<str>, |
1574 | { |
1575 | let mut group_info = GroupInfoInner { |
1576 | slot_ranges: vec![], |
1577 | name_to_index: vec![], |
1578 | index_to_name: vec![], |
1579 | memory_extra: 0, |
1580 | }; |
1581 | for (pattern_index, groups) in pattern_groups.into_iter().enumerate() { |
1582 | // If we can't convert the pattern index to an ID, then the caller |
1583 | // tried to build capture info for too many patterns. |
1584 | let pid = PatternID::new(pattern_index) |
1585 | .map_err(GroupInfoError::too_many_patterns)?; |
1586 | |
1587 | let mut groups_iter = groups.into_iter().enumerate(); |
1588 | match groups_iter.next() { |
1589 | None => return Err(GroupInfoError::missing_groups(pid)), |
1590 | Some((_, Some(_))) => { |
1591 | return Err(GroupInfoError::first_must_be_unnamed(pid)) |
1592 | } |
1593 | Some((_, None)) => {} |
1594 | } |
1595 | group_info.add_first_group(pid); |
1596 | // Now iterate over the rest, which correspond to all of the |
1597 | // (conventionally) explicit capture groups in a regex pattern. |
1598 | for (group_index, maybe_name) in groups_iter { |
1599 | // Just like for patterns, if the group index can't be |
1600 | // converted to a "small" index, then the caller has given too |
1601 | // many groups for a particular pattern. |
1602 | let group = SmallIndex::new(group_index).map_err(|_| { |
1603 | GroupInfoError::too_many_groups(pid, group_index) |
1604 | })?; |
1605 | group_info.add_explicit_group(pid, group, maybe_name)?; |
1606 | } |
1607 | } |
1608 | group_info.fixup_slot_ranges()?; |
1609 | Ok(GroupInfo(Arc::new(group_info))) |
1610 | } |
1611 | |
1612 | /// This creates an empty `GroupInfo`. |
1613 | /// |
1614 | /// This is a convenience routine for calling `GroupInfo::new` with an |
1615 | /// iterator that yields no elements. |
1616 | /// |
1617 | /// # Example |
1618 | /// |
1619 | /// This example shows how to build a new empty `GroupInfo` and query it |
1620 | /// for information. |
1621 | /// |
1622 | /// ``` |
1623 | /// use regex_automata::util::captures::GroupInfo; |
1624 | /// |
1625 | /// let info = GroupInfo::empty(); |
1626 | /// // Everything is zero. |
1627 | /// assert_eq!(0, info.pattern_len()); |
1628 | /// assert_eq!(0, info.all_group_len()); |
1629 | /// assert_eq!(0, info.slot_len()); |
1630 | /// |
1631 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1632 | /// ``` |
1633 | pub fn empty() -> GroupInfo { |
1634 | GroupInfo::new(core::iter::empty::<[Option<&str>; 0]>()) |
1635 | .expect("empty group info is always valid" ) |
1636 | } |
1637 | |
1638 | /// Return the capture group index corresponding to the given name in the |
1639 | /// given pattern. If no such capture group name exists in the given |
1640 | /// pattern, then this returns `None`. |
1641 | /// |
1642 | /// If the given pattern ID is invalid, then this returns `None`. |
1643 | /// |
1644 | /// This also returns `None` for all inputs if these captures are empty |
1645 | /// (e.g., built from an empty [`GroupInfo`]). To check whether captures |
1646 | /// are are present for a specific pattern, use [`GroupInfo::group_len`]. |
1647 | /// |
1648 | /// # Example |
1649 | /// |
1650 | /// This example shows how to find the capture index for the given pattern |
1651 | /// and group name. |
1652 | /// |
1653 | /// Remember that capture indices are relative to the pattern, such that |
1654 | /// the same capture index value may refer to different capturing groups |
1655 | /// for distinct patterns. |
1656 | /// |
1657 | /// ``` |
1658 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
1659 | /// use regex_automata::{nfa::thompson::NFA, PatternID}; |
1660 | /// |
1661 | /// let (pid0, pid1) = (PatternID::must(0), PatternID::must(1)); |
1662 | /// |
1663 | /// let nfa = NFA::new_many(&[ |
1664 | /// r"a(?P<quux>\w+)z(?P<foo>\s+)" , |
1665 | /// r"a(?P<foo>\d+)z" , |
1666 | /// ])?; |
1667 | /// let groups = nfa.group_info(); |
1668 | /// assert_eq!(Some(2), groups.to_index(pid0, "foo" )); |
1669 | /// // Recall that capture index 0 is always unnamed and refers to the |
1670 | /// // entire pattern. So the first capturing group present in the pattern |
1671 | /// // itself always starts at index 1. |
1672 | /// assert_eq!(Some(1), groups.to_index(pid1, "foo" )); |
1673 | /// |
1674 | /// // And if a name does not exist for a particular pattern, None is |
1675 | /// // returned. |
1676 | /// assert!(groups.to_index(pid0, "quux" ).is_some()); |
1677 | /// assert!(groups.to_index(pid1, "quux" ).is_none()); |
1678 | /// |
1679 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1680 | /// ``` |
1681 | #[inline ] |
1682 | pub fn to_index(&self, pid: PatternID, name: &str) -> Option<usize> { |
1683 | let indices = self.0.name_to_index.get(pid.as_usize())?; |
1684 | indices.get(name).cloned().map(|i| i.as_usize()) |
1685 | } |
1686 | |
1687 | /// Return the capture name for the given index and given pattern. If the |
1688 | /// corresponding group does not have a name, then this returns `None`. |
1689 | /// |
1690 | /// If the pattern ID is invalid, then this returns `None`. |
1691 | /// |
1692 | /// If the group index is invalid for the given pattern, then this returns |
1693 | /// `None`. A group `index` is valid for a pattern `pid` in an `nfa` if and |
1694 | /// only if `index < nfa.pattern_capture_len(pid)`. |
1695 | /// |
1696 | /// This also returns `None` for all inputs if these captures are empty |
1697 | /// (e.g., built from an empty [`GroupInfo`]). To check whether captures |
1698 | /// are are present for a specific pattern, use [`GroupInfo::group_len`]. |
1699 | /// |
1700 | /// # Example |
1701 | /// |
1702 | /// This example shows how to find the capture group name for the given |
1703 | /// pattern and group index. |
1704 | /// |
1705 | /// ``` |
1706 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
1707 | /// use regex_automata::{nfa::thompson::NFA, PatternID}; |
1708 | /// |
1709 | /// let (pid0, pid1) = (PatternID::must(0), PatternID::must(1)); |
1710 | /// |
1711 | /// let nfa = NFA::new_many(&[ |
1712 | /// r"a(?P<foo>\w+)z(\s+)x(\d+)" , |
1713 | /// r"a(\d+)z(?P<foo>\s+)" , |
1714 | /// ])?; |
1715 | /// let groups = nfa.group_info(); |
1716 | /// assert_eq!(None, groups.to_name(pid0, 0)); |
1717 | /// assert_eq!(Some("foo" ), groups.to_name(pid0, 1)); |
1718 | /// assert_eq!(None, groups.to_name(pid0, 2)); |
1719 | /// assert_eq!(None, groups.to_name(pid0, 3)); |
1720 | /// |
1721 | /// assert_eq!(None, groups.to_name(pid1, 0)); |
1722 | /// assert_eq!(None, groups.to_name(pid1, 1)); |
1723 | /// assert_eq!(Some("foo" ), groups.to_name(pid1, 2)); |
1724 | /// // '3' is not a valid capture index for the second pattern. |
1725 | /// assert_eq!(None, groups.to_name(pid1, 3)); |
1726 | /// |
1727 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1728 | /// ``` |
1729 | #[inline ] |
1730 | pub fn to_name(&self, pid: PatternID, group_index: usize) -> Option<&str> { |
1731 | let pattern_names = self.0.index_to_name.get(pid.as_usize())?; |
1732 | pattern_names.get(group_index)?.as_deref() |
1733 | } |
1734 | |
1735 | /// Return an iterator of all capture groups and their names (if present) |
1736 | /// for a particular pattern. |
1737 | /// |
1738 | /// If the given pattern ID is invalid or if this `GroupInfo` is empty, |
1739 | /// then the iterator yields no elements. |
1740 | /// |
1741 | /// The number of elements yielded by this iterator is always equal to |
1742 | /// the result of calling [`GroupInfo::group_len`] with the same |
1743 | /// `PatternID`. |
1744 | /// |
1745 | /// # Example |
1746 | /// |
1747 | /// This example shows how to get a list of all capture group names for |
1748 | /// a particular pattern. |
1749 | /// |
1750 | /// ``` |
1751 | /// use regex_automata::{nfa::thompson::NFA, PatternID}; |
1752 | /// |
1753 | /// let nfa = NFA::new(r"(a)(?P<foo>b)(c)(d)(?P<bar>e)" )?; |
1754 | /// // The first is the implicit group that is always unnammed. The next |
1755 | /// // 5 groups are the explicit groups found in the concrete syntax above. |
1756 | /// let expected = vec![None, None, Some("foo" ), None, None, Some("bar" )]; |
1757 | /// let got: Vec<Option<&str>> = |
1758 | /// nfa.group_info().pattern_names(PatternID::ZERO).collect(); |
1759 | /// assert_eq!(expected, got); |
1760 | /// |
1761 | /// // Using an invalid pattern ID will result in nothing yielded. |
1762 | /// let got = nfa.group_info().pattern_names(PatternID::must(999)).count(); |
1763 | /// assert_eq!(0, got); |
1764 | /// |
1765 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1766 | /// ``` |
1767 | #[inline ] |
1768 | pub fn pattern_names(&self, pid: PatternID) -> GroupInfoPatternNames<'_> { |
1769 | GroupInfoPatternNames { |
1770 | it: self |
1771 | .0 |
1772 | .index_to_name |
1773 | .get(pid.as_usize()) |
1774 | .map(|indices| indices.iter()) |
1775 | .unwrap_or([].iter()), |
1776 | } |
1777 | } |
1778 | |
1779 | /// Return an iterator of all capture groups for all patterns supported by |
1780 | /// this `GroupInfo`. Each item yielded is a triple of the group's pattern |
1781 | /// ID, index in the pattern and the group's name, if present. |
1782 | /// |
1783 | /// # Example |
1784 | /// |
1785 | /// This example shows how to get a list of all capture groups found in |
1786 | /// one NFA, potentially spanning multiple patterns. |
1787 | /// |
1788 | /// ``` |
1789 | /// use regex_automata::{nfa::thompson::NFA, PatternID}; |
1790 | /// |
1791 | /// let nfa = NFA::new_many(&[ |
1792 | /// r"(?P<foo>a)" , |
1793 | /// r"a" , |
1794 | /// r"(a)" , |
1795 | /// ])?; |
1796 | /// let expected = vec![ |
1797 | /// (PatternID::must(0), 0, None), |
1798 | /// (PatternID::must(0), 1, Some("foo" )), |
1799 | /// (PatternID::must(1), 0, None), |
1800 | /// (PatternID::must(2), 0, None), |
1801 | /// (PatternID::must(2), 1, None), |
1802 | /// ]; |
1803 | /// let got: Vec<(PatternID, usize, Option<&str>)> = |
1804 | /// nfa.group_info().all_names().collect(); |
1805 | /// assert_eq!(expected, got); |
1806 | /// |
1807 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1808 | /// ``` |
1809 | /// |
1810 | /// Unlike other capturing group related routines, this routine doesn't |
1811 | /// panic even if captures aren't enabled on this NFA: |
1812 | /// |
1813 | /// ``` |
1814 | /// use regex_automata::nfa::thompson::{NFA, WhichCaptures}; |
1815 | /// |
1816 | /// let nfa = NFA::compiler() |
1817 | /// .configure(NFA::config().which_captures(WhichCaptures::None)) |
1818 | /// .build_many(&[ |
1819 | /// r"(?P<foo>a)" , |
1820 | /// r"a" , |
1821 | /// r"(a)" , |
1822 | /// ])?; |
1823 | /// // When captures aren't enabled, there's nothing to return. |
1824 | /// assert_eq!(0, nfa.group_info().all_names().count()); |
1825 | /// |
1826 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1827 | /// ``` |
1828 | #[inline ] |
1829 | pub fn all_names(&self) -> GroupInfoAllNames<'_> { |
1830 | GroupInfoAllNames { |
1831 | group_info: self, |
1832 | pids: PatternID::iter(self.pattern_len()), |
1833 | current_pid: None, |
1834 | names: None, |
1835 | } |
1836 | } |
1837 | |
1838 | /// Returns the starting and ending slot corresponding to the given |
1839 | /// capturing group for the given pattern. The ending slot is always one |
1840 | /// more than the starting slot returned. |
1841 | /// |
1842 | /// Note that this is like [`GroupInfo::slot`], except that it also returns |
1843 | /// the ending slot value for convenience. |
1844 | /// |
1845 | /// If either the pattern ID or the capture index is invalid, then this |
1846 | /// returns None. |
1847 | /// |
1848 | /// # Example |
1849 | /// |
1850 | /// This example shows that the starting slots for the first capturing |
1851 | /// group of each pattern are distinct. |
1852 | /// |
1853 | /// ``` |
1854 | /// use regex_automata::{nfa::thompson::NFA, PatternID}; |
1855 | /// |
1856 | /// let nfa = NFA::new_many(&["a" , "b" ])?; |
1857 | /// assert_ne!( |
1858 | /// nfa.group_info().slots(PatternID::must(0), 0), |
1859 | /// nfa.group_info().slots(PatternID::must(1), 0), |
1860 | /// ); |
1861 | /// |
1862 | /// // Also, the start and end slot values are never equivalent. |
1863 | /// let (start, end) = nfa.group_info().slots(PatternID::ZERO, 0).unwrap(); |
1864 | /// assert_ne!(start, end); |
1865 | /// |
1866 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1867 | /// ``` |
1868 | #[inline ] |
1869 | pub fn slots( |
1870 | &self, |
1871 | pid: PatternID, |
1872 | group_index: usize, |
1873 | ) -> Option<(usize, usize)> { |
1874 | // Since 'slot' only even returns valid starting slots, we know that |
1875 | // there must also be an end slot and that end slot is always one more |
1876 | // than the start slot. |
1877 | self.slot(pid, group_index).map(|start| (start, start + 1)) |
1878 | } |
1879 | |
1880 | /// Returns the starting slot corresponding to the given capturing group |
1881 | /// for the given pattern. The ending slot is always one more than the |
1882 | /// value returned. |
1883 | /// |
1884 | /// If either the pattern ID or the capture index is invalid, then this |
1885 | /// returns None. |
1886 | /// |
1887 | /// # Example |
1888 | /// |
1889 | /// This example shows that the starting slots for the first capturing |
1890 | /// group of each pattern are distinct. |
1891 | /// |
1892 | /// ``` |
1893 | /// use regex_automata::{nfa::thompson::NFA, PatternID}; |
1894 | /// |
1895 | /// let nfa = NFA::new_many(&["a" , "b" ])?; |
1896 | /// assert_ne!( |
1897 | /// nfa.group_info().slot(PatternID::must(0), 0), |
1898 | /// nfa.group_info().slot(PatternID::must(1), 0), |
1899 | /// ); |
1900 | /// |
1901 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1902 | /// ``` |
1903 | #[inline ] |
1904 | pub fn slot(&self, pid: PatternID, group_index: usize) -> Option<usize> { |
1905 | if group_index >= self.group_len(pid) { |
1906 | return None; |
1907 | } |
1908 | // At this point, we know that 'pid' refers to a real pattern and that |
1909 | // 'group_index' refers to a real group. We therefore also know that |
1910 | // the pattern and group can be combined to return a correct slot. |
1911 | // That's why we don't need to use checked arithmetic below. |
1912 | if group_index == 0 { |
1913 | Some(pid.as_usize() * 2) |
1914 | } else { |
1915 | // As above, we don't need to check that our slot is less than the |
1916 | // end of our range since we already know the group index is a |
1917 | // valid index for the given pattern. |
1918 | let (start, _) = self.0.slot_ranges[pid]; |
1919 | Some(start.as_usize() + ((group_index - 1) * 2)) |
1920 | } |
1921 | } |
1922 | |
1923 | /// Returns the total number of patterns in this `GroupInfo`. |
1924 | /// |
1925 | /// This may return zero if the `GroupInfo` was constructed with no |
1926 | /// patterns. |
1927 | /// |
1928 | /// This is guaranteed to be no bigger than [`PatternID::LIMIT`] because |
1929 | /// `GroupInfo` construction will fail if too many patterns are added. |
1930 | /// |
1931 | /// # Example |
1932 | /// |
1933 | /// ``` |
1934 | /// use regex_automata::nfa::thompson::NFA; |
1935 | /// |
1936 | /// let nfa = NFA::new_many(&["[0-9]+" , "[a-z]+" , "[A-Z]+" ])?; |
1937 | /// assert_eq!(3, nfa.group_info().pattern_len()); |
1938 | /// |
1939 | /// let nfa = NFA::never_match(); |
1940 | /// assert_eq!(0, nfa.group_info().pattern_len()); |
1941 | /// |
1942 | /// let nfa = NFA::always_match(); |
1943 | /// assert_eq!(1, nfa.group_info().pattern_len()); |
1944 | /// |
1945 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1946 | /// ``` |
1947 | #[inline ] |
1948 | pub fn pattern_len(&self) -> usize { |
1949 | self.0.pattern_len() |
1950 | } |
1951 | |
1952 | /// Return the number of capture groups in a pattern. |
1953 | /// |
1954 | /// If the pattern ID is invalid, then this returns `0`. |
1955 | /// |
1956 | /// # Example |
1957 | /// |
1958 | /// This example shows how the values returned by this routine may vary |
1959 | /// for different patterns and NFA configurations. |
1960 | /// |
1961 | /// ``` |
1962 | /// use regex_automata::{nfa::thompson::{NFA, WhichCaptures}, PatternID}; |
1963 | /// |
1964 | /// let nfa = NFA::new(r"(a)(b)(c)" )?; |
1965 | /// // There are 3 explicit groups in the pattern's concrete syntax and |
1966 | /// // 1 unnamed and implicit group spanning the entire pattern. |
1967 | /// assert_eq!(4, nfa.group_info().group_len(PatternID::ZERO)); |
1968 | /// |
1969 | /// let nfa = NFA::new(r"abc" )?; |
1970 | /// // There is just the unnamed implicit group. |
1971 | /// assert_eq!(1, nfa.group_info().group_len(PatternID::ZERO)); |
1972 | /// |
1973 | /// let nfa = NFA::compiler() |
1974 | /// .configure(NFA::config().which_captures(WhichCaptures::None)) |
1975 | /// .build(r"abc" )?; |
1976 | /// // We disabled capturing groups, so there are none. |
1977 | /// assert_eq!(0, nfa.group_info().group_len(PatternID::ZERO)); |
1978 | /// |
1979 | /// let nfa = NFA::compiler() |
1980 | /// .configure(NFA::config().which_captures(WhichCaptures::None)) |
1981 | /// .build(r"(a)(b)(c)" )?; |
1982 | /// // We disabled capturing groups, so there are none, even if there are |
1983 | /// // explicit groups in the concrete syntax. |
1984 | /// assert_eq!(0, nfa.group_info().group_len(PatternID::ZERO)); |
1985 | /// |
1986 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1987 | /// ``` |
1988 | #[inline ] |
1989 | pub fn group_len(&self, pid: PatternID) -> usize { |
1990 | self.0.group_len(pid) |
1991 | } |
1992 | |
1993 | /// Return the total number of capture groups across all patterns. |
1994 | /// |
1995 | /// This includes implicit groups that represent the entire match of a |
1996 | /// pattern. |
1997 | /// |
1998 | /// # Example |
1999 | /// |
2000 | /// This example shows how the values returned by this routine may vary |
2001 | /// for different patterns and NFA configurations. |
2002 | /// |
2003 | /// ``` |
2004 | /// use regex_automata::{nfa::thompson::{NFA, WhichCaptures}, PatternID}; |
2005 | /// |
2006 | /// let nfa = NFA::new(r"(a)(b)(c)" )?; |
2007 | /// // There are 3 explicit groups in the pattern's concrete syntax and |
2008 | /// // 1 unnamed and implicit group spanning the entire pattern. |
2009 | /// assert_eq!(4, nfa.group_info().all_group_len()); |
2010 | /// |
2011 | /// let nfa = NFA::new(r"abc" )?; |
2012 | /// // There is just the unnamed implicit group. |
2013 | /// assert_eq!(1, nfa.group_info().all_group_len()); |
2014 | /// |
2015 | /// let nfa = NFA::new_many(&["(a)" , "b" , "(c)" ])?; |
2016 | /// // Each pattern has one implicit groups, and two |
2017 | /// // patterns have one explicit group each. |
2018 | /// assert_eq!(5, nfa.group_info().all_group_len()); |
2019 | /// |
2020 | /// let nfa = NFA::compiler() |
2021 | /// .configure(NFA::config().which_captures(WhichCaptures::None)) |
2022 | /// .build(r"abc" )?; |
2023 | /// // We disabled capturing groups, so there are none. |
2024 | /// assert_eq!(0, nfa.group_info().all_group_len()); |
2025 | /// |
2026 | /// let nfa = NFA::compiler() |
2027 | /// .configure(NFA::config().which_captures(WhichCaptures::None)) |
2028 | /// .build(r"(a)(b)(c)" )?; |
2029 | /// // We disabled capturing groups, so there are none, even if there are |
2030 | /// // explicit groups in the concrete syntax. |
2031 | /// assert_eq!(0, nfa.group_info().group_len(PatternID::ZERO)); |
2032 | /// |
2033 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2034 | /// ``` |
2035 | #[inline ] |
2036 | pub fn all_group_len(&self) -> usize { |
2037 | self.slot_len() / 2 |
2038 | } |
2039 | |
2040 | /// Returns the total number of slots in this `GroupInfo` across all |
2041 | /// patterns. |
2042 | /// |
2043 | /// The total number of slots is always twice the total number of capturing |
2044 | /// groups, including both implicit and explicit groups. |
2045 | /// |
2046 | /// # Example |
2047 | /// |
2048 | /// This example shows the relationship between the number of capturing |
2049 | /// groups and slots. |
2050 | /// |
2051 | /// ``` |
2052 | /// use regex_automata::util::captures::GroupInfo; |
2053 | /// |
2054 | /// // There are 11 total groups here. |
2055 | /// let info = GroupInfo::new(vec![ |
2056 | /// vec![None, Some("foo" )], |
2057 | /// vec![None], |
2058 | /// vec![None, None, None, Some("bar" ), None], |
2059 | /// vec![None, None, Some("foo" )], |
2060 | /// ])?; |
2061 | /// // 2 slots per group gives us 11*2=22 slots. |
2062 | /// assert_eq!(22, info.slot_len()); |
2063 | /// |
2064 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2065 | /// ``` |
2066 | #[inline ] |
2067 | pub fn slot_len(&self) -> usize { |
2068 | self.0.small_slot_len().as_usize() |
2069 | } |
2070 | |
2071 | /// Returns the total number of slots for implicit capturing groups. |
2072 | /// |
2073 | /// This is like [`GroupInfo::slot_len`], except it doesn't include the |
2074 | /// explicit slots for each pattern. Since there are always exactly 2 |
2075 | /// implicit slots for each pattern, the number of implicit slots is always |
2076 | /// equal to twice the number of patterns. |
2077 | /// |
2078 | /// # Example |
2079 | /// |
2080 | /// This example shows the relationship between the number of capturing |
2081 | /// groups, implicit slots and explicit slots. |
2082 | /// |
2083 | /// ``` |
2084 | /// use regex_automata::util::captures::GroupInfo; |
2085 | /// |
2086 | /// // There are 11 total groups here. |
2087 | /// let info = GroupInfo::new(vec![vec![None, Some("foo" ), Some("bar" )]])?; |
2088 | /// // 2 slots per group gives us 11*2=22 slots. |
2089 | /// assert_eq!(6, info.slot_len()); |
2090 | /// // 2 implicit slots per pattern gives us 2 implicit slots since there |
2091 | /// // is 1 pattern. |
2092 | /// assert_eq!(2, info.implicit_slot_len()); |
2093 | /// // 2 explicit capturing groups gives us 2*2=4 explicit slots. |
2094 | /// assert_eq!(4, info.explicit_slot_len()); |
2095 | /// |
2096 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2097 | /// ``` |
2098 | #[inline ] |
2099 | pub fn implicit_slot_len(&self) -> usize { |
2100 | self.pattern_len() * 2 |
2101 | } |
2102 | |
2103 | /// Returns the total number of slots for explicit capturing groups. |
2104 | /// |
2105 | /// This is like [`GroupInfo::slot_len`], except it doesn't include the |
2106 | /// implicit slots for each pattern. (There are always 2 implicit slots for |
2107 | /// each pattern.) |
2108 | /// |
2109 | /// For a non-empty `GroupInfo`, it is always the case that `slot_len` is |
2110 | /// strictly greater than `explicit_slot_len`. For an empty `GroupInfo`, |
2111 | /// both the total number of slots and the number of explicit slots is |
2112 | /// `0`. |
2113 | /// |
2114 | /// # Example |
2115 | /// |
2116 | /// This example shows the relationship between the number of capturing |
2117 | /// groups, implicit slots and explicit slots. |
2118 | /// |
2119 | /// ``` |
2120 | /// use regex_automata::util::captures::GroupInfo; |
2121 | /// |
2122 | /// // There are 11 total groups here. |
2123 | /// let info = GroupInfo::new(vec![vec![None, Some("foo" ), Some("bar" )]])?; |
2124 | /// // 2 slots per group gives us 11*2=22 slots. |
2125 | /// assert_eq!(6, info.slot_len()); |
2126 | /// // 2 implicit slots per pattern gives us 2 implicit slots since there |
2127 | /// // is 1 pattern. |
2128 | /// assert_eq!(2, info.implicit_slot_len()); |
2129 | /// // 2 explicit capturing groups gives us 2*2=4 explicit slots. |
2130 | /// assert_eq!(4, info.explicit_slot_len()); |
2131 | /// |
2132 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2133 | /// ``` |
2134 | #[inline ] |
2135 | pub fn explicit_slot_len(&self) -> usize { |
2136 | self.slot_len().saturating_sub(self.implicit_slot_len()) |
2137 | } |
2138 | |
2139 | /// Returns the memory usage, in bytes, of this `GroupInfo`. |
2140 | /// |
2141 | /// This does **not** include the stack size used up by this `GroupInfo`. |
2142 | /// To compute that, use `std::mem::size_of::<GroupInfo>()`. |
2143 | #[inline ] |
2144 | pub fn memory_usage(&self) -> usize { |
2145 | use core::mem::size_of as s; |
2146 | |
2147 | s::<GroupInfoInner>() |
2148 | + self.0.slot_ranges.len() * s::<(SmallIndex, SmallIndex)>() |
2149 | + self.0.name_to_index.len() * s::<CaptureNameMap>() |
2150 | + self.0.index_to_name.len() * s::<Vec<Option<Arc<str>>>>() |
2151 | + self.0.memory_extra |
2152 | } |
2153 | } |
2154 | |
2155 | /// A map from capture group name to its corresponding capture group index. |
2156 | /// |
2157 | /// This type is actually wrapped inside a Vec indexed by pattern ID on a |
2158 | /// `GroupInfo`, since multiple patterns may have the same capture group name. |
2159 | /// That is, each pattern gets its own namespace of capture group names. |
2160 | /// |
2161 | /// Perhaps a more memory efficient representation would be |
2162 | /// HashMap<(PatternID, Arc<str>), usize>, but this makes it difficult to look |
2163 | /// up a capture index by name without producing a `Arc<str>`, which requires |
2164 | /// an allocation. To fix this, I think we'd need to define our own unsized |
2165 | /// type or something? Anyway, I didn't give this much thought since it |
2166 | /// probably doesn't matter much in the grand scheme of things. But it did |
2167 | /// stand out to me as mildly wasteful. |
2168 | #[cfg (feature = "std" )] |
2169 | type CaptureNameMap = std::collections::HashMap<Arc<str>, SmallIndex>; |
2170 | #[cfg (not(feature = "std" ))] |
2171 | type CaptureNameMap = alloc::collections::BTreeMap<Arc<str>, SmallIndex>; |
2172 | |
2173 | /// The inner guts of `GroupInfo`. This type only exists so that it can |
2174 | /// be wrapped in an `Arc` to make `GroupInfo` reference counted. |
2175 | #[derive(Debug, Default)] |
2176 | struct GroupInfoInner { |
2177 | slot_ranges: Vec<(SmallIndex, SmallIndex)>, |
2178 | name_to_index: Vec<CaptureNameMap>, |
2179 | index_to_name: Vec<Vec<Option<Arc<str>>>>, |
2180 | memory_extra: usize, |
2181 | } |
2182 | |
2183 | impl GroupInfoInner { |
2184 | /// This adds the first unnamed group for the given pattern ID. The given |
2185 | /// pattern ID must be zero if this is the first time this method is |
2186 | /// called, or must be exactly one more than the pattern ID supplied to the |
2187 | /// previous call to this method. (This method panics if this rule is |
2188 | /// violated.) |
2189 | /// |
2190 | /// This can be thought of as initializing the GroupInfo state for the |
2191 | /// given pattern and closing off the state for any previous pattern. |
2192 | fn add_first_group(&mut self, pid: PatternID) { |
2193 | assert_eq!(pid.as_usize(), self.slot_ranges.len()); |
2194 | assert_eq!(pid.as_usize(), self.name_to_index.len()); |
2195 | assert_eq!(pid.as_usize(), self.index_to_name.len()); |
2196 | // This is the start of our slots for the explicit capturing groups. |
2197 | // Note that since the slots for the 0th group for every pattern appear |
2198 | // before any slots for the nth group (where n > 0) in any pattern, we |
2199 | // will have to fix up the slot ranges once we know how many patterns |
2200 | // we've added capture groups for. |
2201 | let slot_start = self.small_slot_len(); |
2202 | self.slot_ranges.push((slot_start, slot_start)); |
2203 | self.name_to_index.push(CaptureNameMap::new()); |
2204 | self.index_to_name.push(vec![None]); |
2205 | self.memory_extra += core::mem::size_of::<Option<Arc<str>>>(); |
2206 | } |
2207 | |
2208 | /// Add an explicit capturing group for the given pattern with the given |
2209 | /// index. If the group has a name, then that must be given as well. |
2210 | /// |
2211 | /// Note that every capturing group except for the first or zeroth group is |
2212 | /// explicit. |
2213 | /// |
2214 | /// This returns an error if adding this group would result in overflowing |
2215 | /// slot indices or if a capturing group with the same name for this |
2216 | /// pattern has already been added. |
2217 | fn add_explicit_group<N: AsRef<str>>( |
2218 | &mut self, |
2219 | pid: PatternID, |
2220 | group: SmallIndex, |
2221 | maybe_name: Option<N>, |
2222 | ) -> Result<(), GroupInfoError> { |
2223 | // We also need to check that the slot index generated for |
2224 | // this group is also valid. Although, this is a little weird |
2225 | // because we offset these indices below, at which point, we'll |
2226 | // have to recheck them. Gosh this is annoying. Note that |
2227 | // the '+2' below is OK because 'end' is guaranteed to be less |
2228 | // than isize::MAX. |
2229 | let end = &mut self.slot_ranges[pid].1; |
2230 | *end = SmallIndex::new(end.as_usize() + 2).map_err(|_| { |
2231 | GroupInfoError::too_many_groups(pid, group.as_usize()) |
2232 | })?; |
2233 | if let Some(name) = maybe_name { |
2234 | let name = Arc::<str>::from(name.as_ref()); |
2235 | if self.name_to_index[pid].contains_key(&*name) { |
2236 | return Err(GroupInfoError::duplicate(pid, &name)); |
2237 | } |
2238 | let len = name.len(); |
2239 | self.name_to_index[pid].insert(Arc::clone(&name), group); |
2240 | self.index_to_name[pid].push(Some(name)); |
2241 | // Adds the memory used by the Arc<str> in both maps. |
2242 | self.memory_extra += |
2243 | 2 * (len + core::mem::size_of::<Option<Arc<str>>>()); |
2244 | // And also the value entry for the 'name_to_index' map. |
2245 | // This is probably an underestimate for 'name_to_index' since |
2246 | // hashmaps/btrees likely have some non-zero overhead, but we |
2247 | // assume here that they have zero overhead. |
2248 | self.memory_extra += core::mem::size_of::<SmallIndex>(); |
2249 | } else { |
2250 | self.index_to_name[pid].push(None); |
2251 | self.memory_extra += core::mem::size_of::<Option<Arc<str>>>(); |
2252 | } |
2253 | // This is a sanity assert that checks that our group index |
2254 | // is in line with the number of groups added so far for this |
2255 | // pattern. |
2256 | assert_eq!(group.one_more(), self.group_len(pid)); |
2257 | // And is also in line with the 'index_to_name' map. |
2258 | assert_eq!(group.one_more(), self.index_to_name[pid].len()); |
2259 | Ok(()) |
2260 | } |
2261 | |
2262 | /// This corrects the slot ranges to account for the slots corresponding |
2263 | /// to the zeroth group of each pattern. That is, every slot range is |
2264 | /// offset by 'pattern_len() * 2', since each pattern uses two slots to |
2265 | /// represent the zeroth group. |
2266 | fn fixup_slot_ranges(&mut self) -> Result<(), GroupInfoError> { |
2267 | use crate::util::primitives::IteratorIndexExt; |
2268 | // Since we know number of patterns fits in PatternID and |
2269 | // PatternID::MAX < isize::MAX, it follows that multiplying by 2 will |
2270 | // never overflow usize. |
2271 | let offset = self.pattern_len().checked_mul(2).unwrap(); |
2272 | for (pid, &mut (ref mut start, ref mut end)) in |
2273 | self.slot_ranges.iter_mut().with_pattern_ids() |
2274 | { |
2275 | let group_len = 1 + ((end.as_usize() - start.as_usize()) / 2); |
2276 | let new_end = match end.as_usize().checked_add(offset) { |
2277 | Some(new_end) => new_end, |
2278 | None => { |
2279 | return Err(GroupInfoError::too_many_groups( |
2280 | pid, group_len, |
2281 | )) |
2282 | } |
2283 | }; |
2284 | *end = SmallIndex::new(new_end).map_err(|_| { |
2285 | GroupInfoError::too_many_groups(pid, group_len) |
2286 | })?; |
2287 | // Since start <= end, if end is valid then start must be too. |
2288 | *start = SmallIndex::new(start.as_usize() + offset).unwrap(); |
2289 | } |
2290 | Ok(()) |
2291 | } |
2292 | |
2293 | /// Return the total number of patterns represented by this capture slot |
2294 | /// info. |
2295 | fn pattern_len(&self) -> usize { |
2296 | self.slot_ranges.len() |
2297 | } |
2298 | |
2299 | /// Return the total number of capturing groups for the given pattern. If |
2300 | /// the given pattern isn't valid for this capture slot info, then 0 is |
2301 | /// returned. |
2302 | fn group_len(&self, pid: PatternID) -> usize { |
2303 | let (start, end) = match self.slot_ranges.get(pid.as_usize()) { |
2304 | None => return 0, |
2305 | Some(range) => range, |
2306 | }; |
2307 | // The difference between any two SmallIndex values always fits in a |
2308 | // usize since we know that SmallIndex::MAX <= isize::MAX-1. We also |
2309 | // know that start<=end by construction and that the number of groups |
2310 | // never exceeds SmallIndex and thus never overflows usize. |
2311 | 1 + ((end.as_usize() - start.as_usize()) / 2) |
2312 | } |
2313 | |
2314 | /// Return the total number of slots in this capture slot info as a |
2315 | /// "small index." |
2316 | fn small_slot_len(&self) -> SmallIndex { |
2317 | // Since slots are allocated in order of pattern (starting at 0) and |
2318 | // then in order of capture group, it follows that the number of slots |
2319 | // is the end of the range of slots for the last pattern. This is |
2320 | // true even when the last pattern has no capturing groups, since |
2321 | // 'slot_ranges' will still represent it explicitly with an empty |
2322 | // range. |
2323 | self.slot_ranges.last().map_or(SmallIndex::ZERO, |&(_, end)| end) |
2324 | } |
2325 | } |
2326 | |
2327 | /// An error that may occur when building a `GroupInfo`. |
2328 | /// |
2329 | /// Building a `GroupInfo` does a variety of checks to make sure the |
2330 | /// capturing groups satisfy a number of invariants. This includes, but is not |
2331 | /// limited to, ensuring that the first capturing group is unnamed and that |
2332 | /// there are no duplicate capture groups for a specific pattern. |
2333 | #[derive(Clone, Debug)] |
2334 | pub struct GroupInfoError { |
2335 | kind: GroupInfoErrorKind, |
2336 | } |
2337 | |
2338 | /// The kind of error that occurs when building a `GroupInfo` fails. |
2339 | /// |
2340 | /// We keep this un-exported because it's not clear how useful it is to |
2341 | /// export it. |
2342 | #[derive(Clone, Debug)] |
2343 | enum GroupInfoErrorKind { |
2344 | /// This occurs when too many patterns have been added. i.e., It would |
2345 | /// otherwise overflow a `PatternID`. |
2346 | TooManyPatterns { err: PatternIDError }, |
2347 | /// This occurs when too many capturing groups have been added for a |
2348 | /// particular pattern. |
2349 | TooManyGroups { |
2350 | /// The ID of the pattern that had too many groups. |
2351 | pattern: PatternID, |
2352 | /// The minimum number of groups that the caller has tried to add for |
2353 | /// a pattern. |
2354 | minimum: usize, |
2355 | }, |
2356 | /// An error that occurs when a pattern has no capture groups. Either the |
2357 | /// group info must be empty, or all patterns must have at least one group |
2358 | /// (corresponding to the unnamed group for the entire pattern). |
2359 | MissingGroups { |
2360 | /// The ID of the pattern that had no capturing groups. |
2361 | pattern: PatternID, |
2362 | }, |
2363 | /// An error that occurs when one tries to provide a name for the capture |
2364 | /// group at index 0. This capturing group must currently always be |
2365 | /// unnamed. |
2366 | FirstMustBeUnnamed { |
2367 | /// The ID of the pattern that was found to have a named first |
2368 | /// capturing group. |
2369 | pattern: PatternID, |
2370 | }, |
2371 | /// An error that occurs when duplicate capture group names for the same |
2372 | /// pattern are added. |
2373 | /// |
2374 | /// NOTE: At time of writing, this error can never occur if you're using |
2375 | /// regex-syntax, since the parser itself will reject patterns with |
2376 | /// duplicate capture group names. This error can only occur when the |
2377 | /// builder is used to hand construct NFAs. |
2378 | Duplicate { |
2379 | /// The pattern in which the duplicate capture group name was found. |
2380 | pattern: PatternID, |
2381 | /// The duplicate name. |
2382 | name: String, |
2383 | }, |
2384 | } |
2385 | |
2386 | impl GroupInfoError { |
2387 | fn too_many_patterns(err: PatternIDError) -> GroupInfoError { |
2388 | GroupInfoError { kind: GroupInfoErrorKind::TooManyPatterns { err } } |
2389 | } |
2390 | |
2391 | fn too_many_groups(pattern: PatternID, minimum: usize) -> GroupInfoError { |
2392 | GroupInfoError { |
2393 | kind: GroupInfoErrorKind::TooManyGroups { pattern, minimum }, |
2394 | } |
2395 | } |
2396 | |
2397 | fn missing_groups(pattern: PatternID) -> GroupInfoError { |
2398 | GroupInfoError { kind: GroupInfoErrorKind::MissingGroups { pattern } } |
2399 | } |
2400 | |
2401 | fn first_must_be_unnamed(pattern: PatternID) -> GroupInfoError { |
2402 | GroupInfoError { |
2403 | kind: GroupInfoErrorKind::FirstMustBeUnnamed { pattern }, |
2404 | } |
2405 | } |
2406 | |
2407 | fn duplicate(pattern: PatternID, name: &str) -> GroupInfoError { |
2408 | GroupInfoError { |
2409 | kind: GroupInfoErrorKind::Duplicate { |
2410 | pattern, |
2411 | name: String::from(name), |
2412 | }, |
2413 | } |
2414 | } |
2415 | } |
2416 | |
2417 | #[cfg (feature = "std" )] |
2418 | impl std::error::Error for GroupInfoError { |
2419 | fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { |
2420 | match self.kind { |
2421 | GroupInfoErrorKind::TooManyPatterns { .. } |
2422 | | GroupInfoErrorKind::TooManyGroups { .. } |
2423 | | GroupInfoErrorKind::MissingGroups { .. } |
2424 | | GroupInfoErrorKind::FirstMustBeUnnamed { .. } |
2425 | | GroupInfoErrorKind::Duplicate { .. } => None, |
2426 | } |
2427 | } |
2428 | } |
2429 | |
2430 | impl core::fmt::Display for GroupInfoError { |
2431 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
2432 | use self::GroupInfoErrorKind::*; |
2433 | |
2434 | match self.kind { |
2435 | TooManyPatterns { ref err } => { |
2436 | write!(f, "too many patterns to build capture info: {}" , err) |
2437 | } |
2438 | TooManyGroups { pattern, minimum } => { |
2439 | write!( |
2440 | f, |
2441 | "too many capture groups (at least {}) were \ |
2442 | found for pattern {}" , |
2443 | minimum, |
2444 | pattern.as_usize() |
2445 | ) |
2446 | } |
2447 | MissingGroups { pattern } => write!( |
2448 | f, |
2449 | "no capturing groups found for pattern {} \ |
2450 | (either all patterns have zero groups or all patterns have \ |
2451 | at least one group)" , |
2452 | pattern.as_usize(), |
2453 | ), |
2454 | FirstMustBeUnnamed { pattern } => write!( |
2455 | f, |
2456 | "first capture group (at index 0) for pattern {} has a name \ |
2457 | (it must be unnamed)" , |
2458 | pattern.as_usize(), |
2459 | ), |
2460 | Duplicate { pattern, ref name } => write!( |
2461 | f, |
2462 | "duplicate capture group name '{}' found for pattern {}" , |
2463 | name, |
2464 | pattern.as_usize(), |
2465 | ), |
2466 | } |
2467 | } |
2468 | } |
2469 | |
2470 | /// An iterator over capturing groups and their names for a specific pattern. |
2471 | /// |
2472 | /// This iterator is created by [`GroupInfo::pattern_names`]. |
2473 | /// |
2474 | /// The lifetime parameter `'a` refers to the lifetime of the `GroupInfo` |
2475 | /// from which this iterator was created. |
2476 | #[derive(Clone, Debug)] |
2477 | pub struct GroupInfoPatternNames<'a> { |
2478 | it: core::slice::Iter<'a, Option<Arc<str>>>, |
2479 | } |
2480 | |
2481 | impl GroupInfoPatternNames<'static> { |
2482 | fn empty() -> GroupInfoPatternNames<'static> { |
2483 | GroupInfoPatternNames { it: [].iter() } |
2484 | } |
2485 | } |
2486 | |
2487 | impl<'a> Iterator for GroupInfoPatternNames<'a> { |
2488 | type Item = Option<&'a str>; |
2489 | |
2490 | fn next(&mut self) -> Option<Option<&'a str>> { |
2491 | self.it.next().map(|x| x.as_deref()) |
2492 | } |
2493 | |
2494 | fn size_hint(&self) -> (usize, Option<usize>) { |
2495 | self.it.size_hint() |
2496 | } |
2497 | |
2498 | fn count(self) -> usize { |
2499 | self.it.count() |
2500 | } |
2501 | } |
2502 | |
2503 | impl<'a> ExactSizeIterator for GroupInfoPatternNames<'a> {} |
2504 | impl<'a> core::iter::FusedIterator for GroupInfoPatternNames<'a> {} |
2505 | |
2506 | /// An iterator over capturing groups and their names for a `GroupInfo`. |
2507 | /// |
2508 | /// This iterator is created by [`GroupInfo::all_names`]. |
2509 | /// |
2510 | /// The lifetime parameter `'a` refers to the lifetime of the `GroupInfo` |
2511 | /// from which this iterator was created. |
2512 | #[derive(Debug)] |
2513 | pub struct GroupInfoAllNames<'a> { |
2514 | group_info: &'a GroupInfo, |
2515 | pids: PatternIDIter, |
2516 | current_pid: Option<PatternID>, |
2517 | names: Option<core::iter::Enumerate<GroupInfoPatternNames<'a>>>, |
2518 | } |
2519 | |
2520 | impl<'a> Iterator for GroupInfoAllNames<'a> { |
2521 | type Item = (PatternID, usize, Option<&'a str>); |
2522 | |
2523 | fn next(&mut self) -> Option<(PatternID, usize, Option<&'a str>)> { |
2524 | // If the group info has no captures, then we never have anything |
2525 | // to yield. We need to consider this case explicitly (at time of |
2526 | // writing) because 'pattern_capture_names' will panic if captures |
2527 | // aren't enabled. |
2528 | if self.group_info.0.index_to_name.is_empty() { |
2529 | return None; |
2530 | } |
2531 | if self.current_pid.is_none() { |
2532 | self.current_pid = Some(self.pids.next()?); |
2533 | } |
2534 | let pid = self.current_pid.unwrap(); |
2535 | if self.names.is_none() { |
2536 | self.names = Some(self.group_info.pattern_names(pid).enumerate()); |
2537 | } |
2538 | let (group_index, name) = match self.names.as_mut().unwrap().next() { |
2539 | Some((group_index, name)) => (group_index, name), |
2540 | None => { |
2541 | self.current_pid = None; |
2542 | self.names = None; |
2543 | return self.next(); |
2544 | } |
2545 | }; |
2546 | Some((pid, group_index, name)) |
2547 | } |
2548 | } |
2549 | |