1 | /*! |
2 | Types and routines that support the wire format of finite automata. |
3 | |
4 | Currently, this module just exports a few error types and some small helpers |
5 | for deserializing [dense DFAs](crate::dfa::dense::DFA) using correct alignment. |
6 | */ |
7 | |
8 | /* |
9 | A collection of helper functions, types and traits for serializing automata. |
10 | |
11 | This crate defines its own bespoke serialization mechanism for some structures |
12 | provided in the public API, namely, DFAs. A bespoke mechanism was developed |
13 | primarily because structures like automata demand a specific binary format. |
14 | Attempting to encode their rich structure in an existing serialization |
15 | format is just not feasible. Moreover, the format for each structure is |
16 | generally designed such that deserialization is cheap. More specifically, that |
17 | deserialization can be done in constant time. (The idea being that you can |
18 | embed it into your binary or mmap it, and then use it immediately.) |
19 | |
20 | In order to achieve this, the dense and sparse DFAs in this crate use an |
21 | in-memory representation that very closely corresponds to its binary serialized |
22 | form. This pervades and complicates everything, and in some cases, requires |
23 | dealing with alignment and reasoning about safety. |
24 | |
25 | This technique does have major advantages. In particular, it permits doing |
26 | the potentially costly work of compiling a finite state machine in an offline |
27 | manner, and then loading it at runtime not only without having to re-compile |
28 | the regex, but even without the code required to do the compilation. This, for |
29 | example, permits one to use a pre-compiled DFA not only in environments without |
30 | Rust's standard library, but also in environments without a heap. |
31 | |
32 | In the code below, whenever we insert some kind of padding, it's to enforce a |
33 | 4-byte alignment, unless otherwise noted. Namely, u32 is the only state ID type |
34 | supported. (In a previous version of this library, DFAs were generic over the |
35 | state ID representation.) |
36 | |
37 | Also, serialization generally requires the caller to specify endianness, |
38 | where as deserialization always assumes native endianness (otherwise cheap |
39 | deserialization would be impossible). This implies that serializing a structure |
40 | generally requires serializing both its big-endian and little-endian variants, |
41 | and then loading the correct one based on the target's endianness. |
42 | */ |
43 | |
44 | use core::{ |
45 | cmp, |
46 | convert::{TryFrom, TryInto}, |
47 | mem::size_of, |
48 | }; |
49 | |
50 | #[cfg (feature = "alloc" )] |
51 | use alloc::{vec, vec::Vec}; |
52 | |
53 | use crate::util::{ |
54 | int::Pointer, |
55 | primitives::{PatternID, PatternIDError, StateID, StateIDError}, |
56 | }; |
57 | |
58 | /// A hack to align a smaller type `B` with a bigger type `T`. |
59 | /// |
60 | /// The usual use of this is with `B = [u8]` and `T = u32`. That is, |
61 | /// it permits aligning a sequence of bytes on a 4-byte boundary. This |
62 | /// is useful in contexts where one wants to embed a serialized [dense |
63 | /// DFA](crate::dfa::dense::DFA) into a Rust a program while guaranteeing the |
64 | /// alignment required for the DFA. |
65 | /// |
66 | /// See [`dense::DFA::from_bytes`](crate::dfa::dense::DFA::from_bytes) for an |
67 | /// example of how to use this type. |
68 | #[repr (C)] |
69 | #[derive(Debug)] |
70 | pub struct AlignAs<B: ?Sized, T> { |
71 | /// A zero-sized field indicating the alignment we want. |
72 | pub _align: [T; 0], |
73 | /// A possibly non-sized field containing a sequence of bytes. |
74 | pub bytes: B, |
75 | } |
76 | |
77 | /// An error that occurs when serializing an object from this crate. |
78 | /// |
79 | /// Serialization, as used in this crate, universally refers to the process |
80 | /// of transforming a structure (like a DFA) into a custom binary format |
81 | /// represented by `&[u8]`. To this end, serialization is generally infallible. |
82 | /// However, it can fail when caller provided buffer sizes are too small. When |
83 | /// that occurs, a serialization error is reported. |
84 | /// |
85 | /// A `SerializeError` provides no introspection capabilities. Its only |
86 | /// supported operation is conversion to a human readable error message. |
87 | /// |
88 | /// This error type implements the `std::error::Error` trait only when the |
89 | /// `std` feature is enabled. Otherwise, this type is defined in all |
90 | /// configurations. |
91 | #[derive(Debug)] |
92 | pub struct SerializeError { |
93 | /// The name of the thing that a buffer is too small for. |
94 | /// |
95 | /// Currently, the only kind of serialization error is one that is |
96 | /// committed by a caller: providing a destination buffer that is too |
97 | /// small to fit the serialized object. This makes sense conceptually, |
98 | /// since every valid inhabitant of a type should be serializable. |
99 | /// |
100 | /// This is somewhat exposed in the public API of this crate. For example, |
101 | /// the `to_bytes_{big,little}_endian` APIs return a `Vec<u8>` and are |
102 | /// guaranteed to never panic or error. This is only possible because the |
103 | /// implementation guarantees that it will allocate a `Vec<u8>` that is |
104 | /// big enough. |
105 | /// |
106 | /// In summary, if a new serialization error kind needs to be added, then |
107 | /// it will need careful consideration. |
108 | what: &'static str, |
109 | } |
110 | |
111 | impl SerializeError { |
112 | pub(crate) fn buffer_too_small(what: &'static str) -> SerializeError { |
113 | SerializeError { what } |
114 | } |
115 | } |
116 | |
117 | impl core::fmt::Display for SerializeError { |
118 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
119 | write!(f, "destination buffer is too small to write {}" , self.what) |
120 | } |
121 | } |
122 | |
123 | #[cfg (feature = "std" )] |
124 | impl std::error::Error for SerializeError {} |
125 | |
126 | /// An error that occurs when deserializing an object defined in this crate. |
127 | /// |
128 | /// Serialization, as used in this crate, universally refers to the process |
129 | /// of transforming a structure (like a DFA) into a custom binary format |
130 | /// represented by `&[u8]`. Deserialization, then, refers to the process of |
131 | /// cheaply converting this binary format back to the object's in-memory |
132 | /// representation as defined in this crate. To the extent possible, |
133 | /// deserialization will report this error whenever this process fails. |
134 | /// |
135 | /// A `DeserializeError` provides no introspection capabilities. Its only |
136 | /// supported operation is conversion to a human readable error message. |
137 | /// |
138 | /// This error type implements the `std::error::Error` trait only when the |
139 | /// `std` feature is enabled. Otherwise, this type is defined in all |
140 | /// configurations. |
141 | #[derive(Debug)] |
142 | pub struct DeserializeError(DeserializeErrorKind); |
143 | |
144 | #[derive(Debug)] |
145 | enum DeserializeErrorKind { |
146 | Generic { msg: &'static str }, |
147 | BufferTooSmall { what: &'static str }, |
148 | InvalidUsize { what: &'static str }, |
149 | VersionMismatch { expected: u32, found: u32 }, |
150 | EndianMismatch { expected: u32, found: u32 }, |
151 | AlignmentMismatch { alignment: usize, address: usize }, |
152 | LabelMismatch { expected: &'static str }, |
153 | ArithmeticOverflow { what: &'static str }, |
154 | PatternID { err: PatternIDError, what: &'static str }, |
155 | StateID { err: StateIDError, what: &'static str }, |
156 | } |
157 | |
158 | impl DeserializeError { |
159 | pub(crate) fn generic(msg: &'static str) -> DeserializeError { |
160 | DeserializeError(DeserializeErrorKind::Generic { msg }) |
161 | } |
162 | |
163 | pub(crate) fn buffer_too_small(what: &'static str) -> DeserializeError { |
164 | DeserializeError(DeserializeErrorKind::BufferTooSmall { what }) |
165 | } |
166 | |
167 | fn invalid_usize(what: &'static str) -> DeserializeError { |
168 | DeserializeError(DeserializeErrorKind::InvalidUsize { what }) |
169 | } |
170 | |
171 | fn version_mismatch(expected: u32, found: u32) -> DeserializeError { |
172 | DeserializeError(DeserializeErrorKind::VersionMismatch { |
173 | expected, |
174 | found, |
175 | }) |
176 | } |
177 | |
178 | fn endian_mismatch(expected: u32, found: u32) -> DeserializeError { |
179 | DeserializeError(DeserializeErrorKind::EndianMismatch { |
180 | expected, |
181 | found, |
182 | }) |
183 | } |
184 | |
185 | fn alignment_mismatch( |
186 | alignment: usize, |
187 | address: usize, |
188 | ) -> DeserializeError { |
189 | DeserializeError(DeserializeErrorKind::AlignmentMismatch { |
190 | alignment, |
191 | address, |
192 | }) |
193 | } |
194 | |
195 | fn label_mismatch(expected: &'static str) -> DeserializeError { |
196 | DeserializeError(DeserializeErrorKind::LabelMismatch { expected }) |
197 | } |
198 | |
199 | fn arithmetic_overflow(what: &'static str) -> DeserializeError { |
200 | DeserializeError(DeserializeErrorKind::ArithmeticOverflow { what }) |
201 | } |
202 | |
203 | fn pattern_id_error( |
204 | err: PatternIDError, |
205 | what: &'static str, |
206 | ) -> DeserializeError { |
207 | DeserializeError(DeserializeErrorKind::PatternID { err, what }) |
208 | } |
209 | |
210 | pub(crate) fn state_id_error( |
211 | err: StateIDError, |
212 | what: &'static str, |
213 | ) -> DeserializeError { |
214 | DeserializeError(DeserializeErrorKind::StateID { err, what }) |
215 | } |
216 | } |
217 | |
218 | #[cfg (feature = "std" )] |
219 | impl std::error::Error for DeserializeError {} |
220 | |
221 | impl core::fmt::Display for DeserializeError { |
222 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
223 | use self::DeserializeErrorKind::*; |
224 | |
225 | match self.0 { |
226 | Generic { msg } => write!(f, "{}" , msg), |
227 | BufferTooSmall { what } => { |
228 | write!(f, "buffer is too small to read {}" , what) |
229 | } |
230 | InvalidUsize { what } => { |
231 | write!(f, "{} is too big to fit in a usize" , what) |
232 | } |
233 | VersionMismatch { expected, found } => write!( |
234 | f, |
235 | "unsupported version: \ |
236 | expected version {} but found version {}" , |
237 | expected, found, |
238 | ), |
239 | EndianMismatch { expected, found } => write!( |
240 | f, |
241 | "endianness mismatch: expected 0x{:X} but got 0x{:X}. \ |
242 | (Are you trying to load an object serialized with a \ |
243 | different endianness?)" , |
244 | expected, found, |
245 | ), |
246 | AlignmentMismatch { alignment, address } => write!( |
247 | f, |
248 | "alignment mismatch: slice starts at address \ |
249 | 0x{:X}, which is not aligned to a {} byte boundary" , |
250 | address, alignment, |
251 | ), |
252 | LabelMismatch { expected } => write!( |
253 | f, |
254 | "label mismatch: start of serialized object should \ |
255 | contain a NUL terminated {:?} label, but a different \ |
256 | label was found" , |
257 | expected, |
258 | ), |
259 | ArithmeticOverflow { what } => { |
260 | write!(f, "arithmetic overflow for {}" , what) |
261 | } |
262 | PatternID { ref err, what } => { |
263 | write!(f, "failed to read pattern ID for {}: {}" , what, err) |
264 | } |
265 | StateID { ref err, what } => { |
266 | write!(f, "failed to read state ID for {}: {}" , what, err) |
267 | } |
268 | } |
269 | } |
270 | } |
271 | |
272 | /// Safely converts a `&[u32]` to `&[StateID]` with zero cost. |
273 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
274 | pub(crate) fn u32s_to_state_ids(slice: &[u32]) -> &[StateID] { |
275 | // SAFETY: This is safe because StateID is defined to have the same memory |
276 | // representation as a u32 (it is repr(transparent)). While not every u32 |
277 | // is a "valid" StateID, callers are not permitted to rely on the validity |
278 | // of StateIDs for memory safety. It can only lead to logical errors. (This |
279 | // is why StateID::new_unchecked is safe.) |
280 | unsafe { |
281 | core::slice::from_raw_parts( |
282 | slice.as_ptr().cast::<StateID>(), |
283 | slice.len(), |
284 | ) |
285 | } |
286 | } |
287 | |
288 | /// Safely converts a `&mut [u32]` to `&mut [StateID]` with zero cost. |
289 | pub(crate) fn u32s_to_state_ids_mut(slice: &mut [u32]) -> &mut [StateID] { |
290 | // SAFETY: This is safe because StateID is defined to have the same memory |
291 | // representation as a u32 (it is repr(transparent)). While not every u32 |
292 | // is a "valid" StateID, callers are not permitted to rely on the validity |
293 | // of StateIDs for memory safety. It can only lead to logical errors. (This |
294 | // is why StateID::new_unchecked is safe.) |
295 | unsafe { |
296 | core::slice::from_raw_parts_mut( |
297 | slice.as_mut_ptr().cast::<StateID>(), |
298 | slice.len(), |
299 | ) |
300 | } |
301 | } |
302 | |
303 | /// Safely converts a `&[u32]` to `&[PatternID]` with zero cost. |
304 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
305 | pub(crate) fn u32s_to_pattern_ids(slice: &[u32]) -> &[PatternID] { |
306 | // SAFETY: This is safe because PatternID is defined to have the same |
307 | // memory representation as a u32 (it is repr(transparent)). While not |
308 | // every u32 is a "valid" PatternID, callers are not permitted to rely |
309 | // on the validity of PatternIDs for memory safety. It can only lead to |
310 | // logical errors. (This is why PatternID::new_unchecked is safe.) |
311 | unsafe { |
312 | core::slice::from_raw_parts( |
313 | slice.as_ptr().cast::<PatternID>(), |
314 | slice.len(), |
315 | ) |
316 | } |
317 | } |
318 | |
319 | /// Checks that the given slice has an alignment that matches `T`. |
320 | /// |
321 | /// This is useful for checking that a slice has an appropriate alignment |
322 | /// before casting it to a &[T]. Note though that alignment is not itself |
323 | /// sufficient to perform the cast for any `T`. |
324 | pub(crate) fn check_alignment<T>( |
325 | slice: &[u8], |
326 | ) -> Result<(), DeserializeError> { |
327 | let alignment = core::mem::align_of::<T>(); |
328 | let address = slice.as_ptr().as_usize(); |
329 | if address % alignment == 0 { |
330 | return Ok(()); |
331 | } |
332 | Err(DeserializeError::alignment_mismatch(alignment, address)) |
333 | } |
334 | |
335 | /// Reads a possibly empty amount of padding, up to 7 bytes, from the beginning |
336 | /// of the given slice. All padding bytes must be NUL bytes. |
337 | /// |
338 | /// This is useful because it can be theoretically necessary to pad the |
339 | /// beginning of a serialized object with NUL bytes to ensure that it starts |
340 | /// at a correctly aligned address. These padding bytes should come immediately |
341 | /// before the label. |
342 | /// |
343 | /// This returns the number of bytes read from the given slice. |
344 | pub(crate) fn skip_initial_padding(slice: &[u8]) -> usize { |
345 | let mut nread = 0; |
346 | while nread < 7 && nread < slice.len() && slice[nread] == 0 { |
347 | nread += 1; |
348 | } |
349 | nread |
350 | } |
351 | |
352 | /// Allocate a byte buffer of the given size, along with some initial padding |
353 | /// such that `buf[padding..]` has the same alignment as `T`, where the |
354 | /// alignment of `T` must be at most `8`. In particular, callers should treat |
355 | /// the first N bytes (second return value) as padding bytes that must not be |
356 | /// overwritten. In all cases, the following identity holds: |
357 | /// |
358 | /// ```ignore |
359 | /// let (buf, padding) = alloc_aligned_buffer::<StateID>(SIZE); |
360 | /// assert_eq!(SIZE, buf[padding..].len()); |
361 | /// ``` |
362 | /// |
363 | /// In practice, padding is often zero. |
364 | /// |
365 | /// The requirement for `8` as a maximum here is somewhat arbitrary. In |
366 | /// practice, we never need anything bigger in this crate, and so this function |
367 | /// does some sanity asserts under the assumption of a max alignment of `8`. |
368 | #[cfg (feature = "alloc" )] |
369 | pub(crate) fn alloc_aligned_buffer<T>(size: usize) -> (Vec<u8>, usize) { |
370 | // NOTE: This is a kludge because there's no easy way to allocate a Vec<u8> |
371 | // with an alignment guaranteed to be greater than 1. We could create a |
372 | // Vec<u32>, but this cannot be safely transmuted to a Vec<u8> without |
373 | // concern, since reallocing or dropping the Vec<u8> is UB (different |
374 | // alignment than the initial allocation). We could define a wrapper type |
375 | // to manage this for us, but it seems like more machinery than it's worth. |
376 | let buf = vec![0; size]; |
377 | let align = core::mem::align_of::<T>(); |
378 | let address = buf.as_ptr().as_usize(); |
379 | if address % align == 0 { |
380 | return (buf, 0); |
381 | } |
382 | // Let's try this again. We have to create a totally new alloc with |
383 | // the maximum amount of bytes we might need. We can't just extend our |
384 | // pre-existing 'buf' because that might create a new alloc with a |
385 | // different alignment. |
386 | let extra = align - 1; |
387 | let mut buf = vec![0; size + extra]; |
388 | let address = buf.as_ptr().as_usize(); |
389 | // The code below handles the case where 'address' is aligned to T, so if |
390 | // we got lucky and 'address' is now aligned to T (when it previously |
391 | // wasn't), then we're done. |
392 | if address % align == 0 { |
393 | buf.truncate(size); |
394 | return (buf, 0); |
395 | } |
396 | let padding = ((address & !(align - 1)).checked_add(align).unwrap()) |
397 | .checked_sub(address) |
398 | .unwrap(); |
399 | assert!(padding <= 7, "padding of {} is bigger than 7" , padding); |
400 | assert!( |
401 | padding <= extra, |
402 | "padding of {} is bigger than extra {} bytes" , |
403 | padding, |
404 | extra |
405 | ); |
406 | buf.truncate(size + padding); |
407 | assert_eq!(size + padding, buf.len()); |
408 | assert_eq!( |
409 | 0, |
410 | buf[padding..].as_ptr().as_usize() % align, |
411 | "expected end of initial padding to be aligned to {}" , |
412 | align, |
413 | ); |
414 | (buf, padding) |
415 | } |
416 | |
417 | /// Reads a NUL terminated label starting at the beginning of the given slice. |
418 | /// |
419 | /// If a NUL terminated label could not be found, then an error is returned. |
420 | /// Similarly, if a label is found but doesn't match the expected label, then |
421 | /// an error is returned. |
422 | /// |
423 | /// Upon success, the total number of bytes read (including padding bytes) is |
424 | /// returned. |
425 | pub(crate) fn read_label( |
426 | slice: &[u8], |
427 | expected_label: &'static str, |
428 | ) -> Result<usize, DeserializeError> { |
429 | // Set an upper bound on how many bytes we scan for a NUL. Since no label |
430 | // in this crate is longer than 256 bytes, if we can't find one within that |
431 | // range, then we have corrupted data. |
432 | let first_nul = |
433 | slice[..cmp::min(slice.len(), 256)].iter().position(|&b| b == 0); |
434 | let first_nul = match first_nul { |
435 | Some(first_nul) => first_nul, |
436 | None => { |
437 | return Err(DeserializeError::generic( |
438 | "could not find NUL terminated label \ |
439 | at start of serialized object" , |
440 | )); |
441 | } |
442 | }; |
443 | let len = first_nul + padding_len(first_nul); |
444 | if slice.len() < len { |
445 | return Err(DeserializeError::generic( |
446 | "could not find properly sized label at start of serialized object" |
447 | )); |
448 | } |
449 | if expected_label.as_bytes() != &slice[..first_nul] { |
450 | return Err(DeserializeError::label_mismatch(expected_label)); |
451 | } |
452 | Ok(len) |
453 | } |
454 | |
455 | /// Writes the given label to the buffer as a NUL terminated string. The label |
456 | /// given must not contain NUL, otherwise this will panic. Similarly, the label |
457 | /// must not be longer than 255 bytes, otherwise this will panic. |
458 | /// |
459 | /// Additional NUL bytes are written as necessary to ensure that the number of |
460 | /// bytes written is always a multiple of 4. |
461 | /// |
462 | /// Upon success, the total number of bytes written (including padding) is |
463 | /// returned. |
464 | pub(crate) fn write_label( |
465 | label: &str, |
466 | dst: &mut [u8], |
467 | ) -> Result<usize, SerializeError> { |
468 | let nwrite = write_label_len(label); |
469 | if dst.len() < nwrite { |
470 | return Err(SerializeError::buffer_too_small("label" )); |
471 | } |
472 | dst[..label.len()].copy_from_slice(label.as_bytes()); |
473 | for i in 0..(nwrite - label.len()) { |
474 | dst[label.len() + i] = 0; |
475 | } |
476 | assert_eq!(nwrite % 4, 0); |
477 | Ok(nwrite) |
478 | } |
479 | |
480 | /// Returns the total number of bytes (including padding) that would be written |
481 | /// for the given label. This panics if the given label contains a NUL byte or |
482 | /// is longer than 255 bytes. (The size restriction exists so that searching |
483 | /// for a label during deserialization can be done in small bounded space.) |
484 | pub(crate) fn write_label_len(label: &str) -> usize { |
485 | if label.len() > 255 { |
486 | panic!("label must not be longer than 255 bytes" ); |
487 | } |
488 | if label.as_bytes().iter().position(|&b| b == 0).is_some() { |
489 | panic!("label must not contain NUL bytes" ); |
490 | } |
491 | let label_len = label.len() + 1; // +1 for the NUL terminator |
492 | label_len + padding_len(label_len) |
493 | } |
494 | |
495 | /// Reads the endianness check from the beginning of the given slice and |
496 | /// confirms that the endianness of the serialized object matches the expected |
497 | /// endianness. If the slice is too small or if the endianness check fails, |
498 | /// this returns an error. |
499 | /// |
500 | /// Upon success, the total number of bytes read is returned. |
501 | pub(crate) fn read_endianness_check( |
502 | slice: &[u8], |
503 | ) -> Result<usize, DeserializeError> { |
504 | let (n, nr) = try_read_u32(slice, "endianness check" )?; |
505 | assert_eq!(nr, write_endianness_check_len()); |
506 | if n != 0xFEFF { |
507 | return Err(DeserializeError::endian_mismatch(0xFEFF, n)); |
508 | } |
509 | Ok(nr) |
510 | } |
511 | |
512 | /// Writes 0xFEFF as an integer using the given endianness. |
513 | /// |
514 | /// This is useful for writing into the header of a serialized object. It can |
515 | /// be read during deserialization as a sanity check to ensure the proper |
516 | /// endianness is used. |
517 | /// |
518 | /// Upon success, the total number of bytes written is returned. |
519 | pub(crate) fn write_endianness_check<E: Endian>( |
520 | dst: &mut [u8], |
521 | ) -> Result<usize, SerializeError> { |
522 | let nwrite = write_endianness_check_len(); |
523 | if dst.len() < nwrite { |
524 | return Err(SerializeError::buffer_too_small("endianness check" )); |
525 | } |
526 | E::write_u32(0xFEFF, dst); |
527 | Ok(nwrite) |
528 | } |
529 | |
530 | /// Returns the number of bytes written by the endianness check. |
531 | pub(crate) fn write_endianness_check_len() -> usize { |
532 | size_of::<u32>() |
533 | } |
534 | |
535 | /// Reads a version number from the beginning of the given slice and confirms |
536 | /// that is matches the expected version number given. If the slice is too |
537 | /// small or if the version numbers aren't equivalent, this returns an error. |
538 | /// |
539 | /// Upon success, the total number of bytes read is returned. |
540 | /// |
541 | /// N.B. Currently, we require that the version number is exactly equivalent. |
542 | /// In the future, if we bump the version number without a semver bump, then |
543 | /// we'll need to relax this a bit and support older versions. |
544 | pub(crate) fn read_version( |
545 | slice: &[u8], |
546 | expected_version: u32, |
547 | ) -> Result<usize, DeserializeError> { |
548 | let (n, nr) = try_read_u32(slice, "version" )?; |
549 | assert_eq!(nr, write_version_len()); |
550 | if n != expected_version { |
551 | return Err(DeserializeError::version_mismatch(expected_version, n)); |
552 | } |
553 | Ok(nr) |
554 | } |
555 | |
556 | /// Writes the given version number to the beginning of the given slice. |
557 | /// |
558 | /// This is useful for writing into the header of a serialized object. It can |
559 | /// be read during deserialization as a sanity check to ensure that the library |
560 | /// code supports the format of the serialized object. |
561 | /// |
562 | /// Upon success, the total number of bytes written is returned. |
563 | pub(crate) fn write_version<E: Endian>( |
564 | version: u32, |
565 | dst: &mut [u8], |
566 | ) -> Result<usize, SerializeError> { |
567 | let nwrite = write_version_len(); |
568 | if dst.len() < nwrite { |
569 | return Err(SerializeError::buffer_too_small("version number" )); |
570 | } |
571 | E::write_u32(version, dst); |
572 | Ok(nwrite) |
573 | } |
574 | |
575 | /// Returns the number of bytes written by writing the version number. |
576 | pub(crate) fn write_version_len() -> usize { |
577 | size_of::<u32>() |
578 | } |
579 | |
580 | /// Reads a pattern ID from the given slice. If the slice has insufficient |
581 | /// length, then this panics. If the deserialized integer exceeds the pattern |
582 | /// ID limit for the current target, then this returns an error. |
583 | /// |
584 | /// Upon success, this also returns the number of bytes read. |
585 | pub(crate) fn read_pattern_id( |
586 | slice: &[u8], |
587 | what: &'static str, |
588 | ) -> Result<(PatternID, usize), DeserializeError> { |
589 | let bytes: [u8; PatternID::SIZE] = |
590 | slice[..PatternID::SIZE].try_into().unwrap(); |
591 | let pid = PatternID::from_ne_bytes(bytes) |
592 | .map_err(|err| DeserializeError::pattern_id_error(err, what))?; |
593 | Ok((pid, PatternID::SIZE)) |
594 | } |
595 | |
596 | /// Reads a pattern ID from the given slice. If the slice has insufficient |
597 | /// length, then this panics. Otherwise, the deserialized integer is assumed |
598 | /// to be a valid pattern ID. |
599 | /// |
600 | /// This also returns the number of bytes read. |
601 | pub(crate) fn read_pattern_id_unchecked(slice: &[u8]) -> (PatternID, usize) { |
602 | let pid = PatternID::from_ne_bytes_unchecked( |
603 | slice[..PatternID::SIZE].try_into().unwrap(), |
604 | ); |
605 | (pid, PatternID::SIZE) |
606 | } |
607 | |
608 | /// Write the given pattern ID to the beginning of the given slice of bytes |
609 | /// using the specified endianness. The given slice must have length at least |
610 | /// `PatternID::SIZE`, or else this panics. Upon success, the total number of |
611 | /// bytes written is returned. |
612 | pub(crate) fn write_pattern_id<E: Endian>( |
613 | pid: PatternID, |
614 | dst: &mut [u8], |
615 | ) -> usize { |
616 | E::write_u32(pid.as_u32(), dst); |
617 | PatternID::SIZE |
618 | } |
619 | |
620 | /// Attempts to read a state ID from the given slice. If the slice has an |
621 | /// insufficient number of bytes or if the state ID exceeds the limit for |
622 | /// the current target, then this returns an error. |
623 | /// |
624 | /// Upon success, this also returns the number of bytes read. |
625 | pub(crate) fn try_read_state_id( |
626 | slice: &[u8], |
627 | what: &'static str, |
628 | ) -> Result<(StateID, usize), DeserializeError> { |
629 | if slice.len() < StateID::SIZE { |
630 | return Err(DeserializeError::buffer_too_small(what)); |
631 | } |
632 | read_state_id(slice, what) |
633 | } |
634 | |
635 | /// Reads a state ID from the given slice. If the slice has insufficient |
636 | /// length, then this panics. If the deserialized integer exceeds the state ID |
637 | /// limit for the current target, then this returns an error. |
638 | /// |
639 | /// Upon success, this also returns the number of bytes read. |
640 | pub(crate) fn read_state_id( |
641 | slice: &[u8], |
642 | what: &'static str, |
643 | ) -> Result<(StateID, usize), DeserializeError> { |
644 | let bytes: [u8; StateID::SIZE] = |
645 | slice[..StateID::SIZE].try_into().unwrap(); |
646 | let sid = StateID::from_ne_bytes(bytes) |
647 | .map_err(|err| DeserializeError::state_id_error(err, what))?; |
648 | Ok((sid, StateID::SIZE)) |
649 | } |
650 | |
651 | /// Reads a state ID from the given slice. If the slice has insufficient |
652 | /// length, then this panics. Otherwise, the deserialized integer is assumed |
653 | /// to be a valid state ID. |
654 | /// |
655 | /// This also returns the number of bytes read. |
656 | pub(crate) fn read_state_id_unchecked(slice: &[u8]) -> (StateID, usize) { |
657 | let sid = StateID::from_ne_bytes_unchecked( |
658 | slice[..StateID::SIZE].try_into().unwrap(), |
659 | ); |
660 | (sid, StateID::SIZE) |
661 | } |
662 | |
663 | /// Write the given state ID to the beginning of the given slice of bytes |
664 | /// using the specified endianness. The given slice must have length at least |
665 | /// `StateID::SIZE`, or else this panics. Upon success, the total number of |
666 | /// bytes written is returned. |
667 | pub(crate) fn write_state_id<E: Endian>( |
668 | sid: StateID, |
669 | dst: &mut [u8], |
670 | ) -> usize { |
671 | E::write_u32(sid.as_u32(), dst); |
672 | StateID::SIZE |
673 | } |
674 | |
675 | /// Try to read a u16 as a usize from the beginning of the given slice in |
676 | /// native endian format. If the slice has fewer than 2 bytes or if the |
677 | /// deserialized number cannot be represented by usize, then this returns an |
678 | /// error. The error message will include the `what` description of what is |
679 | /// being deserialized, for better error messages. `what` should be a noun in |
680 | /// singular form. |
681 | /// |
682 | /// Upon success, this also returns the number of bytes read. |
683 | pub(crate) fn try_read_u16_as_usize( |
684 | slice: &[u8], |
685 | what: &'static str, |
686 | ) -> Result<(usize, usize), DeserializeError> { |
687 | try_read_u16(slice, what).and_then(|(n, nr)| { |
688 | usize::try_from(n) |
689 | .map(|n| (n, nr)) |
690 | .map_err(|_| DeserializeError::invalid_usize(what)) |
691 | }) |
692 | } |
693 | |
694 | /// Try to read a u32 as a usize from the beginning of the given slice in |
695 | /// native endian format. If the slice has fewer than 4 bytes or if the |
696 | /// deserialized number cannot be represented by usize, then this returns an |
697 | /// error. The error message will include the `what` description of what is |
698 | /// being deserialized, for better error messages. `what` should be a noun in |
699 | /// singular form. |
700 | /// |
701 | /// Upon success, this also returns the number of bytes read. |
702 | pub(crate) fn try_read_u32_as_usize( |
703 | slice: &[u8], |
704 | what: &'static str, |
705 | ) -> Result<(usize, usize), DeserializeError> { |
706 | try_read_u32(slice, what).and_then(|(n, nr)| { |
707 | usize::try_from(n) |
708 | .map(|n| (n, nr)) |
709 | .map_err(|_| DeserializeError::invalid_usize(what)) |
710 | }) |
711 | } |
712 | |
713 | /// Try to read a u16 from the beginning of the given slice in native endian |
714 | /// format. If the slice has fewer than 2 bytes, then this returns an error. |
715 | /// The error message will include the `what` description of what is being |
716 | /// deserialized, for better error messages. `what` should be a noun in |
717 | /// singular form. |
718 | /// |
719 | /// Upon success, this also returns the number of bytes read. |
720 | pub(crate) fn try_read_u16( |
721 | slice: &[u8], |
722 | what: &'static str, |
723 | ) -> Result<(u16, usize), DeserializeError> { |
724 | check_slice_len(slice, size_of::<u16>(), what)?; |
725 | Ok((read_u16(slice), size_of::<u16>())) |
726 | } |
727 | |
728 | /// Try to read a u32 from the beginning of the given slice in native endian |
729 | /// format. If the slice has fewer than 4 bytes, then this returns an error. |
730 | /// The error message will include the `what` description of what is being |
731 | /// deserialized, for better error messages. `what` should be a noun in |
732 | /// singular form. |
733 | /// |
734 | /// Upon success, this also returns the number of bytes read. |
735 | pub(crate) fn try_read_u32( |
736 | slice: &[u8], |
737 | what: &'static str, |
738 | ) -> Result<(u32, usize), DeserializeError> { |
739 | check_slice_len(slice, size_of::<u32>(), what)?; |
740 | Ok((read_u32(slice), size_of::<u32>())) |
741 | } |
742 | |
743 | /// Try to read a u128 from the beginning of the given slice in native endian |
744 | /// format. If the slice has fewer than 16 bytes, then this returns an error. |
745 | /// The error message will include the `what` description of what is being |
746 | /// deserialized, for better error messages. `what` should be a noun in |
747 | /// singular form. |
748 | /// |
749 | /// Upon success, this also returns the number of bytes read. |
750 | pub(crate) fn try_read_u128( |
751 | slice: &[u8], |
752 | what: &'static str, |
753 | ) -> Result<(u128, usize), DeserializeError> { |
754 | check_slice_len(slice, size_of::<u128>(), what)?; |
755 | Ok((read_u128(slice), size_of::<u128>())) |
756 | } |
757 | |
758 | /// Read a u16 from the beginning of the given slice in native endian format. |
759 | /// If the slice has fewer than 2 bytes, then this panics. |
760 | /// |
761 | /// Marked as inline to speed up sparse searching which decodes integers from |
762 | /// its automaton at search time. |
763 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
764 | pub(crate) fn read_u16(slice: &[u8]) -> u16 { |
765 | let bytes: [u8; 2] = slice[..size_of::<u16>()].try_into().unwrap(); |
766 | u16::from_ne_bytes(bytes) |
767 | } |
768 | |
769 | /// Read a u32 from the beginning of the given slice in native endian format. |
770 | /// If the slice has fewer than 4 bytes, then this panics. |
771 | /// |
772 | /// Marked as inline to speed up sparse searching which decodes integers from |
773 | /// its automaton at search time. |
774 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
775 | pub(crate) fn read_u32(slice: &[u8]) -> u32 { |
776 | let bytes: [u8; 4] = slice[..size_of::<u32>()].try_into().unwrap(); |
777 | u32::from_ne_bytes(bytes) |
778 | } |
779 | |
780 | /// Read a u128 from the beginning of the given slice in native endian format. |
781 | /// If the slice has fewer than 16 bytes, then this panics. |
782 | pub(crate) fn read_u128(slice: &[u8]) -> u128 { |
783 | let bytes: [u8; 16] = slice[..size_of::<u128>()].try_into().unwrap(); |
784 | u128::from_ne_bytes(bytes) |
785 | } |
786 | |
787 | /// Checks that the given slice has some minimal length. If it's smaller than |
788 | /// the bound given, then a "buffer too small" error is returned with `what` |
789 | /// describing what the buffer represents. |
790 | pub(crate) fn check_slice_len<T>( |
791 | slice: &[T], |
792 | at_least_len: usize, |
793 | what: &'static str, |
794 | ) -> Result<(), DeserializeError> { |
795 | if slice.len() < at_least_len { |
796 | return Err(DeserializeError::buffer_too_small(what)); |
797 | } |
798 | Ok(()) |
799 | } |
800 | |
801 | /// Multiply the given numbers, and on overflow, return an error that includes |
802 | /// 'what' in the error message. |
803 | /// |
804 | /// This is useful when doing arithmetic with untrusted data. |
805 | pub(crate) fn mul( |
806 | a: usize, |
807 | b: usize, |
808 | what: &'static str, |
809 | ) -> Result<usize, DeserializeError> { |
810 | match a.checked_mul(b) { |
811 | Some(c) => Ok(c), |
812 | None => Err(DeserializeError::arithmetic_overflow(what)), |
813 | } |
814 | } |
815 | |
816 | /// Add the given numbers, and on overflow, return an error that includes |
817 | /// 'what' in the error message. |
818 | /// |
819 | /// This is useful when doing arithmetic with untrusted data. |
820 | pub(crate) fn add( |
821 | a: usize, |
822 | b: usize, |
823 | what: &'static str, |
824 | ) -> Result<usize, DeserializeError> { |
825 | match a.checked_add(b) { |
826 | Some(c) => Ok(c), |
827 | None => Err(DeserializeError::arithmetic_overflow(what)), |
828 | } |
829 | } |
830 | |
831 | /// Shift `a` left by `b`, and on overflow, return an error that includes |
832 | /// 'what' in the error message. |
833 | /// |
834 | /// This is useful when doing arithmetic with untrusted data. |
835 | pub(crate) fn shl( |
836 | a: usize, |
837 | b: usize, |
838 | what: &'static str, |
839 | ) -> Result<usize, DeserializeError> { |
840 | let amount = u32::try_from(b) |
841 | .map_err(|_| DeserializeError::arithmetic_overflow(what))?; |
842 | match a.checked_shl(amount) { |
843 | Some(c) => Ok(c), |
844 | None => Err(DeserializeError::arithmetic_overflow(what)), |
845 | } |
846 | } |
847 | |
848 | /// Returns the number of additional bytes required to add to the given length |
849 | /// in order to make the total length a multiple of 4. The return value is |
850 | /// always less than 4. |
851 | pub(crate) fn padding_len(non_padding_len: usize) -> usize { |
852 | (4 - (non_padding_len & 0b11)) & 0b11 |
853 | } |
854 | |
855 | /// A simple trait for writing code generic over endianness. |
856 | /// |
857 | /// This is similar to what byteorder provides, but we only need a very small |
858 | /// subset. |
859 | pub(crate) trait Endian { |
860 | /// Writes a u16 to the given destination buffer in a particular |
861 | /// endianness. If the destination buffer has a length smaller than 2, then |
862 | /// this panics. |
863 | fn write_u16(n: u16, dst: &mut [u8]); |
864 | |
865 | /// Writes a u32 to the given destination buffer in a particular |
866 | /// endianness. If the destination buffer has a length smaller than 4, then |
867 | /// this panics. |
868 | fn write_u32(n: u32, dst: &mut [u8]); |
869 | |
870 | /// Writes a u64 to the given destination buffer in a particular |
871 | /// endianness. If the destination buffer has a length smaller than 8, then |
872 | /// this panics. |
873 | fn write_u64(n: u64, dst: &mut [u8]); |
874 | |
875 | /// Writes a u128 to the given destination buffer in a particular |
876 | /// endianness. If the destination buffer has a length smaller than 16, |
877 | /// then this panics. |
878 | fn write_u128(n: u128, dst: &mut [u8]); |
879 | } |
880 | |
881 | /// Little endian writing. |
882 | pub(crate) enum LE {} |
883 | /// Big endian writing. |
884 | pub(crate) enum BE {} |
885 | |
886 | #[cfg (target_endian = "little" )] |
887 | pub(crate) type NE = LE; |
888 | #[cfg (target_endian = "big" )] |
889 | pub(crate) type NE = BE; |
890 | |
891 | impl Endian for LE { |
892 | fn write_u16(n: u16, dst: &mut [u8]) { |
893 | dst[..2].copy_from_slice(&n.to_le_bytes()); |
894 | } |
895 | |
896 | fn write_u32(n: u32, dst: &mut [u8]) { |
897 | dst[..4].copy_from_slice(&n.to_le_bytes()); |
898 | } |
899 | |
900 | fn write_u64(n: u64, dst: &mut [u8]) { |
901 | dst[..8].copy_from_slice(&n.to_le_bytes()); |
902 | } |
903 | |
904 | fn write_u128(n: u128, dst: &mut [u8]) { |
905 | dst[..16].copy_from_slice(&n.to_le_bytes()); |
906 | } |
907 | } |
908 | |
909 | impl Endian for BE { |
910 | fn write_u16(n: u16, dst: &mut [u8]) { |
911 | dst[..2].copy_from_slice(&n.to_be_bytes()); |
912 | } |
913 | |
914 | fn write_u32(n: u32, dst: &mut [u8]) { |
915 | dst[..4].copy_from_slice(&n.to_be_bytes()); |
916 | } |
917 | |
918 | fn write_u64(n: u64, dst: &mut [u8]) { |
919 | dst[..8].copy_from_slice(&n.to_be_bytes()); |
920 | } |
921 | |
922 | fn write_u128(n: u128, dst: &mut [u8]) { |
923 | dst[..16].copy_from_slice(&n.to_be_bytes()); |
924 | } |
925 | } |
926 | |
927 | #[cfg (all(test, feature = "alloc" ))] |
928 | mod tests { |
929 | use super::*; |
930 | |
931 | #[test] |
932 | fn labels() { |
933 | let mut buf = [0; 1024]; |
934 | |
935 | let nwrite = write_label("fooba" , &mut buf).unwrap(); |
936 | assert_eq!(nwrite, 8); |
937 | assert_eq!(&buf[..nwrite], b"fooba \x00\x00\x00" ); |
938 | |
939 | let nread = read_label(&buf, "fooba" ).unwrap(); |
940 | assert_eq!(nread, 8); |
941 | } |
942 | |
943 | #[test] |
944 | #[should_panic ] |
945 | fn bad_label_interior_nul() { |
946 | // interior NULs are not allowed |
947 | write_label("foo \x00bar" , &mut [0; 1024]).unwrap(); |
948 | } |
949 | |
950 | #[test] |
951 | fn bad_label_almost_too_long() { |
952 | // ok |
953 | write_label(&"z" .repeat(255), &mut [0; 1024]).unwrap(); |
954 | } |
955 | |
956 | #[test] |
957 | #[should_panic ] |
958 | fn bad_label_too_long() { |
959 | // labels longer than 255 bytes are banned |
960 | write_label(&"z" .repeat(256), &mut [0; 1024]).unwrap(); |
961 | } |
962 | |
963 | #[test] |
964 | fn padding() { |
965 | assert_eq!(0, padding_len(8)); |
966 | assert_eq!(3, padding_len(9)); |
967 | assert_eq!(2, padding_len(10)); |
968 | assert_eq!(1, padding_len(11)); |
969 | assert_eq!(0, padding_len(12)); |
970 | assert_eq!(3, padding_len(13)); |
971 | assert_eq!(2, padding_len(14)); |
972 | assert_eq!(1, padding_len(15)); |
973 | assert_eq!(0, padding_len(16)); |
974 | } |
975 | } |
976 | |