1 | /*! |
2 | This module provides a regular expression parser. |
3 | */ |
4 | |
5 | use core::{ |
6 | borrow::Borrow, |
7 | cell::{Cell, RefCell}, |
8 | mem, |
9 | }; |
10 | |
11 | use alloc::{ |
12 | boxed::Box, |
13 | string::{String, ToString}, |
14 | vec, |
15 | vec::Vec, |
16 | }; |
17 | |
18 | use crate::{ |
19 | ast::{self, Ast, Position, Span}, |
20 | either::Either, |
21 | is_escapeable_character, is_meta_character, |
22 | }; |
23 | |
24 | type Result<T> = core::result::Result<T, ast::Error>; |
25 | |
26 | /// A primitive is an expression with no sub-expressions. This includes |
27 | /// literals, assertions and non-set character classes. This representation |
28 | /// is used as intermediate state in the parser. |
29 | /// |
30 | /// This does not include ASCII character classes, since they can only appear |
31 | /// within a set character class. |
32 | #[derive(Clone, Debug, Eq, PartialEq)] |
33 | enum Primitive { |
34 | Literal(ast::Literal), |
35 | Assertion(ast::Assertion), |
36 | Dot(Span), |
37 | Perl(ast::ClassPerl), |
38 | Unicode(ast::ClassUnicode), |
39 | } |
40 | |
41 | impl Primitive { |
42 | /// Return the span of this primitive. |
43 | fn span(&self) -> &Span { |
44 | match *self { |
45 | Primitive::Literal(ref x) => &x.span, |
46 | Primitive::Assertion(ref x) => &x.span, |
47 | Primitive::Dot(ref span) => span, |
48 | Primitive::Perl(ref x) => &x.span, |
49 | Primitive::Unicode(ref x) => &x.span, |
50 | } |
51 | } |
52 | |
53 | /// Convert this primitive into a proper AST. |
54 | fn into_ast(self) -> Ast { |
55 | match self { |
56 | Primitive::Literal(lit) => Ast::literal(lit), |
57 | Primitive::Assertion(assert) => Ast::assertion(assert), |
58 | Primitive::Dot(span) => Ast::dot(span), |
59 | Primitive::Perl(cls) => Ast::class_perl(cls), |
60 | Primitive::Unicode(cls) => Ast::class_unicode(cls), |
61 | } |
62 | } |
63 | |
64 | /// Convert this primitive into an item in a character class. |
65 | /// |
66 | /// If this primitive is not a legal item (i.e., an assertion or a dot), |
67 | /// then return an error. |
68 | fn into_class_set_item<P: Borrow<Parser>>( |
69 | self, |
70 | p: &ParserI<'_, P>, |
71 | ) -> Result<ast::ClassSetItem> { |
72 | use self::Primitive::*; |
73 | use crate::ast::ClassSetItem; |
74 | |
75 | match self { |
76 | Literal(lit) => Ok(ClassSetItem::Literal(lit)), |
77 | Perl(cls) => Ok(ClassSetItem::Perl(cls)), |
78 | Unicode(cls) => Ok(ClassSetItem::Unicode(cls)), |
79 | x => Err(p.error(*x.span(), ast::ErrorKind::ClassEscapeInvalid)), |
80 | } |
81 | } |
82 | |
83 | /// Convert this primitive into a literal in a character class. In |
84 | /// particular, literals are the only valid items that can appear in |
85 | /// ranges. |
86 | /// |
87 | /// If this primitive is not a legal item (i.e., a class, assertion or a |
88 | /// dot), then return an error. |
89 | fn into_class_literal<P: Borrow<Parser>>( |
90 | self, |
91 | p: &ParserI<'_, P>, |
92 | ) -> Result<ast::Literal> { |
93 | use self::Primitive::*; |
94 | |
95 | match self { |
96 | Literal(lit) => Ok(lit), |
97 | x => Err(p.error(*x.span(), ast::ErrorKind::ClassRangeLiteral)), |
98 | } |
99 | } |
100 | } |
101 | |
102 | /// Returns true if the given character is a hexadecimal digit. |
103 | fn is_hex(c: char) -> bool { |
104 | ('0' <= c && c <= '9' ) || ('a' <= c && c <= 'f' ) || ('A' <= c && c <= 'F' ) |
105 | } |
106 | |
107 | /// Returns true if the given character is a valid in a capture group name. |
108 | /// |
109 | /// If `first` is true, then `c` is treated as the first character in the |
110 | /// group name (which must be alphabetic or underscore). |
111 | fn is_capture_char(c: char, first: bool) -> bool { |
112 | if first { |
113 | c == '_' || c.is_alphabetic() |
114 | } else { |
115 | c == '_' || c == '.' || c == '[' || c == ']' || c.is_alphanumeric() |
116 | } |
117 | } |
118 | |
119 | /// A builder for a regular expression parser. |
120 | /// |
121 | /// This builder permits modifying configuration options for the parser. |
122 | #[derive(Clone, Debug)] |
123 | pub struct ParserBuilder { |
124 | ignore_whitespace: bool, |
125 | nest_limit: u32, |
126 | octal: bool, |
127 | } |
128 | |
129 | impl Default for ParserBuilder { |
130 | fn default() -> ParserBuilder { |
131 | ParserBuilder::new() |
132 | } |
133 | } |
134 | |
135 | impl ParserBuilder { |
136 | /// Create a new parser builder with a default configuration. |
137 | pub fn new() -> ParserBuilder { |
138 | ParserBuilder { |
139 | ignore_whitespace: false, |
140 | nest_limit: 250, |
141 | octal: false, |
142 | } |
143 | } |
144 | |
145 | /// Build a parser from this configuration with the given pattern. |
146 | pub fn build(&self) -> Parser { |
147 | Parser { |
148 | pos: Cell::new(Position { offset: 0, line: 1, column: 1 }), |
149 | capture_index: Cell::new(0), |
150 | nest_limit: self.nest_limit, |
151 | octal: self.octal, |
152 | initial_ignore_whitespace: self.ignore_whitespace, |
153 | ignore_whitespace: Cell::new(self.ignore_whitespace), |
154 | comments: RefCell::new(vec![]), |
155 | stack_group: RefCell::new(vec![]), |
156 | stack_class: RefCell::new(vec![]), |
157 | capture_names: RefCell::new(vec![]), |
158 | scratch: RefCell::new(String::new()), |
159 | } |
160 | } |
161 | |
162 | /// Set the nesting limit for this parser. |
163 | /// |
164 | /// The nesting limit controls how deep the abstract syntax tree is allowed |
165 | /// to be. If the AST exceeds the given limit (e.g., with too many nested |
166 | /// groups), then an error is returned by the parser. |
167 | /// |
168 | /// The purpose of this limit is to act as a heuristic to prevent stack |
169 | /// overflow for consumers that do structural induction on an `Ast` using |
170 | /// explicit recursion. While this crate never does this (instead using |
171 | /// constant stack space and moving the call stack to the heap), other |
172 | /// crates may. |
173 | /// |
174 | /// This limit is not checked until the entire AST is parsed. Therefore, |
175 | /// if callers want to put a limit on the amount of heap space used, then |
176 | /// they should impose a limit on the length, in bytes, of the concrete |
177 | /// pattern string. In particular, this is viable since this parser |
178 | /// implementation will limit itself to heap space proportional to the |
179 | /// length of the pattern string. |
180 | /// |
181 | /// Note that a nest limit of `0` will return a nest limit error for most |
182 | /// patterns but not all. For example, a nest limit of `0` permits `a` but |
183 | /// not `ab`, since `ab` requires a concatenation, which results in a nest |
184 | /// depth of `1`. In general, a nest limit is not something that manifests |
185 | /// in an obvious way in the concrete syntax, therefore, it should not be |
186 | /// used in a granular way. |
187 | pub fn nest_limit(&mut self, limit: u32) -> &mut ParserBuilder { |
188 | self.nest_limit = limit; |
189 | self |
190 | } |
191 | |
192 | /// Whether to support octal syntax or not. |
193 | /// |
194 | /// Octal syntax is a little-known way of uttering Unicode codepoints in |
195 | /// a regular expression. For example, `a`, `\x61`, `\u0061` and |
196 | /// `\141` are all equivalent regular expressions, where the last example |
197 | /// shows octal syntax. |
198 | /// |
199 | /// While supporting octal syntax isn't in and of itself a problem, it does |
200 | /// make good error messages harder. That is, in PCRE based regex engines, |
201 | /// syntax like `\0` invokes a backreference, which is explicitly |
202 | /// unsupported in Rust's regex engine. However, many users expect it to |
203 | /// be supported. Therefore, when octal support is disabled, the error |
204 | /// message will explicitly mention that backreferences aren't supported. |
205 | /// |
206 | /// Octal syntax is disabled by default. |
207 | pub fn octal(&mut self, yes: bool) -> &mut ParserBuilder { |
208 | self.octal = yes; |
209 | self |
210 | } |
211 | |
212 | /// Enable verbose mode in the regular expression. |
213 | /// |
214 | /// When enabled, verbose mode permits insignificant whitespace in many |
215 | /// places in the regular expression, as well as comments. Comments are |
216 | /// started using `#` and continue until the end of the line. |
217 | /// |
218 | /// By default, this is disabled. It may be selectively enabled in the |
219 | /// regular expression by using the `x` flag regardless of this setting. |
220 | pub fn ignore_whitespace(&mut self, yes: bool) -> &mut ParserBuilder { |
221 | self.ignore_whitespace = yes; |
222 | self |
223 | } |
224 | } |
225 | |
226 | /// A regular expression parser. |
227 | /// |
228 | /// This parses a string representation of a regular expression into an |
229 | /// abstract syntax tree. The size of the tree is proportional to the length |
230 | /// of the regular expression pattern. |
231 | /// |
232 | /// A `Parser` can be configured in more detail via a [`ParserBuilder`]. |
233 | #[derive(Clone, Debug)] |
234 | pub struct Parser { |
235 | /// The current position of the parser. |
236 | pos: Cell<Position>, |
237 | /// The current capture index. |
238 | capture_index: Cell<u32>, |
239 | /// The maximum number of open parens/brackets allowed. If the parser |
240 | /// exceeds this number, then an error is returned. |
241 | nest_limit: u32, |
242 | /// Whether to support octal syntax or not. When `false`, the parser will |
243 | /// return an error helpfully pointing out that backreferences are not |
244 | /// supported. |
245 | octal: bool, |
246 | /// The initial setting for `ignore_whitespace` as provided by |
247 | /// `ParserBuilder`. It is used when resetting the parser's state. |
248 | initial_ignore_whitespace: bool, |
249 | /// Whether whitespace should be ignored. When enabled, comments are |
250 | /// also permitted. |
251 | ignore_whitespace: Cell<bool>, |
252 | /// A list of comments, in order of appearance. |
253 | comments: RefCell<Vec<ast::Comment>>, |
254 | /// A stack of grouped sub-expressions, including alternations. |
255 | stack_group: RefCell<Vec<GroupState>>, |
256 | /// A stack of nested character classes. This is only non-empty when |
257 | /// parsing a class. |
258 | stack_class: RefCell<Vec<ClassState>>, |
259 | /// A sorted sequence of capture names. This is used to detect duplicate |
260 | /// capture names and report an error if one is detected. |
261 | capture_names: RefCell<Vec<ast::CaptureName>>, |
262 | /// A scratch buffer used in various places. Mostly this is used to |
263 | /// accumulate relevant characters from parts of a pattern. |
264 | scratch: RefCell<String>, |
265 | } |
266 | |
267 | /// ParserI is the internal parser implementation. |
268 | /// |
269 | /// We use this separate type so that we can carry the provided pattern string |
270 | /// along with us. In particular, a `Parser` internal state is not tied to any |
271 | /// one pattern, but `ParserI` is. |
272 | /// |
273 | /// This type also lets us use `ParserI<&Parser>` in production code while |
274 | /// retaining the convenience of `ParserI<Parser>` for tests, which sometimes |
275 | /// work against the internal interface of the parser. |
276 | #[derive(Clone, Debug)] |
277 | struct ParserI<'s, P> { |
278 | /// The parser state/configuration. |
279 | parser: P, |
280 | /// The full regular expression provided by the user. |
281 | pattern: &'s str, |
282 | } |
283 | |
284 | /// GroupState represents a single stack frame while parsing nested groups |
285 | /// and alternations. Each frame records the state up to an opening parenthesis |
286 | /// or a alternating bracket `|`. |
287 | #[derive(Clone, Debug)] |
288 | enum GroupState { |
289 | /// This state is pushed whenever an opening group is found. |
290 | Group { |
291 | /// The concatenation immediately preceding the opening group. |
292 | concat: ast::Concat, |
293 | /// The group that has been opened. Its sub-AST is always empty. |
294 | group: ast::Group, |
295 | /// Whether this group has the `x` flag enabled or not. |
296 | ignore_whitespace: bool, |
297 | }, |
298 | /// This state is pushed whenever a new alternation branch is found. If |
299 | /// an alternation branch is found and this state is at the top of the |
300 | /// stack, then this state should be modified to include the new |
301 | /// alternation. |
302 | Alternation(ast::Alternation), |
303 | } |
304 | |
305 | /// ClassState represents a single stack frame while parsing character classes. |
306 | /// Each frame records the state up to an intersection, difference, symmetric |
307 | /// difference or nested class. |
308 | /// |
309 | /// Note that a parser's character class stack is only non-empty when parsing |
310 | /// a character class. In all other cases, it is empty. |
311 | #[derive(Clone, Debug)] |
312 | enum ClassState { |
313 | /// This state is pushed whenever an opening bracket is found. |
314 | Open { |
315 | /// The union of class items immediately preceding this class. |
316 | union: ast::ClassSetUnion, |
317 | /// The class that has been opened. Typically this just corresponds |
318 | /// to the `[`, but it can also include `[^` since `^` indicates |
319 | /// negation of the class. |
320 | set: ast::ClassBracketed, |
321 | }, |
322 | /// This state is pushed when a operator is seen. When popped, the stored |
323 | /// set becomes the left hand side of the operator. |
324 | Op { |
325 | /// The type of the operation, i.e., &&, -- or ~~. |
326 | kind: ast::ClassSetBinaryOpKind, |
327 | /// The left-hand side of the operator. |
328 | lhs: ast::ClassSet, |
329 | }, |
330 | } |
331 | |
332 | impl Parser { |
333 | /// Create a new parser with a default configuration. |
334 | /// |
335 | /// The parser can be run with either the `parse` or `parse_with_comments` |
336 | /// methods. The parse methods return an abstract syntax tree. |
337 | /// |
338 | /// To set configuration options on the parser, use [`ParserBuilder`]. |
339 | pub fn new() -> Parser { |
340 | ParserBuilder::new().build() |
341 | } |
342 | |
343 | /// Parse the regular expression into an abstract syntax tree. |
344 | pub fn parse(&mut self, pattern: &str) -> Result<Ast> { |
345 | ParserI::new(self, pattern).parse() |
346 | } |
347 | |
348 | /// Parse the regular expression and return an abstract syntax tree with |
349 | /// all of the comments found in the pattern. |
350 | pub fn parse_with_comments( |
351 | &mut self, |
352 | pattern: &str, |
353 | ) -> Result<ast::WithComments> { |
354 | ParserI::new(self, pattern).parse_with_comments() |
355 | } |
356 | |
357 | /// Reset the internal state of a parser. |
358 | /// |
359 | /// This is called at the beginning of every parse. This prevents the |
360 | /// parser from running with inconsistent state (say, if a previous |
361 | /// invocation returned an error and the parser is reused). |
362 | fn reset(&self) { |
363 | // These settings should be in line with the construction |
364 | // in `ParserBuilder::build`. |
365 | self.pos.set(Position { offset: 0, line: 1, column: 1 }); |
366 | self.ignore_whitespace.set(self.initial_ignore_whitespace); |
367 | self.comments.borrow_mut().clear(); |
368 | self.stack_group.borrow_mut().clear(); |
369 | self.stack_class.borrow_mut().clear(); |
370 | } |
371 | } |
372 | |
373 | impl<'s, P: Borrow<Parser>> ParserI<'s, P> { |
374 | /// Build an internal parser from a parser configuration and a pattern. |
375 | fn new(parser: P, pattern: &'s str) -> ParserI<'s, P> { |
376 | ParserI { parser, pattern } |
377 | } |
378 | |
379 | /// Return a reference to the parser state. |
380 | fn parser(&self) -> &Parser { |
381 | self.parser.borrow() |
382 | } |
383 | |
384 | /// Return a reference to the pattern being parsed. |
385 | fn pattern(&self) -> &str { |
386 | self.pattern |
387 | } |
388 | |
389 | /// Create a new error with the given span and error type. |
390 | fn error(&self, span: Span, kind: ast::ErrorKind) -> ast::Error { |
391 | ast::Error { kind, pattern: self.pattern().to_string(), span } |
392 | } |
393 | |
394 | /// Return the current offset of the parser. |
395 | /// |
396 | /// The offset starts at `0` from the beginning of the regular expression |
397 | /// pattern string. |
398 | fn offset(&self) -> usize { |
399 | self.parser().pos.get().offset |
400 | } |
401 | |
402 | /// Return the current line number of the parser. |
403 | /// |
404 | /// The line number starts at `1`. |
405 | fn line(&self) -> usize { |
406 | self.parser().pos.get().line |
407 | } |
408 | |
409 | /// Return the current column of the parser. |
410 | /// |
411 | /// The column number starts at `1` and is reset whenever a `\n` is seen. |
412 | fn column(&self) -> usize { |
413 | self.parser().pos.get().column |
414 | } |
415 | |
416 | /// Return the next capturing index. Each subsequent call increments the |
417 | /// internal index. |
418 | /// |
419 | /// The span given should correspond to the location of the opening |
420 | /// parenthesis. |
421 | /// |
422 | /// If the capture limit is exceeded, then an error is returned. |
423 | fn next_capture_index(&self, span: Span) -> Result<u32> { |
424 | let current = self.parser().capture_index.get(); |
425 | let i = current.checked_add(1).ok_or_else(|| { |
426 | self.error(span, ast::ErrorKind::CaptureLimitExceeded) |
427 | })?; |
428 | self.parser().capture_index.set(i); |
429 | Ok(i) |
430 | } |
431 | |
432 | /// Adds the given capture name to this parser. If this capture name has |
433 | /// already been used, then an error is returned. |
434 | fn add_capture_name(&self, cap: &ast::CaptureName) -> Result<()> { |
435 | let mut names = self.parser().capture_names.borrow_mut(); |
436 | match names |
437 | .binary_search_by_key(&cap.name.as_str(), |c| c.name.as_str()) |
438 | { |
439 | Err(i) => { |
440 | names.insert(i, cap.clone()); |
441 | Ok(()) |
442 | } |
443 | Ok(i) => Err(self.error( |
444 | cap.span, |
445 | ast::ErrorKind::GroupNameDuplicate { original: names[i].span }, |
446 | )), |
447 | } |
448 | } |
449 | |
450 | /// Return whether the parser should ignore whitespace or not. |
451 | fn ignore_whitespace(&self) -> bool { |
452 | self.parser().ignore_whitespace.get() |
453 | } |
454 | |
455 | /// Return the character at the current position of the parser. |
456 | /// |
457 | /// This panics if the current position does not point to a valid char. |
458 | fn char(&self) -> char { |
459 | self.char_at(self.offset()) |
460 | } |
461 | |
462 | /// Return the character at the given position. |
463 | /// |
464 | /// This panics if the given position does not point to a valid char. |
465 | fn char_at(&self, i: usize) -> char { |
466 | self.pattern()[i..] |
467 | .chars() |
468 | .next() |
469 | .unwrap_or_else(|| panic!("expected char at offset {}" , i)) |
470 | } |
471 | |
472 | /// Bump the parser to the next Unicode scalar value. |
473 | /// |
474 | /// If the end of the input has been reached, then `false` is returned. |
475 | fn bump(&self) -> bool { |
476 | if self.is_eof() { |
477 | return false; |
478 | } |
479 | let Position { mut offset, mut line, mut column } = self.pos(); |
480 | if self.char() == ' \n' { |
481 | line = line.checked_add(1).unwrap(); |
482 | column = 1; |
483 | } else { |
484 | column = column.checked_add(1).unwrap(); |
485 | } |
486 | offset += self.char().len_utf8(); |
487 | self.parser().pos.set(Position { offset, line, column }); |
488 | self.pattern()[self.offset()..].chars().next().is_some() |
489 | } |
490 | |
491 | /// If the substring starting at the current position of the parser has |
492 | /// the given prefix, then bump the parser to the character immediately |
493 | /// following the prefix and return true. Otherwise, don't bump the parser |
494 | /// and return false. |
495 | fn bump_if(&self, prefix: &str) -> bool { |
496 | if self.pattern()[self.offset()..].starts_with(prefix) { |
497 | for _ in 0..prefix.chars().count() { |
498 | self.bump(); |
499 | } |
500 | true |
501 | } else { |
502 | false |
503 | } |
504 | } |
505 | |
506 | /// Returns true if and only if the parser is positioned at a look-around |
507 | /// prefix. The conditions under which this returns true must always |
508 | /// correspond to a regular expression that would otherwise be consider |
509 | /// invalid. |
510 | /// |
511 | /// This should only be called immediately after parsing the opening of |
512 | /// a group or a set of flags. |
513 | fn is_lookaround_prefix(&self) -> bool { |
514 | self.bump_if("?=" ) |
515 | || self.bump_if("?!" ) |
516 | || self.bump_if("?<=" ) |
517 | || self.bump_if("?<!" ) |
518 | } |
519 | |
520 | /// Bump the parser, and if the `x` flag is enabled, bump through any |
521 | /// subsequent spaces. Return true if and only if the parser is not at |
522 | /// EOF. |
523 | fn bump_and_bump_space(&self) -> bool { |
524 | if !self.bump() { |
525 | return false; |
526 | } |
527 | self.bump_space(); |
528 | !self.is_eof() |
529 | } |
530 | |
531 | /// If the `x` flag is enabled (i.e., whitespace insensitivity with |
532 | /// comments), then this will advance the parser through all whitespace |
533 | /// and comments to the next non-whitespace non-comment byte. |
534 | /// |
535 | /// If the `x` flag is disabled, then this is a no-op. |
536 | /// |
537 | /// This should be used selectively throughout the parser where |
538 | /// arbitrary whitespace is permitted when the `x` flag is enabled. For |
539 | /// example, `{ 5 , 6}` is equivalent to `{5,6}`. |
540 | fn bump_space(&self) { |
541 | if !self.ignore_whitespace() { |
542 | return; |
543 | } |
544 | while !self.is_eof() { |
545 | if self.char().is_whitespace() { |
546 | self.bump(); |
547 | } else if self.char() == '#' { |
548 | let start = self.pos(); |
549 | let mut comment_text = String::new(); |
550 | self.bump(); |
551 | while !self.is_eof() { |
552 | let c = self.char(); |
553 | self.bump(); |
554 | if c == ' \n' { |
555 | break; |
556 | } |
557 | comment_text.push(c); |
558 | } |
559 | let comment = ast::Comment { |
560 | span: Span::new(start, self.pos()), |
561 | comment: comment_text, |
562 | }; |
563 | self.parser().comments.borrow_mut().push(comment); |
564 | } else { |
565 | break; |
566 | } |
567 | } |
568 | } |
569 | |
570 | /// Peek at the next character in the input without advancing the parser. |
571 | /// |
572 | /// If the input has been exhausted, then this returns `None`. |
573 | fn peek(&self) -> Option<char> { |
574 | if self.is_eof() { |
575 | return None; |
576 | } |
577 | self.pattern()[self.offset() + self.char().len_utf8()..].chars().next() |
578 | } |
579 | |
580 | /// Like peek, but will ignore spaces when the parser is in whitespace |
581 | /// insensitive mode. |
582 | fn peek_space(&self) -> Option<char> { |
583 | if !self.ignore_whitespace() { |
584 | return self.peek(); |
585 | } |
586 | if self.is_eof() { |
587 | return None; |
588 | } |
589 | let mut start = self.offset() + self.char().len_utf8(); |
590 | let mut in_comment = false; |
591 | for (i, c) in self.pattern()[start..].char_indices() { |
592 | if c.is_whitespace() { |
593 | continue; |
594 | } else if !in_comment && c == '#' { |
595 | in_comment = true; |
596 | } else if in_comment && c == ' \n' { |
597 | in_comment = false; |
598 | } else { |
599 | start += i; |
600 | break; |
601 | } |
602 | } |
603 | self.pattern()[start..].chars().next() |
604 | } |
605 | |
606 | /// Returns true if the next call to `bump` would return false. |
607 | fn is_eof(&self) -> bool { |
608 | self.offset() == self.pattern().len() |
609 | } |
610 | |
611 | /// Return the current position of the parser, which includes the offset, |
612 | /// line and column. |
613 | fn pos(&self) -> Position { |
614 | self.parser().pos.get() |
615 | } |
616 | |
617 | /// Create a span at the current position of the parser. Both the start |
618 | /// and end of the span are set. |
619 | fn span(&self) -> Span { |
620 | Span::splat(self.pos()) |
621 | } |
622 | |
623 | /// Create a span that covers the current character. |
624 | fn span_char(&self) -> Span { |
625 | let mut next = Position { |
626 | offset: self.offset().checked_add(self.char().len_utf8()).unwrap(), |
627 | line: self.line(), |
628 | column: self.column().checked_add(1).unwrap(), |
629 | }; |
630 | if self.char() == ' \n' { |
631 | next.line += 1; |
632 | next.column = 1; |
633 | } |
634 | Span::new(self.pos(), next) |
635 | } |
636 | |
637 | /// Parse and push a single alternation on to the parser's internal stack. |
638 | /// If the top of the stack already has an alternation, then add to that |
639 | /// instead of pushing a new one. |
640 | /// |
641 | /// The concatenation given corresponds to a single alternation branch. |
642 | /// The concatenation returned starts the next branch and is empty. |
643 | /// |
644 | /// This assumes the parser is currently positioned at `|` and will advance |
645 | /// the parser to the character following `|`. |
646 | #[inline (never)] |
647 | fn push_alternate(&self, mut concat: ast::Concat) -> Result<ast::Concat> { |
648 | assert_eq!(self.char(), '|' ); |
649 | concat.span.end = self.pos(); |
650 | self.push_or_add_alternation(concat); |
651 | self.bump(); |
652 | Ok(ast::Concat { span: self.span(), asts: vec![] }) |
653 | } |
654 | |
655 | /// Pushes or adds the given branch of an alternation to the parser's |
656 | /// internal stack of state. |
657 | fn push_or_add_alternation(&self, concat: ast::Concat) { |
658 | use self::GroupState::*; |
659 | |
660 | let mut stack = self.parser().stack_group.borrow_mut(); |
661 | if let Some(&mut Alternation(ref mut alts)) = stack.last_mut() { |
662 | alts.asts.push(concat.into_ast()); |
663 | return; |
664 | } |
665 | stack.push(Alternation(ast::Alternation { |
666 | span: Span::new(concat.span.start, self.pos()), |
667 | asts: vec![concat.into_ast()], |
668 | })); |
669 | } |
670 | |
671 | /// Parse and push a group AST (and its parent concatenation) on to the |
672 | /// parser's internal stack. Return a fresh concatenation corresponding |
673 | /// to the group's sub-AST. |
674 | /// |
675 | /// If a set of flags was found (with no group), then the concatenation |
676 | /// is returned with that set of flags added. |
677 | /// |
678 | /// This assumes that the parser is currently positioned on the opening |
679 | /// parenthesis. It advances the parser to the character at the start |
680 | /// of the sub-expression (or adjoining expression). |
681 | /// |
682 | /// If there was a problem parsing the start of the group, then an error |
683 | /// is returned. |
684 | #[inline (never)] |
685 | fn push_group(&self, mut concat: ast::Concat) -> Result<ast::Concat> { |
686 | assert_eq!(self.char(), '(' ); |
687 | match self.parse_group()? { |
688 | Either::Left(set) => { |
689 | let ignore = set.flags.flag_state(ast::Flag::IgnoreWhitespace); |
690 | if let Some(v) = ignore { |
691 | self.parser().ignore_whitespace.set(v); |
692 | } |
693 | |
694 | concat.asts.push(Ast::flags(set)); |
695 | Ok(concat) |
696 | } |
697 | Either::Right(group) => { |
698 | let old_ignore_whitespace = self.ignore_whitespace(); |
699 | let new_ignore_whitespace = group |
700 | .flags() |
701 | .and_then(|f| f.flag_state(ast::Flag::IgnoreWhitespace)) |
702 | .unwrap_or(old_ignore_whitespace); |
703 | self.parser().stack_group.borrow_mut().push( |
704 | GroupState::Group { |
705 | concat, |
706 | group, |
707 | ignore_whitespace: old_ignore_whitespace, |
708 | }, |
709 | ); |
710 | self.parser().ignore_whitespace.set(new_ignore_whitespace); |
711 | Ok(ast::Concat { span: self.span(), asts: vec![] }) |
712 | } |
713 | } |
714 | } |
715 | |
716 | /// Pop a group AST from the parser's internal stack and set the group's |
717 | /// AST to the given concatenation. Return the concatenation containing |
718 | /// the group. |
719 | /// |
720 | /// This assumes that the parser is currently positioned on the closing |
721 | /// parenthesis and advances the parser to the character following the `)`. |
722 | /// |
723 | /// If no such group could be popped, then an unopened group error is |
724 | /// returned. |
725 | #[inline (never)] |
726 | fn pop_group(&self, mut group_concat: ast::Concat) -> Result<ast::Concat> { |
727 | use self::GroupState::*; |
728 | |
729 | assert_eq!(self.char(), ')' ); |
730 | let mut stack = self.parser().stack_group.borrow_mut(); |
731 | let (mut prior_concat, mut group, ignore_whitespace, alt) = match stack |
732 | .pop() |
733 | { |
734 | Some(Group { concat, group, ignore_whitespace }) => { |
735 | (concat, group, ignore_whitespace, None) |
736 | } |
737 | Some(Alternation(alt)) => match stack.pop() { |
738 | Some(Group { concat, group, ignore_whitespace }) => { |
739 | (concat, group, ignore_whitespace, Some(alt)) |
740 | } |
741 | None | Some(Alternation(_)) => { |
742 | return Err(self.error( |
743 | self.span_char(), |
744 | ast::ErrorKind::GroupUnopened, |
745 | )); |
746 | } |
747 | }, |
748 | None => { |
749 | return Err(self |
750 | .error(self.span_char(), ast::ErrorKind::GroupUnopened)); |
751 | } |
752 | }; |
753 | self.parser().ignore_whitespace.set(ignore_whitespace); |
754 | group_concat.span.end = self.pos(); |
755 | self.bump(); |
756 | group.span.end = self.pos(); |
757 | match alt { |
758 | Some(mut alt) => { |
759 | alt.span.end = group_concat.span.end; |
760 | alt.asts.push(group_concat.into_ast()); |
761 | group.ast = Box::new(alt.into_ast()); |
762 | } |
763 | None => { |
764 | group.ast = Box::new(group_concat.into_ast()); |
765 | } |
766 | } |
767 | prior_concat.asts.push(Ast::group(group)); |
768 | Ok(prior_concat) |
769 | } |
770 | |
771 | /// Pop the last state from the parser's internal stack, if it exists, and |
772 | /// add the given concatenation to it. There either must be no state or a |
773 | /// single alternation item on the stack. Any other scenario produces an |
774 | /// error. |
775 | /// |
776 | /// This assumes that the parser has advanced to the end. |
777 | #[inline (never)] |
778 | fn pop_group_end(&self, mut concat: ast::Concat) -> Result<Ast> { |
779 | concat.span.end = self.pos(); |
780 | let mut stack = self.parser().stack_group.borrow_mut(); |
781 | let ast = match stack.pop() { |
782 | None => Ok(concat.into_ast()), |
783 | Some(GroupState::Alternation(mut alt)) => { |
784 | alt.span.end = self.pos(); |
785 | alt.asts.push(concat.into_ast()); |
786 | Ok(Ast::alternation(alt)) |
787 | } |
788 | Some(GroupState::Group { group, .. }) => { |
789 | return Err( |
790 | self.error(group.span, ast::ErrorKind::GroupUnclosed) |
791 | ); |
792 | } |
793 | }; |
794 | // If we try to pop again, there should be nothing. |
795 | match stack.pop() { |
796 | None => ast, |
797 | Some(GroupState::Alternation(_)) => { |
798 | // This unreachable is unfortunate. This case can't happen |
799 | // because the only way we can be here is if there were two |
800 | // `GroupState::Alternation`s adjacent in the parser's stack, |
801 | // which we guarantee to never happen because we never push a |
802 | // `GroupState::Alternation` if one is already at the top of |
803 | // the stack. |
804 | unreachable!() |
805 | } |
806 | Some(GroupState::Group { group, .. }) => { |
807 | Err(self.error(group.span, ast::ErrorKind::GroupUnclosed)) |
808 | } |
809 | } |
810 | } |
811 | |
812 | /// Parse the opening of a character class and push the current class |
813 | /// parsing context onto the parser's stack. This assumes that the parser |
814 | /// is positioned at an opening `[`. The given union should correspond to |
815 | /// the union of set items built up before seeing the `[`. |
816 | /// |
817 | /// If there was a problem parsing the opening of the class, then an error |
818 | /// is returned. Otherwise, a new union of set items for the class is |
819 | /// returned (which may be populated with either a `]` or a `-`). |
820 | #[inline (never)] |
821 | fn push_class_open( |
822 | &self, |
823 | parent_union: ast::ClassSetUnion, |
824 | ) -> Result<ast::ClassSetUnion> { |
825 | assert_eq!(self.char(), '[' ); |
826 | |
827 | let (nested_set, nested_union) = self.parse_set_class_open()?; |
828 | self.parser() |
829 | .stack_class |
830 | .borrow_mut() |
831 | .push(ClassState::Open { union: parent_union, set: nested_set }); |
832 | Ok(nested_union) |
833 | } |
834 | |
835 | /// Parse the end of a character class set and pop the character class |
836 | /// parser stack. The union given corresponds to the last union built |
837 | /// before seeing the closing `]`. The union returned corresponds to the |
838 | /// parent character class set with the nested class added to it. |
839 | /// |
840 | /// This assumes that the parser is positioned at a `]` and will advance |
841 | /// the parser to the byte immediately following the `]`. |
842 | /// |
843 | /// If the stack is empty after popping, then this returns the final |
844 | /// "top-level" character class AST (where a "top-level" character class |
845 | /// is one that is not nested inside any other character class). |
846 | /// |
847 | /// If there is no corresponding opening bracket on the parser's stack, |
848 | /// then an error is returned. |
849 | #[inline (never)] |
850 | fn pop_class( |
851 | &self, |
852 | nested_union: ast::ClassSetUnion, |
853 | ) -> Result<Either<ast::ClassSetUnion, ast::ClassBracketed>> { |
854 | assert_eq!(self.char(), ']' ); |
855 | |
856 | let item = ast::ClassSet::Item(nested_union.into_item()); |
857 | let prevset = self.pop_class_op(item); |
858 | let mut stack = self.parser().stack_class.borrow_mut(); |
859 | match stack.pop() { |
860 | None => { |
861 | // We can never observe an empty stack: |
862 | // |
863 | // 1) We are guaranteed to start with a non-empty stack since |
864 | // the character class parser is only initiated when it sees |
865 | // a `[`. |
866 | // 2) If we ever observe an empty stack while popping after |
867 | // seeing a `]`, then we signal the character class parser |
868 | // to terminate. |
869 | panic!("unexpected empty character class stack" ) |
870 | } |
871 | Some(ClassState::Op { .. }) => { |
872 | // This panic is unfortunate, but this case is impossible |
873 | // since we already popped the Op state if one exists above. |
874 | // Namely, every push to the class parser stack is guarded by |
875 | // whether an existing Op is already on the top of the stack. |
876 | // If it is, the existing Op is modified. That is, the stack |
877 | // can never have consecutive Op states. |
878 | panic!("unexpected ClassState::Op" ) |
879 | } |
880 | Some(ClassState::Open { mut union, mut set }) => { |
881 | self.bump(); |
882 | set.span.end = self.pos(); |
883 | set.kind = prevset; |
884 | if stack.is_empty() { |
885 | Ok(Either::Right(set)) |
886 | } else { |
887 | union.push(ast::ClassSetItem::Bracketed(Box::new(set))); |
888 | Ok(Either::Left(union)) |
889 | } |
890 | } |
891 | } |
892 | } |
893 | |
894 | /// Return an "unclosed class" error whose span points to the most |
895 | /// recently opened class. |
896 | /// |
897 | /// This should only be called while parsing a character class. |
898 | #[inline (never)] |
899 | fn unclosed_class_error(&self) -> ast::Error { |
900 | for state in self.parser().stack_class.borrow().iter().rev() { |
901 | if let ClassState::Open { ref set, .. } = *state { |
902 | return self.error(set.span, ast::ErrorKind::ClassUnclosed); |
903 | } |
904 | } |
905 | // We are guaranteed to have a non-empty stack with at least |
906 | // one open bracket, so we should never get here. |
907 | panic!("no open character class found" ) |
908 | } |
909 | |
910 | /// Push the current set of class items on to the class parser's stack as |
911 | /// the left hand side of the given operator. |
912 | /// |
913 | /// A fresh set union is returned, which should be used to build the right |
914 | /// hand side of this operator. |
915 | #[inline (never)] |
916 | fn push_class_op( |
917 | &self, |
918 | next_kind: ast::ClassSetBinaryOpKind, |
919 | next_union: ast::ClassSetUnion, |
920 | ) -> ast::ClassSetUnion { |
921 | let item = ast::ClassSet::Item(next_union.into_item()); |
922 | let new_lhs = self.pop_class_op(item); |
923 | self.parser() |
924 | .stack_class |
925 | .borrow_mut() |
926 | .push(ClassState::Op { kind: next_kind, lhs: new_lhs }); |
927 | ast::ClassSetUnion { span: self.span(), items: vec![] } |
928 | } |
929 | |
930 | /// Pop a character class set from the character class parser stack. If the |
931 | /// top of the stack is just an item (not an operation), then return the |
932 | /// given set unchanged. If the top of the stack is an operation, then the |
933 | /// given set will be used as the rhs of the operation on the top of the |
934 | /// stack. In that case, the binary operation is returned as a set. |
935 | #[inline (never)] |
936 | fn pop_class_op(&self, rhs: ast::ClassSet) -> ast::ClassSet { |
937 | let mut stack = self.parser().stack_class.borrow_mut(); |
938 | let (kind, lhs) = match stack.pop() { |
939 | Some(ClassState::Op { kind, lhs }) => (kind, lhs), |
940 | Some(state @ ClassState::Open { .. }) => { |
941 | stack.push(state); |
942 | return rhs; |
943 | } |
944 | None => unreachable!(), |
945 | }; |
946 | let span = Span::new(lhs.span().start, rhs.span().end); |
947 | ast::ClassSet::BinaryOp(ast::ClassSetBinaryOp { |
948 | span, |
949 | kind, |
950 | lhs: Box::new(lhs), |
951 | rhs: Box::new(rhs), |
952 | }) |
953 | } |
954 | } |
955 | |
956 | impl<'s, P: Borrow<Parser>> ParserI<'s, P> { |
957 | /// Parse the regular expression into an abstract syntax tree. |
958 | fn parse(&self) -> Result<Ast> { |
959 | self.parse_with_comments().map(|astc| astc.ast) |
960 | } |
961 | |
962 | /// Parse the regular expression and return an abstract syntax tree with |
963 | /// all of the comments found in the pattern. |
964 | fn parse_with_comments(&self) -> Result<ast::WithComments> { |
965 | assert_eq!(self.offset(), 0, "parser can only be used once" ); |
966 | self.parser().reset(); |
967 | let mut concat = ast::Concat { span: self.span(), asts: vec![] }; |
968 | loop { |
969 | self.bump_space(); |
970 | if self.is_eof() { |
971 | break; |
972 | } |
973 | match self.char() { |
974 | '(' => concat = self.push_group(concat)?, |
975 | ')' => concat = self.pop_group(concat)?, |
976 | '|' => concat = self.push_alternate(concat)?, |
977 | '[' => { |
978 | let class = self.parse_set_class()?; |
979 | concat.asts.push(Ast::class_bracketed(class)); |
980 | } |
981 | '?' => { |
982 | concat = self.parse_uncounted_repetition( |
983 | concat, |
984 | ast::RepetitionKind::ZeroOrOne, |
985 | )?; |
986 | } |
987 | '*' => { |
988 | concat = self.parse_uncounted_repetition( |
989 | concat, |
990 | ast::RepetitionKind::ZeroOrMore, |
991 | )?; |
992 | } |
993 | '+' => { |
994 | concat = self.parse_uncounted_repetition( |
995 | concat, |
996 | ast::RepetitionKind::OneOrMore, |
997 | )?; |
998 | } |
999 | '{' => { |
1000 | concat = self.parse_counted_repetition(concat)?; |
1001 | } |
1002 | _ => concat.asts.push(self.parse_primitive()?.into_ast()), |
1003 | } |
1004 | } |
1005 | let ast = self.pop_group_end(concat)?; |
1006 | NestLimiter::new(self).check(&ast)?; |
1007 | Ok(ast::WithComments { |
1008 | ast, |
1009 | comments: mem::replace( |
1010 | &mut *self.parser().comments.borrow_mut(), |
1011 | vec![], |
1012 | ), |
1013 | }) |
1014 | } |
1015 | |
1016 | /// Parses an uncounted repetition operation. An uncounted repetition |
1017 | /// operator includes ?, * and +, but does not include the {m,n} syntax. |
1018 | /// The given `kind` should correspond to the operator observed by the |
1019 | /// caller. |
1020 | /// |
1021 | /// This assumes that the parser is currently positioned at the repetition |
1022 | /// operator and advances the parser to the first character after the |
1023 | /// operator. (Note that the operator may include a single additional `?`, |
1024 | /// which makes the operator ungreedy.) |
1025 | /// |
1026 | /// The caller should include the concatenation that is being built. The |
1027 | /// concatenation returned includes the repetition operator applied to the |
1028 | /// last expression in the given concatenation. |
1029 | #[inline (never)] |
1030 | fn parse_uncounted_repetition( |
1031 | &self, |
1032 | mut concat: ast::Concat, |
1033 | kind: ast::RepetitionKind, |
1034 | ) -> Result<ast::Concat> { |
1035 | assert!( |
1036 | self.char() == '?' || self.char() == '*' || self.char() == '+' |
1037 | ); |
1038 | let op_start = self.pos(); |
1039 | let ast = match concat.asts.pop() { |
1040 | Some(ast) => ast, |
1041 | None => { |
1042 | return Err( |
1043 | self.error(self.span(), ast::ErrorKind::RepetitionMissing) |
1044 | ) |
1045 | } |
1046 | }; |
1047 | match ast { |
1048 | Ast::Empty(_) | Ast::Flags(_) => { |
1049 | return Err( |
1050 | self.error(self.span(), ast::ErrorKind::RepetitionMissing) |
1051 | ) |
1052 | } |
1053 | _ => {} |
1054 | } |
1055 | let mut greedy = true; |
1056 | if self.bump() && self.char() == '?' { |
1057 | greedy = false; |
1058 | self.bump(); |
1059 | } |
1060 | concat.asts.push(Ast::repetition(ast::Repetition { |
1061 | span: ast.span().with_end(self.pos()), |
1062 | op: ast::RepetitionOp { |
1063 | span: Span::new(op_start, self.pos()), |
1064 | kind, |
1065 | }, |
1066 | greedy, |
1067 | ast: Box::new(ast), |
1068 | })); |
1069 | Ok(concat) |
1070 | } |
1071 | |
1072 | /// Parses a counted repetition operation. A counted repetition operator |
1073 | /// corresponds to the {m,n} syntax, and does not include the ?, * or + |
1074 | /// operators. |
1075 | /// |
1076 | /// This assumes that the parser is currently positioned at the opening `{` |
1077 | /// and advances the parser to the first character after the operator. |
1078 | /// (Note that the operator may include a single additional `?`, which |
1079 | /// makes the operator ungreedy.) |
1080 | /// |
1081 | /// The caller should include the concatenation that is being built. The |
1082 | /// concatenation returned includes the repetition operator applied to the |
1083 | /// last expression in the given concatenation. |
1084 | #[inline (never)] |
1085 | fn parse_counted_repetition( |
1086 | &self, |
1087 | mut concat: ast::Concat, |
1088 | ) -> Result<ast::Concat> { |
1089 | assert!(self.char() == '{' ); |
1090 | let start = self.pos(); |
1091 | let ast = match concat.asts.pop() { |
1092 | Some(ast) => ast, |
1093 | None => { |
1094 | return Err( |
1095 | self.error(self.span(), ast::ErrorKind::RepetitionMissing) |
1096 | ) |
1097 | } |
1098 | }; |
1099 | match ast { |
1100 | Ast::Empty(_) | Ast::Flags(_) => { |
1101 | return Err( |
1102 | self.error(self.span(), ast::ErrorKind::RepetitionMissing) |
1103 | ) |
1104 | } |
1105 | _ => {} |
1106 | } |
1107 | if !self.bump_and_bump_space() { |
1108 | return Err(self.error( |
1109 | Span::new(start, self.pos()), |
1110 | ast::ErrorKind::RepetitionCountUnclosed, |
1111 | )); |
1112 | } |
1113 | let count_start = specialize_err( |
1114 | self.parse_decimal(), |
1115 | ast::ErrorKind::DecimalEmpty, |
1116 | ast::ErrorKind::RepetitionCountDecimalEmpty, |
1117 | )?; |
1118 | let mut range = ast::RepetitionRange::Exactly(count_start); |
1119 | if self.is_eof() { |
1120 | return Err(self.error( |
1121 | Span::new(start, self.pos()), |
1122 | ast::ErrorKind::RepetitionCountUnclosed, |
1123 | )); |
1124 | } |
1125 | if self.char() == ',' { |
1126 | if !self.bump_and_bump_space() { |
1127 | return Err(self.error( |
1128 | Span::new(start, self.pos()), |
1129 | ast::ErrorKind::RepetitionCountUnclosed, |
1130 | )); |
1131 | } |
1132 | if self.char() != '}' { |
1133 | let count_end = specialize_err( |
1134 | self.parse_decimal(), |
1135 | ast::ErrorKind::DecimalEmpty, |
1136 | ast::ErrorKind::RepetitionCountDecimalEmpty, |
1137 | )?; |
1138 | range = ast::RepetitionRange::Bounded(count_start, count_end); |
1139 | } else { |
1140 | range = ast::RepetitionRange::AtLeast(count_start); |
1141 | } |
1142 | } |
1143 | if self.is_eof() || self.char() != '}' { |
1144 | return Err(self.error( |
1145 | Span::new(start, self.pos()), |
1146 | ast::ErrorKind::RepetitionCountUnclosed, |
1147 | )); |
1148 | } |
1149 | |
1150 | let mut greedy = true; |
1151 | if self.bump_and_bump_space() && self.char() == '?' { |
1152 | greedy = false; |
1153 | self.bump(); |
1154 | } |
1155 | |
1156 | let op_span = Span::new(start, self.pos()); |
1157 | if !range.is_valid() { |
1158 | return Err( |
1159 | self.error(op_span, ast::ErrorKind::RepetitionCountInvalid) |
1160 | ); |
1161 | } |
1162 | concat.asts.push(Ast::repetition(ast::Repetition { |
1163 | span: ast.span().with_end(self.pos()), |
1164 | op: ast::RepetitionOp { |
1165 | span: op_span, |
1166 | kind: ast::RepetitionKind::Range(range), |
1167 | }, |
1168 | greedy, |
1169 | ast: Box::new(ast), |
1170 | })); |
1171 | Ok(concat) |
1172 | } |
1173 | |
1174 | /// Parse a group (which contains a sub-expression) or a set of flags. |
1175 | /// |
1176 | /// If a group was found, then it is returned with an empty AST. If a set |
1177 | /// of flags is found, then that set is returned. |
1178 | /// |
1179 | /// The parser should be positioned at the opening parenthesis. |
1180 | /// |
1181 | /// This advances the parser to the character before the start of the |
1182 | /// sub-expression (in the case of a group) or to the closing parenthesis |
1183 | /// immediately following the set of flags. |
1184 | /// |
1185 | /// # Errors |
1186 | /// |
1187 | /// If flags are given and incorrectly specified, then a corresponding |
1188 | /// error is returned. |
1189 | /// |
1190 | /// If a capture name is given and it is incorrectly specified, then a |
1191 | /// corresponding error is returned. |
1192 | #[inline (never)] |
1193 | fn parse_group(&self) -> Result<Either<ast::SetFlags, ast::Group>> { |
1194 | assert_eq!(self.char(), '(' ); |
1195 | let open_span = self.span_char(); |
1196 | self.bump(); |
1197 | self.bump_space(); |
1198 | if self.is_lookaround_prefix() { |
1199 | return Err(self.error( |
1200 | Span::new(open_span.start, self.span().end), |
1201 | ast::ErrorKind::UnsupportedLookAround, |
1202 | )); |
1203 | } |
1204 | let inner_span = self.span(); |
1205 | let mut starts_with_p = true; |
1206 | if self.bump_if("?P<" ) || { |
1207 | starts_with_p = false; |
1208 | self.bump_if("?<" ) |
1209 | } { |
1210 | let capture_index = self.next_capture_index(open_span)?; |
1211 | let name = self.parse_capture_name(capture_index)?; |
1212 | Ok(Either::Right(ast::Group { |
1213 | span: open_span, |
1214 | kind: ast::GroupKind::CaptureName { starts_with_p, name }, |
1215 | ast: Box::new(Ast::empty(self.span())), |
1216 | })) |
1217 | } else if self.bump_if("?" ) { |
1218 | if self.is_eof() { |
1219 | return Err( |
1220 | self.error(open_span, ast::ErrorKind::GroupUnclosed) |
1221 | ); |
1222 | } |
1223 | let flags = self.parse_flags()?; |
1224 | let char_end = self.char(); |
1225 | self.bump(); |
1226 | if char_end == ')' { |
1227 | // We don't allow empty flags, e.g., `(?)`. We instead |
1228 | // interpret it as a repetition operator missing its argument. |
1229 | if flags.items.is_empty() { |
1230 | return Err(self.error( |
1231 | inner_span, |
1232 | ast::ErrorKind::RepetitionMissing, |
1233 | )); |
1234 | } |
1235 | Ok(Either::Left(ast::SetFlags { |
1236 | span: Span { end: self.pos(), ..open_span }, |
1237 | flags, |
1238 | })) |
1239 | } else { |
1240 | assert_eq!(char_end, ':' ); |
1241 | Ok(Either::Right(ast::Group { |
1242 | span: open_span, |
1243 | kind: ast::GroupKind::NonCapturing(flags), |
1244 | ast: Box::new(Ast::empty(self.span())), |
1245 | })) |
1246 | } |
1247 | } else { |
1248 | let capture_index = self.next_capture_index(open_span)?; |
1249 | Ok(Either::Right(ast::Group { |
1250 | span: open_span, |
1251 | kind: ast::GroupKind::CaptureIndex(capture_index), |
1252 | ast: Box::new(Ast::empty(self.span())), |
1253 | })) |
1254 | } |
1255 | } |
1256 | |
1257 | /// Parses a capture group name. Assumes that the parser is positioned at |
1258 | /// the first character in the name following the opening `<` (and may |
1259 | /// possibly be EOF). This advances the parser to the first character |
1260 | /// following the closing `>`. |
1261 | /// |
1262 | /// The caller must provide the capture index of the group for this name. |
1263 | #[inline (never)] |
1264 | fn parse_capture_name( |
1265 | &self, |
1266 | capture_index: u32, |
1267 | ) -> Result<ast::CaptureName> { |
1268 | if self.is_eof() { |
1269 | return Err(self |
1270 | .error(self.span(), ast::ErrorKind::GroupNameUnexpectedEof)); |
1271 | } |
1272 | let start = self.pos(); |
1273 | loop { |
1274 | if self.char() == '>' { |
1275 | break; |
1276 | } |
1277 | if !is_capture_char(self.char(), self.pos() == start) { |
1278 | return Err(self.error( |
1279 | self.span_char(), |
1280 | ast::ErrorKind::GroupNameInvalid, |
1281 | )); |
1282 | } |
1283 | if !self.bump() { |
1284 | break; |
1285 | } |
1286 | } |
1287 | let end = self.pos(); |
1288 | if self.is_eof() { |
1289 | return Err(self |
1290 | .error(self.span(), ast::ErrorKind::GroupNameUnexpectedEof)); |
1291 | } |
1292 | assert_eq!(self.char(), '>' ); |
1293 | self.bump(); |
1294 | let name = &self.pattern()[start.offset..end.offset]; |
1295 | if name.is_empty() { |
1296 | return Err(self.error( |
1297 | Span::new(start, start), |
1298 | ast::ErrorKind::GroupNameEmpty, |
1299 | )); |
1300 | } |
1301 | let capname = ast::CaptureName { |
1302 | span: Span::new(start, end), |
1303 | name: name.to_string(), |
1304 | index: capture_index, |
1305 | }; |
1306 | self.add_capture_name(&capname)?; |
1307 | Ok(capname) |
1308 | } |
1309 | |
1310 | /// Parse a sequence of flags starting at the current character. |
1311 | /// |
1312 | /// This advances the parser to the character immediately following the |
1313 | /// flags, which is guaranteed to be either `:` or `)`. |
1314 | /// |
1315 | /// # Errors |
1316 | /// |
1317 | /// If any flags are duplicated, then an error is returned. |
1318 | /// |
1319 | /// If the negation operator is used more than once, then an error is |
1320 | /// returned. |
1321 | /// |
1322 | /// If no flags could be found or if the negation operation is not followed |
1323 | /// by any flags, then an error is returned. |
1324 | #[inline (never)] |
1325 | fn parse_flags(&self) -> Result<ast::Flags> { |
1326 | let mut flags = ast::Flags { span: self.span(), items: vec![] }; |
1327 | let mut last_was_negation = None; |
1328 | while self.char() != ':' && self.char() != ')' { |
1329 | if self.char() == '-' { |
1330 | last_was_negation = Some(self.span_char()); |
1331 | let item = ast::FlagsItem { |
1332 | span: self.span_char(), |
1333 | kind: ast::FlagsItemKind::Negation, |
1334 | }; |
1335 | if let Some(i) = flags.add_item(item) { |
1336 | return Err(self.error( |
1337 | self.span_char(), |
1338 | ast::ErrorKind::FlagRepeatedNegation { |
1339 | original: flags.items[i].span, |
1340 | }, |
1341 | )); |
1342 | } |
1343 | } else { |
1344 | last_was_negation = None; |
1345 | let item = ast::FlagsItem { |
1346 | span: self.span_char(), |
1347 | kind: ast::FlagsItemKind::Flag(self.parse_flag()?), |
1348 | }; |
1349 | if let Some(i) = flags.add_item(item) { |
1350 | return Err(self.error( |
1351 | self.span_char(), |
1352 | ast::ErrorKind::FlagDuplicate { |
1353 | original: flags.items[i].span, |
1354 | }, |
1355 | )); |
1356 | } |
1357 | } |
1358 | if !self.bump() { |
1359 | return Err( |
1360 | self.error(self.span(), ast::ErrorKind::FlagUnexpectedEof) |
1361 | ); |
1362 | } |
1363 | } |
1364 | if let Some(span) = last_was_negation { |
1365 | return Err(self.error(span, ast::ErrorKind::FlagDanglingNegation)); |
1366 | } |
1367 | flags.span.end = self.pos(); |
1368 | Ok(flags) |
1369 | } |
1370 | |
1371 | /// Parse the current character as a flag. Do not advance the parser. |
1372 | /// |
1373 | /// # Errors |
1374 | /// |
1375 | /// If the flag is not recognized, then an error is returned. |
1376 | #[inline (never)] |
1377 | fn parse_flag(&self) -> Result<ast::Flag> { |
1378 | match self.char() { |
1379 | 'i' => Ok(ast::Flag::CaseInsensitive), |
1380 | 'm' => Ok(ast::Flag::MultiLine), |
1381 | 's' => Ok(ast::Flag::DotMatchesNewLine), |
1382 | 'U' => Ok(ast::Flag::SwapGreed), |
1383 | 'u' => Ok(ast::Flag::Unicode), |
1384 | 'R' => Ok(ast::Flag::CRLF), |
1385 | 'x' => Ok(ast::Flag::IgnoreWhitespace), |
1386 | _ => { |
1387 | Err(self |
1388 | .error(self.span_char(), ast::ErrorKind::FlagUnrecognized)) |
1389 | } |
1390 | } |
1391 | } |
1392 | |
1393 | /// Parse a primitive AST. e.g., A literal, non-set character class or |
1394 | /// assertion. |
1395 | /// |
1396 | /// This assumes that the parser expects a primitive at the current |
1397 | /// location. i.e., All other non-primitive cases have been handled. |
1398 | /// For example, if the parser's position is at `|`, then `|` will be |
1399 | /// treated as a literal (e.g., inside a character class). |
1400 | /// |
1401 | /// This advances the parser to the first character immediately following |
1402 | /// the primitive. |
1403 | fn parse_primitive(&self) -> Result<Primitive> { |
1404 | match self.char() { |
1405 | ' \\' => self.parse_escape(), |
1406 | '.' => { |
1407 | let ast = Primitive::Dot(self.span_char()); |
1408 | self.bump(); |
1409 | Ok(ast) |
1410 | } |
1411 | '^' => { |
1412 | let ast = Primitive::Assertion(ast::Assertion { |
1413 | span: self.span_char(), |
1414 | kind: ast::AssertionKind::StartLine, |
1415 | }); |
1416 | self.bump(); |
1417 | Ok(ast) |
1418 | } |
1419 | '$' => { |
1420 | let ast = Primitive::Assertion(ast::Assertion { |
1421 | span: self.span_char(), |
1422 | kind: ast::AssertionKind::EndLine, |
1423 | }); |
1424 | self.bump(); |
1425 | Ok(ast) |
1426 | } |
1427 | c => { |
1428 | let ast = Primitive::Literal(ast::Literal { |
1429 | span: self.span_char(), |
1430 | kind: ast::LiteralKind::Verbatim, |
1431 | c, |
1432 | }); |
1433 | self.bump(); |
1434 | Ok(ast) |
1435 | } |
1436 | } |
1437 | } |
1438 | |
1439 | /// Parse an escape sequence as a primitive AST. |
1440 | /// |
1441 | /// This assumes the parser is positioned at the start of the escape |
1442 | /// sequence, i.e., `\`. It advances the parser to the first position |
1443 | /// immediately following the escape sequence. |
1444 | #[inline (never)] |
1445 | fn parse_escape(&self) -> Result<Primitive> { |
1446 | assert_eq!(self.char(), ' \\' ); |
1447 | let start = self.pos(); |
1448 | if !self.bump() { |
1449 | return Err(self.error( |
1450 | Span::new(start, self.pos()), |
1451 | ast::ErrorKind::EscapeUnexpectedEof, |
1452 | )); |
1453 | } |
1454 | let c = self.char(); |
1455 | // Put some of the more complicated routines into helpers. |
1456 | match c { |
1457 | '0' ..='7' => { |
1458 | if !self.parser().octal { |
1459 | return Err(self.error( |
1460 | Span::new(start, self.span_char().end), |
1461 | ast::ErrorKind::UnsupportedBackreference, |
1462 | )); |
1463 | } |
1464 | let mut lit = self.parse_octal(); |
1465 | lit.span.start = start; |
1466 | return Ok(Primitive::Literal(lit)); |
1467 | } |
1468 | '8' ..='9' if !self.parser().octal => { |
1469 | return Err(self.error( |
1470 | Span::new(start, self.span_char().end), |
1471 | ast::ErrorKind::UnsupportedBackreference, |
1472 | )); |
1473 | } |
1474 | 'x' | 'u' | 'U' => { |
1475 | let mut lit = self.parse_hex()?; |
1476 | lit.span.start = start; |
1477 | return Ok(Primitive::Literal(lit)); |
1478 | } |
1479 | 'p' | 'P' => { |
1480 | let mut cls = self.parse_unicode_class()?; |
1481 | cls.span.start = start; |
1482 | return Ok(Primitive::Unicode(cls)); |
1483 | } |
1484 | 'd' | 's' | 'w' | 'D' | 'S' | 'W' => { |
1485 | let mut cls = self.parse_perl_class(); |
1486 | cls.span.start = start; |
1487 | return Ok(Primitive::Perl(cls)); |
1488 | } |
1489 | _ => {} |
1490 | } |
1491 | |
1492 | // Handle all of the one letter sequences inline. |
1493 | self.bump(); |
1494 | let span = Span::new(start, self.pos()); |
1495 | if is_meta_character(c) { |
1496 | return Ok(Primitive::Literal(ast::Literal { |
1497 | span, |
1498 | kind: ast::LiteralKind::Meta, |
1499 | c, |
1500 | })); |
1501 | } |
1502 | if is_escapeable_character(c) { |
1503 | return Ok(Primitive::Literal(ast::Literal { |
1504 | span, |
1505 | kind: ast::LiteralKind::Superfluous, |
1506 | c, |
1507 | })); |
1508 | } |
1509 | let special = |kind, c| { |
1510 | Ok(Primitive::Literal(ast::Literal { |
1511 | span, |
1512 | kind: ast::LiteralKind::Special(kind), |
1513 | c, |
1514 | })) |
1515 | }; |
1516 | match c { |
1517 | 'a' => special(ast::SpecialLiteralKind::Bell, ' \x07' ), |
1518 | 'f' => special(ast::SpecialLiteralKind::FormFeed, ' \x0C' ), |
1519 | 't' => special(ast::SpecialLiteralKind::Tab, ' \t' ), |
1520 | 'n' => special(ast::SpecialLiteralKind::LineFeed, ' \n' ), |
1521 | 'r' => special(ast::SpecialLiteralKind::CarriageReturn, ' \r' ), |
1522 | 'v' => special(ast::SpecialLiteralKind::VerticalTab, ' \x0B' ), |
1523 | 'A' => Ok(Primitive::Assertion(ast::Assertion { |
1524 | span, |
1525 | kind: ast::AssertionKind::StartText, |
1526 | })), |
1527 | 'z' => Ok(Primitive::Assertion(ast::Assertion { |
1528 | span, |
1529 | kind: ast::AssertionKind::EndText, |
1530 | })), |
1531 | 'b' => { |
1532 | let mut wb = ast::Assertion { |
1533 | span, |
1534 | kind: ast::AssertionKind::WordBoundary, |
1535 | }; |
1536 | // After a \b, we "try" to parse things like \b{start} for |
1537 | // special word boundary assertions. |
1538 | if !self.is_eof() && self.char() == '{' { |
1539 | if let Some(kind) = |
1540 | self.maybe_parse_special_word_boundary(start)? |
1541 | { |
1542 | wb.kind = kind; |
1543 | wb.span.end = self.pos(); |
1544 | } |
1545 | } |
1546 | Ok(Primitive::Assertion(wb)) |
1547 | } |
1548 | 'B' => Ok(Primitive::Assertion(ast::Assertion { |
1549 | span, |
1550 | kind: ast::AssertionKind::NotWordBoundary, |
1551 | })), |
1552 | '<' => Ok(Primitive::Assertion(ast::Assertion { |
1553 | span, |
1554 | kind: ast::AssertionKind::WordBoundaryStartAngle, |
1555 | })), |
1556 | '>' => Ok(Primitive::Assertion(ast::Assertion { |
1557 | span, |
1558 | kind: ast::AssertionKind::WordBoundaryEndAngle, |
1559 | })), |
1560 | _ => Err(self.error(span, ast::ErrorKind::EscapeUnrecognized)), |
1561 | } |
1562 | } |
1563 | |
1564 | /// Attempt to parse a specialty word boundary. That is, `\b{start}`, |
1565 | /// `\b{end}`, `\b{start-half}` or `\b{end-half}`. |
1566 | /// |
1567 | /// This is similar to `maybe_parse_ascii_class` in that, in most cases, |
1568 | /// if it fails it will just return `None` with no error. This is done |
1569 | /// because `\b{5}` is a valid expression and we want to let that be parsed |
1570 | /// by the existing counted repetition parsing code. (I thought about just |
1571 | /// invoking the counted repetition code from here, but it seemed a little |
1572 | /// ham-fisted.) |
1573 | /// |
1574 | /// Unlike `maybe_parse_ascii_class` though, this can return an error. |
1575 | /// Namely, if we definitely know it isn't a counted repetition, then we |
1576 | /// return an error specific to the specialty word boundaries. |
1577 | /// |
1578 | /// This assumes the parser is positioned at a `{` immediately following |
1579 | /// a `\b`. When `None` is returned, the parser is returned to the position |
1580 | /// at which it started: pointing at a `{`. |
1581 | /// |
1582 | /// The position given should correspond to the start of the `\b`. |
1583 | fn maybe_parse_special_word_boundary( |
1584 | &self, |
1585 | wb_start: Position, |
1586 | ) -> Result<Option<ast::AssertionKind>> { |
1587 | assert_eq!(self.char(), '{' ); |
1588 | |
1589 | let is_valid_char = |c| match c { |
1590 | 'A' ..='Z' | 'a' ..='z' | '-' => true, |
1591 | _ => false, |
1592 | }; |
1593 | let start = self.pos(); |
1594 | if !self.bump_and_bump_space() { |
1595 | return Err(self.error( |
1596 | Span::new(wb_start, self.pos()), |
1597 | ast::ErrorKind::SpecialWordOrRepetitionUnexpectedEof, |
1598 | )); |
1599 | } |
1600 | let start_contents = self.pos(); |
1601 | // This is one of the critical bits: if the first non-whitespace |
1602 | // character isn't in [-A-Za-z] (i.e., this can't be a special word |
1603 | // boundary), then we bail and let the counted repetition parser deal |
1604 | // with this. |
1605 | if !is_valid_char(self.char()) { |
1606 | self.parser().pos.set(start); |
1607 | return Ok(None); |
1608 | } |
1609 | |
1610 | // Now collect up our chars until we see a '}'. |
1611 | let mut scratch = self.parser().scratch.borrow_mut(); |
1612 | scratch.clear(); |
1613 | while !self.is_eof() && is_valid_char(self.char()) { |
1614 | scratch.push(self.char()); |
1615 | self.bump_and_bump_space(); |
1616 | } |
1617 | if self.is_eof() || self.char() != '}' { |
1618 | return Err(self.error( |
1619 | Span::new(start, self.pos()), |
1620 | ast::ErrorKind::SpecialWordBoundaryUnclosed, |
1621 | )); |
1622 | } |
1623 | let end = self.pos(); |
1624 | self.bump(); |
1625 | let kind = match scratch.as_str() { |
1626 | "start" => ast::AssertionKind::WordBoundaryStart, |
1627 | "end" => ast::AssertionKind::WordBoundaryEnd, |
1628 | "start-half" => ast::AssertionKind::WordBoundaryStartHalf, |
1629 | "end-half" => ast::AssertionKind::WordBoundaryEndHalf, |
1630 | _ => { |
1631 | return Err(self.error( |
1632 | Span::new(start_contents, end), |
1633 | ast::ErrorKind::SpecialWordBoundaryUnrecognized, |
1634 | )) |
1635 | } |
1636 | }; |
1637 | Ok(Some(kind)) |
1638 | } |
1639 | |
1640 | /// Parse an octal representation of a Unicode codepoint up to 3 digits |
1641 | /// long. This expects the parser to be positioned at the first octal |
1642 | /// digit and advances the parser to the first character immediately |
1643 | /// following the octal number. This also assumes that parsing octal |
1644 | /// escapes is enabled. |
1645 | /// |
1646 | /// Assuming the preconditions are met, this routine can never fail. |
1647 | #[inline (never)] |
1648 | fn parse_octal(&self) -> ast::Literal { |
1649 | assert!(self.parser().octal); |
1650 | assert!('0' <= self.char() && self.char() <= '7' ); |
1651 | let start = self.pos(); |
1652 | // Parse up to two more digits. |
1653 | while self.bump() |
1654 | && '0' <= self.char() |
1655 | && self.char() <= '7' |
1656 | && self.pos().offset - start.offset <= 2 |
1657 | {} |
1658 | let end = self.pos(); |
1659 | let octal = &self.pattern()[start.offset..end.offset]; |
1660 | // Parsing the octal should never fail since the above guarantees a |
1661 | // valid number. |
1662 | let codepoint = |
1663 | u32::from_str_radix(octal, 8).expect("valid octal number" ); |
1664 | // The max value for 3 digit octal is 0777 = 511 and [0, 511] has no |
1665 | // invalid Unicode scalar values. |
1666 | let c = char::from_u32(codepoint).expect("Unicode scalar value" ); |
1667 | ast::Literal { |
1668 | span: Span::new(start, end), |
1669 | kind: ast::LiteralKind::Octal, |
1670 | c, |
1671 | } |
1672 | } |
1673 | |
1674 | /// Parse a hex representation of a Unicode codepoint. This handles both |
1675 | /// hex notations, i.e., `\xFF` and `\x{FFFF}`. This expects the parser to |
1676 | /// be positioned at the `x`, `u` or `U` prefix. The parser is advanced to |
1677 | /// the first character immediately following the hexadecimal literal. |
1678 | #[inline (never)] |
1679 | fn parse_hex(&self) -> Result<ast::Literal> { |
1680 | assert!( |
1681 | self.char() == 'x' || self.char() == 'u' || self.char() == 'U' |
1682 | ); |
1683 | |
1684 | let hex_kind = match self.char() { |
1685 | 'x' => ast::HexLiteralKind::X, |
1686 | 'u' => ast::HexLiteralKind::UnicodeShort, |
1687 | _ => ast::HexLiteralKind::UnicodeLong, |
1688 | }; |
1689 | if !self.bump_and_bump_space() { |
1690 | return Err( |
1691 | self.error(self.span(), ast::ErrorKind::EscapeUnexpectedEof) |
1692 | ); |
1693 | } |
1694 | if self.char() == '{' { |
1695 | self.parse_hex_brace(hex_kind) |
1696 | } else { |
1697 | self.parse_hex_digits(hex_kind) |
1698 | } |
1699 | } |
1700 | |
1701 | /// Parse an N-digit hex representation of a Unicode codepoint. This |
1702 | /// expects the parser to be positioned at the first digit and will advance |
1703 | /// the parser to the first character immediately following the escape |
1704 | /// sequence. |
1705 | /// |
1706 | /// The number of digits given must be 2 (for `\xNN`), 4 (for `\uNNNN`) |
1707 | /// or 8 (for `\UNNNNNNNN`). |
1708 | #[inline (never)] |
1709 | fn parse_hex_digits( |
1710 | &self, |
1711 | kind: ast::HexLiteralKind, |
1712 | ) -> Result<ast::Literal> { |
1713 | let mut scratch = self.parser().scratch.borrow_mut(); |
1714 | scratch.clear(); |
1715 | |
1716 | let start = self.pos(); |
1717 | for i in 0..kind.digits() { |
1718 | if i > 0 && !self.bump_and_bump_space() { |
1719 | return Err(self |
1720 | .error(self.span(), ast::ErrorKind::EscapeUnexpectedEof)); |
1721 | } |
1722 | if !is_hex(self.char()) { |
1723 | return Err(self.error( |
1724 | self.span_char(), |
1725 | ast::ErrorKind::EscapeHexInvalidDigit, |
1726 | )); |
1727 | } |
1728 | scratch.push(self.char()); |
1729 | } |
1730 | // The final bump just moves the parser past the literal, which may |
1731 | // be EOF. |
1732 | self.bump_and_bump_space(); |
1733 | let end = self.pos(); |
1734 | let hex = scratch.as_str(); |
1735 | match u32::from_str_radix(hex, 16).ok().and_then(char::from_u32) { |
1736 | None => Err(self.error( |
1737 | Span::new(start, end), |
1738 | ast::ErrorKind::EscapeHexInvalid, |
1739 | )), |
1740 | Some(c) => Ok(ast::Literal { |
1741 | span: Span::new(start, end), |
1742 | kind: ast::LiteralKind::HexFixed(kind), |
1743 | c, |
1744 | }), |
1745 | } |
1746 | } |
1747 | |
1748 | /// Parse a hex representation of any Unicode scalar value. This expects |
1749 | /// the parser to be positioned at the opening brace `{` and will advance |
1750 | /// the parser to the first character following the closing brace `}`. |
1751 | #[inline (never)] |
1752 | fn parse_hex_brace( |
1753 | &self, |
1754 | kind: ast::HexLiteralKind, |
1755 | ) -> Result<ast::Literal> { |
1756 | let mut scratch = self.parser().scratch.borrow_mut(); |
1757 | scratch.clear(); |
1758 | |
1759 | let brace_pos = self.pos(); |
1760 | let start = self.span_char().end; |
1761 | while self.bump_and_bump_space() && self.char() != '}' { |
1762 | if !is_hex(self.char()) { |
1763 | return Err(self.error( |
1764 | self.span_char(), |
1765 | ast::ErrorKind::EscapeHexInvalidDigit, |
1766 | )); |
1767 | } |
1768 | scratch.push(self.char()); |
1769 | } |
1770 | if self.is_eof() { |
1771 | return Err(self.error( |
1772 | Span::new(brace_pos, self.pos()), |
1773 | ast::ErrorKind::EscapeUnexpectedEof, |
1774 | )); |
1775 | } |
1776 | let end = self.pos(); |
1777 | let hex = scratch.as_str(); |
1778 | assert_eq!(self.char(), '}' ); |
1779 | self.bump_and_bump_space(); |
1780 | |
1781 | if hex.is_empty() { |
1782 | return Err(self.error( |
1783 | Span::new(brace_pos, self.pos()), |
1784 | ast::ErrorKind::EscapeHexEmpty, |
1785 | )); |
1786 | } |
1787 | match u32::from_str_radix(hex, 16).ok().and_then(char::from_u32) { |
1788 | None => Err(self.error( |
1789 | Span::new(start, end), |
1790 | ast::ErrorKind::EscapeHexInvalid, |
1791 | )), |
1792 | Some(c) => Ok(ast::Literal { |
1793 | span: Span::new(start, self.pos()), |
1794 | kind: ast::LiteralKind::HexBrace(kind), |
1795 | c, |
1796 | }), |
1797 | } |
1798 | } |
1799 | |
1800 | /// Parse a decimal number into a u32 while trimming leading and trailing |
1801 | /// whitespace. |
1802 | /// |
1803 | /// This expects the parser to be positioned at the first position where |
1804 | /// a decimal digit could occur. This will advance the parser to the byte |
1805 | /// immediately following the last contiguous decimal digit. |
1806 | /// |
1807 | /// If no decimal digit could be found or if there was a problem parsing |
1808 | /// the complete set of digits into a u32, then an error is returned. |
1809 | fn parse_decimal(&self) -> Result<u32> { |
1810 | let mut scratch = self.parser().scratch.borrow_mut(); |
1811 | scratch.clear(); |
1812 | |
1813 | while !self.is_eof() && self.char().is_whitespace() { |
1814 | self.bump(); |
1815 | } |
1816 | let start = self.pos(); |
1817 | while !self.is_eof() && '0' <= self.char() && self.char() <= '9' { |
1818 | scratch.push(self.char()); |
1819 | self.bump_and_bump_space(); |
1820 | } |
1821 | let span = Span::new(start, self.pos()); |
1822 | while !self.is_eof() && self.char().is_whitespace() { |
1823 | self.bump_and_bump_space(); |
1824 | } |
1825 | let digits = scratch.as_str(); |
1826 | if digits.is_empty() { |
1827 | return Err(self.error(span, ast::ErrorKind::DecimalEmpty)); |
1828 | } |
1829 | match u32::from_str_radix(digits, 10).ok() { |
1830 | Some(n) => Ok(n), |
1831 | None => Err(self.error(span, ast::ErrorKind::DecimalInvalid)), |
1832 | } |
1833 | } |
1834 | |
1835 | /// Parse a standard character class consisting primarily of characters or |
1836 | /// character ranges, but can also contain nested character classes of |
1837 | /// any type (sans `.`). |
1838 | /// |
1839 | /// This assumes the parser is positioned at the opening `[`. If parsing |
1840 | /// is successful, then the parser is advanced to the position immediately |
1841 | /// following the closing `]`. |
1842 | #[inline (never)] |
1843 | fn parse_set_class(&self) -> Result<ast::ClassBracketed> { |
1844 | assert_eq!(self.char(), '[' ); |
1845 | |
1846 | let mut union = |
1847 | ast::ClassSetUnion { span: self.span(), items: vec![] }; |
1848 | loop { |
1849 | self.bump_space(); |
1850 | if self.is_eof() { |
1851 | return Err(self.unclosed_class_error()); |
1852 | } |
1853 | match self.char() { |
1854 | '[' => { |
1855 | // If we've already parsed the opening bracket, then |
1856 | // attempt to treat this as the beginning of an ASCII |
1857 | // class. If ASCII class parsing fails, then the parser |
1858 | // backs up to `[`. |
1859 | if !self.parser().stack_class.borrow().is_empty() { |
1860 | if let Some(cls) = self.maybe_parse_ascii_class() { |
1861 | union.push(ast::ClassSetItem::Ascii(cls)); |
1862 | continue; |
1863 | } |
1864 | } |
1865 | union = self.push_class_open(union)?; |
1866 | } |
1867 | ']' => match self.pop_class(union)? { |
1868 | Either::Left(nested_union) => { |
1869 | union = nested_union; |
1870 | } |
1871 | Either::Right(class) => return Ok(class), |
1872 | }, |
1873 | '&' if self.peek() == Some('&' ) => { |
1874 | assert!(self.bump_if("&&" )); |
1875 | union = self.push_class_op( |
1876 | ast::ClassSetBinaryOpKind::Intersection, |
1877 | union, |
1878 | ); |
1879 | } |
1880 | '-' if self.peek() == Some('-' ) => { |
1881 | assert!(self.bump_if("--" )); |
1882 | union = self.push_class_op( |
1883 | ast::ClassSetBinaryOpKind::Difference, |
1884 | union, |
1885 | ); |
1886 | } |
1887 | '~' if self.peek() == Some('~' ) => { |
1888 | assert!(self.bump_if("~~" )); |
1889 | union = self.push_class_op( |
1890 | ast::ClassSetBinaryOpKind::SymmetricDifference, |
1891 | union, |
1892 | ); |
1893 | } |
1894 | _ => { |
1895 | union.push(self.parse_set_class_range()?); |
1896 | } |
1897 | } |
1898 | } |
1899 | } |
1900 | |
1901 | /// Parse a single primitive item in a character class set. The item to |
1902 | /// be parsed can either be one of a simple literal character, a range |
1903 | /// between two simple literal characters or a "primitive" character |
1904 | /// class like \w or \p{Greek}. |
1905 | /// |
1906 | /// If an invalid escape is found, or if a character class is found where |
1907 | /// a simple literal is expected (e.g., in a range), then an error is |
1908 | /// returned. |
1909 | #[inline (never)] |
1910 | fn parse_set_class_range(&self) -> Result<ast::ClassSetItem> { |
1911 | let prim1 = self.parse_set_class_item()?; |
1912 | self.bump_space(); |
1913 | if self.is_eof() { |
1914 | return Err(self.unclosed_class_error()); |
1915 | } |
1916 | // If the next char isn't a `-`, then we don't have a range. |
1917 | // There are two exceptions. If the char after a `-` is a `]`, then |
1918 | // `-` is interpreted as a literal `-`. Alternatively, if the char |
1919 | // after a `-` is a `-`, then `--` corresponds to a "difference" |
1920 | // operation. |
1921 | if self.char() != '-' |
1922 | || self.peek_space() == Some(']' ) |
1923 | || self.peek_space() == Some('-' ) |
1924 | { |
1925 | return prim1.into_class_set_item(self); |
1926 | } |
1927 | // OK, now we're parsing a range, so bump past the `-` and parse the |
1928 | // second half of the range. |
1929 | if !self.bump_and_bump_space() { |
1930 | return Err(self.unclosed_class_error()); |
1931 | } |
1932 | let prim2 = self.parse_set_class_item()?; |
1933 | let range = ast::ClassSetRange { |
1934 | span: Span::new(prim1.span().start, prim2.span().end), |
1935 | start: prim1.into_class_literal(self)?, |
1936 | end: prim2.into_class_literal(self)?, |
1937 | }; |
1938 | if !range.is_valid() { |
1939 | return Err( |
1940 | self.error(range.span, ast::ErrorKind::ClassRangeInvalid) |
1941 | ); |
1942 | } |
1943 | Ok(ast::ClassSetItem::Range(range)) |
1944 | } |
1945 | |
1946 | /// Parse a single item in a character class as a primitive, where the |
1947 | /// primitive either consists of a verbatim literal or a single escape |
1948 | /// sequence. |
1949 | /// |
1950 | /// This assumes the parser is positioned at the beginning of a primitive, |
1951 | /// and advances the parser to the first position after the primitive if |
1952 | /// successful. |
1953 | /// |
1954 | /// Note that it is the caller's responsibility to report an error if an |
1955 | /// illegal primitive was parsed. |
1956 | #[inline (never)] |
1957 | fn parse_set_class_item(&self) -> Result<Primitive> { |
1958 | if self.char() == ' \\' { |
1959 | self.parse_escape() |
1960 | } else { |
1961 | let x = Primitive::Literal(ast::Literal { |
1962 | span: self.span_char(), |
1963 | kind: ast::LiteralKind::Verbatim, |
1964 | c: self.char(), |
1965 | }); |
1966 | self.bump(); |
1967 | Ok(x) |
1968 | } |
1969 | } |
1970 | |
1971 | /// Parses the opening of a character class set. This includes the opening |
1972 | /// bracket along with `^` if present to indicate negation. This also |
1973 | /// starts parsing the opening set of unioned items if applicable, since |
1974 | /// there are special rules applied to certain characters in the opening |
1975 | /// of a character class. For example, `[^]]` is the class of all |
1976 | /// characters not equal to `]`. (`]` would need to be escaped in any other |
1977 | /// position.) Similarly for `-`. |
1978 | /// |
1979 | /// In all cases, the op inside the returned `ast::ClassBracketed` is an |
1980 | /// empty union. This empty union should be replaced with the actual item |
1981 | /// when it is popped from the parser's stack. |
1982 | /// |
1983 | /// This assumes the parser is positioned at the opening `[` and advances |
1984 | /// the parser to the first non-special byte of the character class. |
1985 | /// |
1986 | /// An error is returned if EOF is found. |
1987 | #[inline (never)] |
1988 | fn parse_set_class_open( |
1989 | &self, |
1990 | ) -> Result<(ast::ClassBracketed, ast::ClassSetUnion)> { |
1991 | assert_eq!(self.char(), '[' ); |
1992 | let start = self.pos(); |
1993 | if !self.bump_and_bump_space() { |
1994 | return Err(self.error( |
1995 | Span::new(start, self.pos()), |
1996 | ast::ErrorKind::ClassUnclosed, |
1997 | )); |
1998 | } |
1999 | |
2000 | let negated = if self.char() != '^' { |
2001 | false |
2002 | } else { |
2003 | if !self.bump_and_bump_space() { |
2004 | return Err(self.error( |
2005 | Span::new(start, self.pos()), |
2006 | ast::ErrorKind::ClassUnclosed, |
2007 | )); |
2008 | } |
2009 | true |
2010 | }; |
2011 | // Accept any number of `-` as literal `-`. |
2012 | let mut union = |
2013 | ast::ClassSetUnion { span: self.span(), items: vec![] }; |
2014 | while self.char() == '-' { |
2015 | union.push(ast::ClassSetItem::Literal(ast::Literal { |
2016 | span: self.span_char(), |
2017 | kind: ast::LiteralKind::Verbatim, |
2018 | c: '-' , |
2019 | })); |
2020 | if !self.bump_and_bump_space() { |
2021 | return Err(self.error( |
2022 | Span::new(start, start), |
2023 | ast::ErrorKind::ClassUnclosed, |
2024 | )); |
2025 | } |
2026 | } |
2027 | // If `]` is the *first* char in a set, then interpret it as a literal |
2028 | // `]`. That is, an empty class is impossible to write. |
2029 | if union.items.is_empty() && self.char() == ']' { |
2030 | union.push(ast::ClassSetItem::Literal(ast::Literal { |
2031 | span: self.span_char(), |
2032 | kind: ast::LiteralKind::Verbatim, |
2033 | c: ']' , |
2034 | })); |
2035 | if !self.bump_and_bump_space() { |
2036 | return Err(self.error( |
2037 | Span::new(start, self.pos()), |
2038 | ast::ErrorKind::ClassUnclosed, |
2039 | )); |
2040 | } |
2041 | } |
2042 | let set = ast::ClassBracketed { |
2043 | span: Span::new(start, self.pos()), |
2044 | negated, |
2045 | kind: ast::ClassSet::union(ast::ClassSetUnion { |
2046 | span: Span::new(union.span.start, union.span.start), |
2047 | items: vec![], |
2048 | }), |
2049 | }; |
2050 | Ok((set, union)) |
2051 | } |
2052 | |
2053 | /// Attempt to parse an ASCII character class, e.g., `[:alnum:]`. |
2054 | /// |
2055 | /// This assumes the parser is positioned at the opening `[`. |
2056 | /// |
2057 | /// If no valid ASCII character class could be found, then this does not |
2058 | /// advance the parser and `None` is returned. Otherwise, the parser is |
2059 | /// advanced to the first byte following the closing `]` and the |
2060 | /// corresponding ASCII class is returned. |
2061 | #[inline (never)] |
2062 | fn maybe_parse_ascii_class(&self) -> Option<ast::ClassAscii> { |
2063 | // ASCII character classes are interesting from a parsing perspective |
2064 | // because parsing cannot fail with any interesting error. For example, |
2065 | // in order to use an ASCII character class, it must be enclosed in |
2066 | // double brackets, e.g., `[[:alnum:]]`. Alternatively, you might think |
2067 | // of it as "ASCII character classes have the syntax `[:NAME:]` which |
2068 | // can only appear within character brackets." This means that things |
2069 | // like `[[:lower:]A]` are legal constructs. |
2070 | // |
2071 | // However, if one types an incorrect ASCII character class, e.g., |
2072 | // `[[:loower:]]`, then we treat that as a normal nested character |
2073 | // class containing the characters `:elorw`. One might argue that we |
2074 | // should return an error instead since the repeated colons give away |
2075 | // the intent to write an ASCII class. But what if the user typed |
2076 | // `[[:lower]]` instead? How can we tell that was intended to be an |
2077 | // ASCII class and not just a normal nested class? |
2078 | // |
2079 | // Reasonable people can probably disagree over this, but for better |
2080 | // or worse, we implement semantics that never fails at the expense |
2081 | // of better failure modes. |
2082 | assert_eq!(self.char(), '[' ); |
2083 | // If parsing fails, then we back up the parser to this starting point. |
2084 | let start = self.pos(); |
2085 | let mut negated = false; |
2086 | if !self.bump() || self.char() != ':' { |
2087 | self.parser().pos.set(start); |
2088 | return None; |
2089 | } |
2090 | if !self.bump() { |
2091 | self.parser().pos.set(start); |
2092 | return None; |
2093 | } |
2094 | if self.char() == '^' { |
2095 | negated = true; |
2096 | if !self.bump() { |
2097 | self.parser().pos.set(start); |
2098 | return None; |
2099 | } |
2100 | } |
2101 | let name_start = self.offset(); |
2102 | while self.char() != ':' && self.bump() {} |
2103 | if self.is_eof() { |
2104 | self.parser().pos.set(start); |
2105 | return None; |
2106 | } |
2107 | let name = &self.pattern()[name_start..self.offset()]; |
2108 | if !self.bump_if(":]" ) { |
2109 | self.parser().pos.set(start); |
2110 | return None; |
2111 | } |
2112 | let kind = match ast::ClassAsciiKind::from_name(name) { |
2113 | Some(kind) => kind, |
2114 | None => { |
2115 | self.parser().pos.set(start); |
2116 | return None; |
2117 | } |
2118 | }; |
2119 | Some(ast::ClassAscii { |
2120 | span: Span::new(start, self.pos()), |
2121 | kind, |
2122 | negated, |
2123 | }) |
2124 | } |
2125 | |
2126 | /// Parse a Unicode class in either the single character notation, `\pN` |
2127 | /// or the multi-character bracketed notation, `\p{Greek}`. This assumes |
2128 | /// the parser is positioned at the `p` (or `P` for negation) and will |
2129 | /// advance the parser to the character immediately following the class. |
2130 | /// |
2131 | /// Note that this does not check whether the class name is valid or not. |
2132 | #[inline (never)] |
2133 | fn parse_unicode_class(&self) -> Result<ast::ClassUnicode> { |
2134 | assert!(self.char() == 'p' || self.char() == 'P' ); |
2135 | |
2136 | let mut scratch = self.parser().scratch.borrow_mut(); |
2137 | scratch.clear(); |
2138 | |
2139 | let negated = self.char() == 'P' ; |
2140 | if !self.bump_and_bump_space() { |
2141 | return Err( |
2142 | self.error(self.span(), ast::ErrorKind::EscapeUnexpectedEof) |
2143 | ); |
2144 | } |
2145 | let (start, kind) = if self.char() == '{' { |
2146 | let start = self.span_char().end; |
2147 | while self.bump_and_bump_space() && self.char() != '}' { |
2148 | scratch.push(self.char()); |
2149 | } |
2150 | if self.is_eof() { |
2151 | return Err(self |
2152 | .error(self.span(), ast::ErrorKind::EscapeUnexpectedEof)); |
2153 | } |
2154 | assert_eq!(self.char(), '}' ); |
2155 | self.bump(); |
2156 | |
2157 | let name = scratch.as_str(); |
2158 | if let Some(i) = name.find("!=" ) { |
2159 | ( |
2160 | start, |
2161 | ast::ClassUnicodeKind::NamedValue { |
2162 | op: ast::ClassUnicodeOpKind::NotEqual, |
2163 | name: name[..i].to_string(), |
2164 | value: name[i + 2..].to_string(), |
2165 | }, |
2166 | ) |
2167 | } else if let Some(i) = name.find(':' ) { |
2168 | ( |
2169 | start, |
2170 | ast::ClassUnicodeKind::NamedValue { |
2171 | op: ast::ClassUnicodeOpKind::Colon, |
2172 | name: name[..i].to_string(), |
2173 | value: name[i + 1..].to_string(), |
2174 | }, |
2175 | ) |
2176 | } else if let Some(i) = name.find('=' ) { |
2177 | ( |
2178 | start, |
2179 | ast::ClassUnicodeKind::NamedValue { |
2180 | op: ast::ClassUnicodeOpKind::Equal, |
2181 | name: name[..i].to_string(), |
2182 | value: name[i + 1..].to_string(), |
2183 | }, |
2184 | ) |
2185 | } else { |
2186 | (start, ast::ClassUnicodeKind::Named(name.to_string())) |
2187 | } |
2188 | } else { |
2189 | let start = self.pos(); |
2190 | let c = self.char(); |
2191 | if c == ' \\' { |
2192 | return Err(self.error( |
2193 | self.span_char(), |
2194 | ast::ErrorKind::UnicodeClassInvalid, |
2195 | )); |
2196 | } |
2197 | self.bump_and_bump_space(); |
2198 | let kind = ast::ClassUnicodeKind::OneLetter(c); |
2199 | (start, kind) |
2200 | }; |
2201 | Ok(ast::ClassUnicode { |
2202 | span: Span::new(start, self.pos()), |
2203 | negated, |
2204 | kind, |
2205 | }) |
2206 | } |
2207 | |
2208 | /// Parse a Perl character class, e.g., `\d` or `\W`. This assumes the |
2209 | /// parser is currently at a valid character class name and will be |
2210 | /// advanced to the character immediately following the class. |
2211 | #[inline (never)] |
2212 | fn parse_perl_class(&self) -> ast::ClassPerl { |
2213 | let c = self.char(); |
2214 | let span = self.span_char(); |
2215 | self.bump(); |
2216 | let (negated, kind) = match c { |
2217 | 'd' => (false, ast::ClassPerlKind::Digit), |
2218 | 'D' => (true, ast::ClassPerlKind::Digit), |
2219 | 's' => (false, ast::ClassPerlKind::Space), |
2220 | 'S' => (true, ast::ClassPerlKind::Space), |
2221 | 'w' => (false, ast::ClassPerlKind::Word), |
2222 | 'W' => (true, ast::ClassPerlKind::Word), |
2223 | c => panic!("expected valid Perl class but got '{}'" , c), |
2224 | }; |
2225 | ast::ClassPerl { span, kind, negated } |
2226 | } |
2227 | } |
2228 | |
2229 | /// A type that traverses a fully parsed Ast and checks whether its depth |
2230 | /// exceeds the specified nesting limit. If it does, then an error is returned. |
2231 | #[derive(Debug)] |
2232 | struct NestLimiter<'p, 's, P> { |
2233 | /// The parser that is checking the nest limit. |
2234 | p: &'p ParserI<'s, P>, |
2235 | /// The current depth while walking an Ast. |
2236 | depth: u32, |
2237 | } |
2238 | |
2239 | impl<'p, 's, P: Borrow<Parser>> NestLimiter<'p, 's, P> { |
2240 | fn new(p: &'p ParserI<'s, P>) -> NestLimiter<'p, 's, P> { |
2241 | NestLimiter { p, depth: 0 } |
2242 | } |
2243 | |
2244 | #[inline (never)] |
2245 | fn check(self, ast: &Ast) -> Result<()> { |
2246 | ast::visit(ast, self) |
2247 | } |
2248 | |
2249 | fn increment_depth(&mut self, span: &Span) -> Result<()> { |
2250 | let new = self.depth.checked_add(1).ok_or_else(|| { |
2251 | self.p.error( |
2252 | span.clone(), |
2253 | ast::ErrorKind::NestLimitExceeded(u32::MAX), |
2254 | ) |
2255 | })?; |
2256 | let limit = self.p.parser().nest_limit; |
2257 | if new > limit { |
2258 | return Err(self.p.error( |
2259 | span.clone(), |
2260 | ast::ErrorKind::NestLimitExceeded(limit), |
2261 | )); |
2262 | } |
2263 | self.depth = new; |
2264 | Ok(()) |
2265 | } |
2266 | |
2267 | fn decrement_depth(&mut self) { |
2268 | // Assuming the correctness of the visitor, this should never drop |
2269 | // below 0. |
2270 | self.depth = self.depth.checked_sub(1).unwrap(); |
2271 | } |
2272 | } |
2273 | |
2274 | impl<'p, 's, P: Borrow<Parser>> ast::Visitor for NestLimiter<'p, 's, P> { |
2275 | type Output = (); |
2276 | type Err = ast::Error; |
2277 | |
2278 | fn finish(self) -> Result<()> { |
2279 | Ok(()) |
2280 | } |
2281 | |
2282 | fn visit_pre(&mut self, ast: &Ast) -> Result<()> { |
2283 | let span = match *ast { |
2284 | Ast::Empty(_) |
2285 | | Ast::Flags(_) |
2286 | | Ast::Literal(_) |
2287 | | Ast::Dot(_) |
2288 | | Ast::Assertion(_) |
2289 | | Ast::ClassUnicode(_) |
2290 | | Ast::ClassPerl(_) => { |
2291 | // These are all base cases, so we don't increment depth. |
2292 | return Ok(()); |
2293 | } |
2294 | Ast::ClassBracketed(ref x) => &x.span, |
2295 | Ast::Repetition(ref x) => &x.span, |
2296 | Ast::Group(ref x) => &x.span, |
2297 | Ast::Alternation(ref x) => &x.span, |
2298 | Ast::Concat(ref x) => &x.span, |
2299 | }; |
2300 | self.increment_depth(span) |
2301 | } |
2302 | |
2303 | fn visit_post(&mut self, ast: &Ast) -> Result<()> { |
2304 | match *ast { |
2305 | Ast::Empty(_) |
2306 | | Ast::Flags(_) |
2307 | | Ast::Literal(_) |
2308 | | Ast::Dot(_) |
2309 | | Ast::Assertion(_) |
2310 | | Ast::ClassUnicode(_) |
2311 | | Ast::ClassPerl(_) => { |
2312 | // These are all base cases, so we don't decrement depth. |
2313 | Ok(()) |
2314 | } |
2315 | Ast::ClassBracketed(_) |
2316 | | Ast::Repetition(_) |
2317 | | Ast::Group(_) |
2318 | | Ast::Alternation(_) |
2319 | | Ast::Concat(_) => { |
2320 | self.decrement_depth(); |
2321 | Ok(()) |
2322 | } |
2323 | } |
2324 | } |
2325 | |
2326 | fn visit_class_set_item_pre( |
2327 | &mut self, |
2328 | ast: &ast::ClassSetItem, |
2329 | ) -> Result<()> { |
2330 | let span = match *ast { |
2331 | ast::ClassSetItem::Empty(_) |
2332 | | ast::ClassSetItem::Literal(_) |
2333 | | ast::ClassSetItem::Range(_) |
2334 | | ast::ClassSetItem::Ascii(_) |
2335 | | ast::ClassSetItem::Unicode(_) |
2336 | | ast::ClassSetItem::Perl(_) => { |
2337 | // These are all base cases, so we don't increment depth. |
2338 | return Ok(()); |
2339 | } |
2340 | ast::ClassSetItem::Bracketed(ref x) => &x.span, |
2341 | ast::ClassSetItem::Union(ref x) => &x.span, |
2342 | }; |
2343 | self.increment_depth(span) |
2344 | } |
2345 | |
2346 | fn visit_class_set_item_post( |
2347 | &mut self, |
2348 | ast: &ast::ClassSetItem, |
2349 | ) -> Result<()> { |
2350 | match *ast { |
2351 | ast::ClassSetItem::Empty(_) |
2352 | | ast::ClassSetItem::Literal(_) |
2353 | | ast::ClassSetItem::Range(_) |
2354 | | ast::ClassSetItem::Ascii(_) |
2355 | | ast::ClassSetItem::Unicode(_) |
2356 | | ast::ClassSetItem::Perl(_) => { |
2357 | // These are all base cases, so we don't decrement depth. |
2358 | Ok(()) |
2359 | } |
2360 | ast::ClassSetItem::Bracketed(_) | ast::ClassSetItem::Union(_) => { |
2361 | self.decrement_depth(); |
2362 | Ok(()) |
2363 | } |
2364 | } |
2365 | } |
2366 | |
2367 | fn visit_class_set_binary_op_pre( |
2368 | &mut self, |
2369 | ast: &ast::ClassSetBinaryOp, |
2370 | ) -> Result<()> { |
2371 | self.increment_depth(&ast.span) |
2372 | } |
2373 | |
2374 | fn visit_class_set_binary_op_post( |
2375 | &mut self, |
2376 | _ast: &ast::ClassSetBinaryOp, |
2377 | ) -> Result<()> { |
2378 | self.decrement_depth(); |
2379 | Ok(()) |
2380 | } |
2381 | } |
2382 | |
2383 | /// When the result is an error, transforms the ast::ErrorKind from the source |
2384 | /// Result into another one. This function is used to return clearer error |
2385 | /// messages when possible. |
2386 | fn specialize_err<T>( |
2387 | result: Result<T>, |
2388 | from: ast::ErrorKind, |
2389 | to: ast::ErrorKind, |
2390 | ) -> Result<T> { |
2391 | if let Err(e) = result { |
2392 | if e.kind == from { |
2393 | Err(ast::Error { kind: to, pattern: e.pattern, span: e.span }) |
2394 | } else { |
2395 | Err(e) |
2396 | } |
2397 | } else { |
2398 | result |
2399 | } |
2400 | } |
2401 | |
2402 | #[cfg (test)] |
2403 | mod tests { |
2404 | use core::ops::Range; |
2405 | |
2406 | use alloc::format; |
2407 | |
2408 | use crate::ast::{self, Ast, Position, Span}; |
2409 | |
2410 | use super::*; |
2411 | |
2412 | // Our own assert_eq, which has slightly better formatting (but honestly |
2413 | // still kind of crappy). |
2414 | macro_rules! assert_eq { |
2415 | ($left:expr, $right:expr) => {{ |
2416 | match (&$left, &$right) { |
2417 | (left_val, right_val) => { |
2418 | if !(*left_val == *right_val) { |
2419 | panic!( |
2420 | "assertion failed: `(left == right)` \n\n\ |
2421 | left: `{:?}` \nright: `{:?}` \n\n" , |
2422 | left_val, right_val |
2423 | ) |
2424 | } |
2425 | } |
2426 | } |
2427 | }}; |
2428 | } |
2429 | |
2430 | // We create these errors to compare with real ast::Errors in the tests. |
2431 | // We define equality between TestError and ast::Error to disregard the |
2432 | // pattern string in ast::Error, which is annoying to provide in tests. |
2433 | #[derive(Clone, Debug)] |
2434 | struct TestError { |
2435 | span: Span, |
2436 | kind: ast::ErrorKind, |
2437 | } |
2438 | |
2439 | impl PartialEq<ast::Error> for TestError { |
2440 | fn eq(&self, other: &ast::Error) -> bool { |
2441 | self.span == other.span && self.kind == other.kind |
2442 | } |
2443 | } |
2444 | |
2445 | impl PartialEq<TestError> for ast::Error { |
2446 | fn eq(&self, other: &TestError) -> bool { |
2447 | self.span == other.span && self.kind == other.kind |
2448 | } |
2449 | } |
2450 | |
2451 | fn s(str: &str) -> String { |
2452 | str.to_string() |
2453 | } |
2454 | |
2455 | fn parser(pattern: &str) -> ParserI<'_, Parser> { |
2456 | ParserI::new(Parser::new(), pattern) |
2457 | } |
2458 | |
2459 | fn parser_octal(pattern: &str) -> ParserI<'_, Parser> { |
2460 | let parser = ParserBuilder::new().octal(true).build(); |
2461 | ParserI::new(parser, pattern) |
2462 | } |
2463 | |
2464 | fn parser_nest_limit( |
2465 | pattern: &str, |
2466 | nest_limit: u32, |
2467 | ) -> ParserI<'_, Parser> { |
2468 | let p = ParserBuilder::new().nest_limit(nest_limit).build(); |
2469 | ParserI::new(p, pattern) |
2470 | } |
2471 | |
2472 | fn parser_ignore_whitespace(pattern: &str) -> ParserI<'_, Parser> { |
2473 | let p = ParserBuilder::new().ignore_whitespace(true).build(); |
2474 | ParserI::new(p, pattern) |
2475 | } |
2476 | |
2477 | /// Short alias for creating a new span. |
2478 | fn nspan(start: Position, end: Position) -> Span { |
2479 | Span::new(start, end) |
2480 | } |
2481 | |
2482 | /// Short alias for creating a new position. |
2483 | fn npos(offset: usize, line: usize, column: usize) -> Position { |
2484 | Position::new(offset, line, column) |
2485 | } |
2486 | |
2487 | /// Create a new span from the given offset range. This assumes a single |
2488 | /// line and sets the columns based on the offsets. i.e., This only works |
2489 | /// out of the box for ASCII, which is fine for most tests. |
2490 | fn span(range: Range<usize>) -> Span { |
2491 | let start = Position::new(range.start, 1, range.start + 1); |
2492 | let end = Position::new(range.end, 1, range.end + 1); |
2493 | Span::new(start, end) |
2494 | } |
2495 | |
2496 | /// Create a new span for the corresponding byte range in the given string. |
2497 | fn span_range(subject: &str, range: Range<usize>) -> Span { |
2498 | let start = Position { |
2499 | offset: range.start, |
2500 | line: 1 + subject[..range.start].matches(' \n' ).count(), |
2501 | column: 1 + subject[..range.start] |
2502 | .chars() |
2503 | .rev() |
2504 | .position(|c| c == ' \n' ) |
2505 | .unwrap_or(subject[..range.start].chars().count()), |
2506 | }; |
2507 | let end = Position { |
2508 | offset: range.end, |
2509 | line: 1 + subject[..range.end].matches(' \n' ).count(), |
2510 | column: 1 + subject[..range.end] |
2511 | .chars() |
2512 | .rev() |
2513 | .position(|c| c == ' \n' ) |
2514 | .unwrap_or(subject[..range.end].chars().count()), |
2515 | }; |
2516 | Span::new(start, end) |
2517 | } |
2518 | |
2519 | /// Create a verbatim literal starting at the given position. |
2520 | fn lit(c: char, start: usize) -> Ast { |
2521 | lit_with(c, span(start..start + c.len_utf8())) |
2522 | } |
2523 | |
2524 | /// Create a meta literal starting at the given position. |
2525 | fn meta_lit(c: char, span: Span) -> Ast { |
2526 | Ast::literal(ast::Literal { span, kind: ast::LiteralKind::Meta, c }) |
2527 | } |
2528 | |
2529 | /// Create a verbatim literal with the given span. |
2530 | fn lit_with(c: char, span: Span) -> Ast { |
2531 | Ast::literal(ast::Literal { |
2532 | span, |
2533 | kind: ast::LiteralKind::Verbatim, |
2534 | c, |
2535 | }) |
2536 | } |
2537 | |
2538 | /// Create a concatenation with the given range. |
2539 | fn concat(range: Range<usize>, asts: Vec<Ast>) -> Ast { |
2540 | concat_with(span(range), asts) |
2541 | } |
2542 | |
2543 | /// Create a concatenation with the given span. |
2544 | fn concat_with(span: Span, asts: Vec<Ast>) -> Ast { |
2545 | Ast::concat(ast::Concat { span, asts }) |
2546 | } |
2547 | |
2548 | /// Create an alternation with the given span. |
2549 | fn alt(range: Range<usize>, asts: Vec<Ast>) -> Ast { |
2550 | Ast::alternation(ast::Alternation { span: span(range), asts }) |
2551 | } |
2552 | |
2553 | /// Create a capturing group with the given span. |
2554 | fn group(range: Range<usize>, index: u32, ast: Ast) -> Ast { |
2555 | Ast::group(ast::Group { |
2556 | span: span(range), |
2557 | kind: ast::GroupKind::CaptureIndex(index), |
2558 | ast: Box::new(ast), |
2559 | }) |
2560 | } |
2561 | |
2562 | /// Create an ast::SetFlags. |
2563 | /// |
2564 | /// The given pattern should be the full pattern string. The range given |
2565 | /// should correspond to the byte offsets where the flag set occurs. |
2566 | /// |
2567 | /// If negated is true, then the set is interpreted as beginning with a |
2568 | /// negation. |
2569 | fn flag_set( |
2570 | pat: &str, |
2571 | range: Range<usize>, |
2572 | flag: ast::Flag, |
2573 | negated: bool, |
2574 | ) -> Ast { |
2575 | let mut items = vec![ast::FlagsItem { |
2576 | span: span_range(pat, (range.end - 2)..(range.end - 1)), |
2577 | kind: ast::FlagsItemKind::Flag(flag), |
2578 | }]; |
2579 | if negated { |
2580 | items.insert( |
2581 | 0, |
2582 | ast::FlagsItem { |
2583 | span: span_range(pat, (range.start + 2)..(range.end - 2)), |
2584 | kind: ast::FlagsItemKind::Negation, |
2585 | }, |
2586 | ); |
2587 | } |
2588 | Ast::flags(ast::SetFlags { |
2589 | span: span_range(pat, range.clone()), |
2590 | flags: ast::Flags { |
2591 | span: span_range(pat, (range.start + 2)..(range.end - 1)), |
2592 | items, |
2593 | }, |
2594 | }) |
2595 | } |
2596 | |
2597 | #[test] |
2598 | fn parse_nest_limit() { |
2599 | // A nest limit of 0 still allows some types of regexes. |
2600 | assert_eq!( |
2601 | parser_nest_limit("" , 0).parse(), |
2602 | Ok(Ast::empty(span(0..0))) |
2603 | ); |
2604 | assert_eq!(parser_nest_limit("a" , 0).parse(), Ok(lit('a' , 0))); |
2605 | |
2606 | // Test repetition operations, which require one level of nesting. |
2607 | assert_eq!( |
2608 | parser_nest_limit("a+" , 0).parse().unwrap_err(), |
2609 | TestError { |
2610 | span: span(0..2), |
2611 | kind: ast::ErrorKind::NestLimitExceeded(0), |
2612 | } |
2613 | ); |
2614 | assert_eq!( |
2615 | parser_nest_limit("a+" , 1).parse(), |
2616 | Ok(Ast::repetition(ast::Repetition { |
2617 | span: span(0..2), |
2618 | op: ast::RepetitionOp { |
2619 | span: span(1..2), |
2620 | kind: ast::RepetitionKind::OneOrMore, |
2621 | }, |
2622 | greedy: true, |
2623 | ast: Box::new(lit('a' , 0)), |
2624 | })) |
2625 | ); |
2626 | assert_eq!( |
2627 | parser_nest_limit("(a)+" , 1).parse().unwrap_err(), |
2628 | TestError { |
2629 | span: span(0..3), |
2630 | kind: ast::ErrorKind::NestLimitExceeded(1), |
2631 | } |
2632 | ); |
2633 | assert_eq!( |
2634 | parser_nest_limit("a+*" , 1).parse().unwrap_err(), |
2635 | TestError { |
2636 | span: span(0..2), |
2637 | kind: ast::ErrorKind::NestLimitExceeded(1), |
2638 | } |
2639 | ); |
2640 | assert_eq!( |
2641 | parser_nest_limit("a+*" , 2).parse(), |
2642 | Ok(Ast::repetition(ast::Repetition { |
2643 | span: span(0..3), |
2644 | op: ast::RepetitionOp { |
2645 | span: span(2..3), |
2646 | kind: ast::RepetitionKind::ZeroOrMore, |
2647 | }, |
2648 | greedy: true, |
2649 | ast: Box::new(Ast::repetition(ast::Repetition { |
2650 | span: span(0..2), |
2651 | op: ast::RepetitionOp { |
2652 | span: span(1..2), |
2653 | kind: ast::RepetitionKind::OneOrMore, |
2654 | }, |
2655 | greedy: true, |
2656 | ast: Box::new(lit('a' , 0)), |
2657 | })), |
2658 | })) |
2659 | ); |
2660 | |
2661 | // Test concatenations. A concatenation requires one level of nesting. |
2662 | assert_eq!( |
2663 | parser_nest_limit("ab" , 0).parse().unwrap_err(), |
2664 | TestError { |
2665 | span: span(0..2), |
2666 | kind: ast::ErrorKind::NestLimitExceeded(0), |
2667 | } |
2668 | ); |
2669 | assert_eq!( |
2670 | parser_nest_limit("ab" , 1).parse(), |
2671 | Ok(concat(0..2, vec![lit('a' , 0), lit('b' , 1)])) |
2672 | ); |
2673 | assert_eq!( |
2674 | parser_nest_limit("abc" , 1).parse(), |
2675 | Ok(concat(0..3, vec![lit('a' , 0), lit('b' , 1), lit('c' , 2)])) |
2676 | ); |
2677 | |
2678 | // Test alternations. An alternation requires one level of nesting. |
2679 | assert_eq!( |
2680 | parser_nest_limit("a|b" , 0).parse().unwrap_err(), |
2681 | TestError { |
2682 | span: span(0..3), |
2683 | kind: ast::ErrorKind::NestLimitExceeded(0), |
2684 | } |
2685 | ); |
2686 | assert_eq!( |
2687 | parser_nest_limit("a|b" , 1).parse(), |
2688 | Ok(alt(0..3, vec![lit('a' , 0), lit('b' , 2)])) |
2689 | ); |
2690 | assert_eq!( |
2691 | parser_nest_limit("a|b|c" , 1).parse(), |
2692 | Ok(alt(0..5, vec![lit('a' , 0), lit('b' , 2), lit('c' , 4)])) |
2693 | ); |
2694 | |
2695 | // Test character classes. Classes form their own mini-recursive |
2696 | // syntax! |
2697 | assert_eq!( |
2698 | parser_nest_limit("[a]" , 0).parse().unwrap_err(), |
2699 | TestError { |
2700 | span: span(0..3), |
2701 | kind: ast::ErrorKind::NestLimitExceeded(0), |
2702 | } |
2703 | ); |
2704 | assert_eq!( |
2705 | parser_nest_limit("[a]" , 1).parse(), |
2706 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
2707 | span: span(0..3), |
2708 | negated: false, |
2709 | kind: ast::ClassSet::Item(ast::ClassSetItem::Literal( |
2710 | ast::Literal { |
2711 | span: span(1..2), |
2712 | kind: ast::LiteralKind::Verbatim, |
2713 | c: 'a' , |
2714 | } |
2715 | )), |
2716 | })) |
2717 | ); |
2718 | assert_eq!( |
2719 | parser_nest_limit("[ab]" , 1).parse().unwrap_err(), |
2720 | TestError { |
2721 | span: span(1..3), |
2722 | kind: ast::ErrorKind::NestLimitExceeded(1), |
2723 | } |
2724 | ); |
2725 | assert_eq!( |
2726 | parser_nest_limit("[ab[cd]]" , 2).parse().unwrap_err(), |
2727 | TestError { |
2728 | span: span(3..7), |
2729 | kind: ast::ErrorKind::NestLimitExceeded(2), |
2730 | } |
2731 | ); |
2732 | assert_eq!( |
2733 | parser_nest_limit("[ab[cd]]" , 3).parse().unwrap_err(), |
2734 | TestError { |
2735 | span: span(4..6), |
2736 | kind: ast::ErrorKind::NestLimitExceeded(3), |
2737 | } |
2738 | ); |
2739 | assert_eq!( |
2740 | parser_nest_limit("[a--b]" , 1).parse().unwrap_err(), |
2741 | TestError { |
2742 | span: span(1..5), |
2743 | kind: ast::ErrorKind::NestLimitExceeded(1), |
2744 | } |
2745 | ); |
2746 | assert_eq!( |
2747 | parser_nest_limit("[a--bc]" , 2).parse().unwrap_err(), |
2748 | TestError { |
2749 | span: span(4..6), |
2750 | kind: ast::ErrorKind::NestLimitExceeded(2), |
2751 | } |
2752 | ); |
2753 | } |
2754 | |
2755 | #[test] |
2756 | fn parse_comments() { |
2757 | let pat = "(?x) |
2758 | # This is comment 1. |
2759 | foo # This is comment 2. |
2760 | # This is comment 3. |
2761 | bar |
2762 | # This is comment 4." ; |
2763 | let astc = parser(pat).parse_with_comments().unwrap(); |
2764 | assert_eq!( |
2765 | astc.ast, |
2766 | concat_with( |
2767 | span_range(pat, 0..pat.len()), |
2768 | vec![ |
2769 | flag_set(pat, 0..4, ast::Flag::IgnoreWhitespace, false), |
2770 | lit_with('f' , span_range(pat, 26..27)), |
2771 | lit_with('o' , span_range(pat, 27..28)), |
2772 | lit_with('o' , span_range(pat, 28..29)), |
2773 | lit_with('b' , span_range(pat, 74..75)), |
2774 | lit_with('a' , span_range(pat, 75..76)), |
2775 | lit_with('r' , span_range(pat, 76..77)), |
2776 | ] |
2777 | ) |
2778 | ); |
2779 | assert_eq!( |
2780 | astc.comments, |
2781 | vec![ |
2782 | ast::Comment { |
2783 | span: span_range(pat, 5..26), |
2784 | comment: s(" This is comment 1." ), |
2785 | }, |
2786 | ast::Comment { |
2787 | span: span_range(pat, 30..51), |
2788 | comment: s(" This is comment 2." ), |
2789 | }, |
2790 | ast::Comment { |
2791 | span: span_range(pat, 53..74), |
2792 | comment: s(" This is comment 3." ), |
2793 | }, |
2794 | ast::Comment { |
2795 | span: span_range(pat, 78..98), |
2796 | comment: s(" This is comment 4." ), |
2797 | }, |
2798 | ] |
2799 | ); |
2800 | } |
2801 | |
2802 | #[test] |
2803 | fn parse_holistic() { |
2804 | assert_eq!(parser("]" ).parse(), Ok(lit(']' , 0))); |
2805 | assert_eq!( |
2806 | parser(r"\\\.\+\*\?\(\)\|\[\]\{\}\^\$\#\&\-\~" ).parse(), |
2807 | Ok(concat( |
2808 | 0..36, |
2809 | vec![ |
2810 | meta_lit(' \\' , span(0..2)), |
2811 | meta_lit('.' , span(2..4)), |
2812 | meta_lit('+' , span(4..6)), |
2813 | meta_lit('*' , span(6..8)), |
2814 | meta_lit('?' , span(8..10)), |
2815 | meta_lit('(' , span(10..12)), |
2816 | meta_lit(')' , span(12..14)), |
2817 | meta_lit('|' , span(14..16)), |
2818 | meta_lit('[' , span(16..18)), |
2819 | meta_lit(']' , span(18..20)), |
2820 | meta_lit('{' , span(20..22)), |
2821 | meta_lit('}' , span(22..24)), |
2822 | meta_lit('^' , span(24..26)), |
2823 | meta_lit('$' , span(26..28)), |
2824 | meta_lit('#' , span(28..30)), |
2825 | meta_lit('&' , span(30..32)), |
2826 | meta_lit('-' , span(32..34)), |
2827 | meta_lit('~' , span(34..36)), |
2828 | ] |
2829 | )) |
2830 | ); |
2831 | } |
2832 | |
2833 | #[test] |
2834 | fn parse_ignore_whitespace() { |
2835 | // Test that basic whitespace insensitivity works. |
2836 | let pat = "(?x)a b" ; |
2837 | assert_eq!( |
2838 | parser(pat).parse(), |
2839 | Ok(concat_with( |
2840 | nspan(npos(0, 1, 1), npos(7, 1, 8)), |
2841 | vec![ |
2842 | flag_set(pat, 0..4, ast::Flag::IgnoreWhitespace, false), |
2843 | lit_with('a' , nspan(npos(4, 1, 5), npos(5, 1, 6))), |
2844 | lit_with('b' , nspan(npos(6, 1, 7), npos(7, 1, 8))), |
2845 | ] |
2846 | )) |
2847 | ); |
2848 | |
2849 | // Test that we can toggle whitespace insensitivity. |
2850 | let pat = "(?x)a b(?-x)a b" ; |
2851 | assert_eq!( |
2852 | parser(pat).parse(), |
2853 | Ok(concat_with( |
2854 | nspan(npos(0, 1, 1), npos(15, 1, 16)), |
2855 | vec![ |
2856 | flag_set(pat, 0..4, ast::Flag::IgnoreWhitespace, false), |
2857 | lit_with('a' , nspan(npos(4, 1, 5), npos(5, 1, 6))), |
2858 | lit_with('b' , nspan(npos(6, 1, 7), npos(7, 1, 8))), |
2859 | flag_set(pat, 7..12, ast::Flag::IgnoreWhitespace, true), |
2860 | lit_with('a' , nspan(npos(12, 1, 13), npos(13, 1, 14))), |
2861 | lit_with(' ' , nspan(npos(13, 1, 14), npos(14, 1, 15))), |
2862 | lit_with('b' , nspan(npos(14, 1, 15), npos(15, 1, 16))), |
2863 | ] |
2864 | )) |
2865 | ); |
2866 | |
2867 | // Test that nesting whitespace insensitive flags works. |
2868 | let pat = "a (?x:a )a " ; |
2869 | assert_eq!( |
2870 | parser(pat).parse(), |
2871 | Ok(concat_with( |
2872 | span_range(pat, 0..11), |
2873 | vec![ |
2874 | lit_with('a' , span_range(pat, 0..1)), |
2875 | lit_with(' ' , span_range(pat, 1..2)), |
2876 | Ast::group(ast::Group { |
2877 | span: span_range(pat, 2..9), |
2878 | kind: ast::GroupKind::NonCapturing(ast::Flags { |
2879 | span: span_range(pat, 4..5), |
2880 | items: vec![ast::FlagsItem { |
2881 | span: span_range(pat, 4..5), |
2882 | kind: ast::FlagsItemKind::Flag( |
2883 | ast::Flag::IgnoreWhitespace |
2884 | ), |
2885 | },], |
2886 | }), |
2887 | ast: Box::new(lit_with('a' , span_range(pat, 6..7))), |
2888 | }), |
2889 | lit_with('a' , span_range(pat, 9..10)), |
2890 | lit_with(' ' , span_range(pat, 10..11)), |
2891 | ] |
2892 | )) |
2893 | ); |
2894 | |
2895 | // Test that whitespace after an opening paren is insignificant. |
2896 | let pat = "(?x)( ?P<foo> a )" ; |
2897 | assert_eq!( |
2898 | parser(pat).parse(), |
2899 | Ok(concat_with( |
2900 | span_range(pat, 0..pat.len()), |
2901 | vec![ |
2902 | flag_set(pat, 0..4, ast::Flag::IgnoreWhitespace, false), |
2903 | Ast::group(ast::Group { |
2904 | span: span_range(pat, 4..pat.len()), |
2905 | kind: ast::GroupKind::CaptureName { |
2906 | starts_with_p: true, |
2907 | name: ast::CaptureName { |
2908 | span: span_range(pat, 9..12), |
2909 | name: s("foo" ), |
2910 | index: 1, |
2911 | } |
2912 | }, |
2913 | ast: Box::new(lit_with('a' , span_range(pat, 14..15))), |
2914 | }), |
2915 | ] |
2916 | )) |
2917 | ); |
2918 | let pat = "(?x)( a )" ; |
2919 | assert_eq!( |
2920 | parser(pat).parse(), |
2921 | Ok(concat_with( |
2922 | span_range(pat, 0..pat.len()), |
2923 | vec![ |
2924 | flag_set(pat, 0..4, ast::Flag::IgnoreWhitespace, false), |
2925 | Ast::group(ast::Group { |
2926 | span: span_range(pat, 4..pat.len()), |
2927 | kind: ast::GroupKind::CaptureIndex(1), |
2928 | ast: Box::new(lit_with('a' , span_range(pat, 7..8))), |
2929 | }), |
2930 | ] |
2931 | )) |
2932 | ); |
2933 | let pat = "(?x)( ?: a )" ; |
2934 | assert_eq!( |
2935 | parser(pat).parse(), |
2936 | Ok(concat_with( |
2937 | span_range(pat, 0..pat.len()), |
2938 | vec![ |
2939 | flag_set(pat, 0..4, ast::Flag::IgnoreWhitespace, false), |
2940 | Ast::group(ast::Group { |
2941 | span: span_range(pat, 4..pat.len()), |
2942 | kind: ast::GroupKind::NonCapturing(ast::Flags { |
2943 | span: span_range(pat, 8..8), |
2944 | items: vec![], |
2945 | }), |
2946 | ast: Box::new(lit_with('a' , span_range(pat, 11..12))), |
2947 | }), |
2948 | ] |
2949 | )) |
2950 | ); |
2951 | let pat = r"(?x)\x { 53 }" ; |
2952 | assert_eq!( |
2953 | parser(pat).parse(), |
2954 | Ok(concat_with( |
2955 | span_range(pat, 0..pat.len()), |
2956 | vec![ |
2957 | flag_set(pat, 0..4, ast::Flag::IgnoreWhitespace, false), |
2958 | Ast::literal(ast::Literal { |
2959 | span: span(4..13), |
2960 | kind: ast::LiteralKind::HexBrace( |
2961 | ast::HexLiteralKind::X |
2962 | ), |
2963 | c: 'S' , |
2964 | }), |
2965 | ] |
2966 | )) |
2967 | ); |
2968 | |
2969 | // Test that whitespace after an escape is OK. |
2970 | let pat = r"(?x)\ " ; |
2971 | assert_eq!( |
2972 | parser(pat).parse(), |
2973 | Ok(concat_with( |
2974 | span_range(pat, 0..pat.len()), |
2975 | vec![ |
2976 | flag_set(pat, 0..4, ast::Flag::IgnoreWhitespace, false), |
2977 | Ast::literal(ast::Literal { |
2978 | span: span_range(pat, 4..6), |
2979 | kind: ast::LiteralKind::Superfluous, |
2980 | c: ' ' , |
2981 | }), |
2982 | ] |
2983 | )) |
2984 | ); |
2985 | } |
2986 | |
2987 | #[test] |
2988 | fn parse_newlines() { |
2989 | let pat = ". \n." ; |
2990 | assert_eq!( |
2991 | parser(pat).parse(), |
2992 | Ok(concat_with( |
2993 | span_range(pat, 0..3), |
2994 | vec![ |
2995 | Ast::dot(span_range(pat, 0..1)), |
2996 | lit_with(' \n' , span_range(pat, 1..2)), |
2997 | Ast::dot(span_range(pat, 2..3)), |
2998 | ] |
2999 | )) |
3000 | ); |
3001 | |
3002 | let pat = "foobar \nbaz \nquux \n" ; |
3003 | assert_eq!( |
3004 | parser(pat).parse(), |
3005 | Ok(concat_with( |
3006 | span_range(pat, 0..pat.len()), |
3007 | vec![ |
3008 | lit_with('f' , nspan(npos(0, 1, 1), npos(1, 1, 2))), |
3009 | lit_with('o' , nspan(npos(1, 1, 2), npos(2, 1, 3))), |
3010 | lit_with('o' , nspan(npos(2, 1, 3), npos(3, 1, 4))), |
3011 | lit_with('b' , nspan(npos(3, 1, 4), npos(4, 1, 5))), |
3012 | lit_with('a' , nspan(npos(4, 1, 5), npos(5, 1, 6))), |
3013 | lit_with('r' , nspan(npos(5, 1, 6), npos(6, 1, 7))), |
3014 | lit_with(' \n' , nspan(npos(6, 1, 7), npos(7, 2, 1))), |
3015 | lit_with('b' , nspan(npos(7, 2, 1), npos(8, 2, 2))), |
3016 | lit_with('a' , nspan(npos(8, 2, 2), npos(9, 2, 3))), |
3017 | lit_with('z' , nspan(npos(9, 2, 3), npos(10, 2, 4))), |
3018 | lit_with(' \n' , nspan(npos(10, 2, 4), npos(11, 3, 1))), |
3019 | lit_with('q' , nspan(npos(11, 3, 1), npos(12, 3, 2))), |
3020 | lit_with('u' , nspan(npos(12, 3, 2), npos(13, 3, 3))), |
3021 | lit_with('u' , nspan(npos(13, 3, 3), npos(14, 3, 4))), |
3022 | lit_with('x' , nspan(npos(14, 3, 4), npos(15, 3, 5))), |
3023 | lit_with(' \n' , nspan(npos(15, 3, 5), npos(16, 4, 1))), |
3024 | ] |
3025 | )) |
3026 | ); |
3027 | } |
3028 | |
3029 | #[test] |
3030 | fn parse_uncounted_repetition() { |
3031 | assert_eq!( |
3032 | parser(r"a*" ).parse(), |
3033 | Ok(Ast::repetition(ast::Repetition { |
3034 | span: span(0..2), |
3035 | op: ast::RepetitionOp { |
3036 | span: span(1..2), |
3037 | kind: ast::RepetitionKind::ZeroOrMore, |
3038 | }, |
3039 | greedy: true, |
3040 | ast: Box::new(lit('a' , 0)), |
3041 | })) |
3042 | ); |
3043 | assert_eq!( |
3044 | parser(r"a+" ).parse(), |
3045 | Ok(Ast::repetition(ast::Repetition { |
3046 | span: span(0..2), |
3047 | op: ast::RepetitionOp { |
3048 | span: span(1..2), |
3049 | kind: ast::RepetitionKind::OneOrMore, |
3050 | }, |
3051 | greedy: true, |
3052 | ast: Box::new(lit('a' , 0)), |
3053 | })) |
3054 | ); |
3055 | |
3056 | assert_eq!( |
3057 | parser(r"a?" ).parse(), |
3058 | Ok(Ast::repetition(ast::Repetition { |
3059 | span: span(0..2), |
3060 | op: ast::RepetitionOp { |
3061 | span: span(1..2), |
3062 | kind: ast::RepetitionKind::ZeroOrOne, |
3063 | }, |
3064 | greedy: true, |
3065 | ast: Box::new(lit('a' , 0)), |
3066 | })) |
3067 | ); |
3068 | assert_eq!( |
3069 | parser(r"a??" ).parse(), |
3070 | Ok(Ast::repetition(ast::Repetition { |
3071 | span: span(0..3), |
3072 | op: ast::RepetitionOp { |
3073 | span: span(1..3), |
3074 | kind: ast::RepetitionKind::ZeroOrOne, |
3075 | }, |
3076 | greedy: false, |
3077 | ast: Box::new(lit('a' , 0)), |
3078 | })) |
3079 | ); |
3080 | assert_eq!( |
3081 | parser(r"a?" ).parse(), |
3082 | Ok(Ast::repetition(ast::Repetition { |
3083 | span: span(0..2), |
3084 | op: ast::RepetitionOp { |
3085 | span: span(1..2), |
3086 | kind: ast::RepetitionKind::ZeroOrOne, |
3087 | }, |
3088 | greedy: true, |
3089 | ast: Box::new(lit('a' , 0)), |
3090 | })) |
3091 | ); |
3092 | assert_eq!( |
3093 | parser(r"a?b" ).parse(), |
3094 | Ok(concat( |
3095 | 0..3, |
3096 | vec![ |
3097 | Ast::repetition(ast::Repetition { |
3098 | span: span(0..2), |
3099 | op: ast::RepetitionOp { |
3100 | span: span(1..2), |
3101 | kind: ast::RepetitionKind::ZeroOrOne, |
3102 | }, |
3103 | greedy: true, |
3104 | ast: Box::new(lit('a' , 0)), |
3105 | }), |
3106 | lit('b' , 2), |
3107 | ] |
3108 | )) |
3109 | ); |
3110 | assert_eq!( |
3111 | parser(r"a??b" ).parse(), |
3112 | Ok(concat( |
3113 | 0..4, |
3114 | vec![ |
3115 | Ast::repetition(ast::Repetition { |
3116 | span: span(0..3), |
3117 | op: ast::RepetitionOp { |
3118 | span: span(1..3), |
3119 | kind: ast::RepetitionKind::ZeroOrOne, |
3120 | }, |
3121 | greedy: false, |
3122 | ast: Box::new(lit('a' , 0)), |
3123 | }), |
3124 | lit('b' , 3), |
3125 | ] |
3126 | )) |
3127 | ); |
3128 | assert_eq!( |
3129 | parser(r"ab?" ).parse(), |
3130 | Ok(concat( |
3131 | 0..3, |
3132 | vec![ |
3133 | lit('a' , 0), |
3134 | Ast::repetition(ast::Repetition { |
3135 | span: span(1..3), |
3136 | op: ast::RepetitionOp { |
3137 | span: span(2..3), |
3138 | kind: ast::RepetitionKind::ZeroOrOne, |
3139 | }, |
3140 | greedy: true, |
3141 | ast: Box::new(lit('b' , 1)), |
3142 | }), |
3143 | ] |
3144 | )) |
3145 | ); |
3146 | assert_eq!( |
3147 | parser(r"(ab)?" ).parse(), |
3148 | Ok(Ast::repetition(ast::Repetition { |
3149 | span: span(0..5), |
3150 | op: ast::RepetitionOp { |
3151 | span: span(4..5), |
3152 | kind: ast::RepetitionKind::ZeroOrOne, |
3153 | }, |
3154 | greedy: true, |
3155 | ast: Box::new(group( |
3156 | 0..4, |
3157 | 1, |
3158 | concat(1..3, vec![lit('a' , 1), lit('b' , 2),]) |
3159 | )), |
3160 | })) |
3161 | ); |
3162 | assert_eq!( |
3163 | parser(r"|a?" ).parse(), |
3164 | Ok(alt( |
3165 | 0..3, |
3166 | vec![ |
3167 | Ast::empty(span(0..0)), |
3168 | Ast::repetition(ast::Repetition { |
3169 | span: span(1..3), |
3170 | op: ast::RepetitionOp { |
3171 | span: span(2..3), |
3172 | kind: ast::RepetitionKind::ZeroOrOne, |
3173 | }, |
3174 | greedy: true, |
3175 | ast: Box::new(lit('a' , 1)), |
3176 | }), |
3177 | ] |
3178 | )) |
3179 | ); |
3180 | |
3181 | assert_eq!( |
3182 | parser(r"*" ).parse().unwrap_err(), |
3183 | TestError { |
3184 | span: span(0..0), |
3185 | kind: ast::ErrorKind::RepetitionMissing, |
3186 | } |
3187 | ); |
3188 | assert_eq!( |
3189 | parser(r"(?i)*" ).parse().unwrap_err(), |
3190 | TestError { |
3191 | span: span(4..4), |
3192 | kind: ast::ErrorKind::RepetitionMissing, |
3193 | } |
3194 | ); |
3195 | assert_eq!( |
3196 | parser(r"(*)" ).parse().unwrap_err(), |
3197 | TestError { |
3198 | span: span(1..1), |
3199 | kind: ast::ErrorKind::RepetitionMissing, |
3200 | } |
3201 | ); |
3202 | assert_eq!( |
3203 | parser(r"(?:?)" ).parse().unwrap_err(), |
3204 | TestError { |
3205 | span: span(3..3), |
3206 | kind: ast::ErrorKind::RepetitionMissing, |
3207 | } |
3208 | ); |
3209 | assert_eq!( |
3210 | parser(r"+" ).parse().unwrap_err(), |
3211 | TestError { |
3212 | span: span(0..0), |
3213 | kind: ast::ErrorKind::RepetitionMissing, |
3214 | } |
3215 | ); |
3216 | assert_eq!( |
3217 | parser(r"?" ).parse().unwrap_err(), |
3218 | TestError { |
3219 | span: span(0..0), |
3220 | kind: ast::ErrorKind::RepetitionMissing, |
3221 | } |
3222 | ); |
3223 | assert_eq!( |
3224 | parser(r"(?)" ).parse().unwrap_err(), |
3225 | TestError { |
3226 | span: span(1..1), |
3227 | kind: ast::ErrorKind::RepetitionMissing, |
3228 | } |
3229 | ); |
3230 | assert_eq!( |
3231 | parser(r"|*" ).parse().unwrap_err(), |
3232 | TestError { |
3233 | span: span(1..1), |
3234 | kind: ast::ErrorKind::RepetitionMissing, |
3235 | } |
3236 | ); |
3237 | assert_eq!( |
3238 | parser(r"|+" ).parse().unwrap_err(), |
3239 | TestError { |
3240 | span: span(1..1), |
3241 | kind: ast::ErrorKind::RepetitionMissing, |
3242 | } |
3243 | ); |
3244 | assert_eq!( |
3245 | parser(r"|?" ).parse().unwrap_err(), |
3246 | TestError { |
3247 | span: span(1..1), |
3248 | kind: ast::ErrorKind::RepetitionMissing, |
3249 | } |
3250 | ); |
3251 | } |
3252 | |
3253 | #[test] |
3254 | fn parse_counted_repetition() { |
3255 | assert_eq!( |
3256 | parser(r"a{5}" ).parse(), |
3257 | Ok(Ast::repetition(ast::Repetition { |
3258 | span: span(0..4), |
3259 | op: ast::RepetitionOp { |
3260 | span: span(1..4), |
3261 | kind: ast::RepetitionKind::Range( |
3262 | ast::RepetitionRange::Exactly(5) |
3263 | ), |
3264 | }, |
3265 | greedy: true, |
3266 | ast: Box::new(lit('a' , 0)), |
3267 | })) |
3268 | ); |
3269 | assert_eq!( |
3270 | parser(r"a{5,}" ).parse(), |
3271 | Ok(Ast::repetition(ast::Repetition { |
3272 | span: span(0..5), |
3273 | op: ast::RepetitionOp { |
3274 | span: span(1..5), |
3275 | kind: ast::RepetitionKind::Range( |
3276 | ast::RepetitionRange::AtLeast(5) |
3277 | ), |
3278 | }, |
3279 | greedy: true, |
3280 | ast: Box::new(lit('a' , 0)), |
3281 | })) |
3282 | ); |
3283 | assert_eq!( |
3284 | parser(r"a{5,9}" ).parse(), |
3285 | Ok(Ast::repetition(ast::Repetition { |
3286 | span: span(0..6), |
3287 | op: ast::RepetitionOp { |
3288 | span: span(1..6), |
3289 | kind: ast::RepetitionKind::Range( |
3290 | ast::RepetitionRange::Bounded(5, 9) |
3291 | ), |
3292 | }, |
3293 | greedy: true, |
3294 | ast: Box::new(lit('a' , 0)), |
3295 | })) |
3296 | ); |
3297 | assert_eq!( |
3298 | parser(r"a{5}?" ).parse(), |
3299 | Ok(Ast::repetition(ast::Repetition { |
3300 | span: span(0..5), |
3301 | op: ast::RepetitionOp { |
3302 | span: span(1..5), |
3303 | kind: ast::RepetitionKind::Range( |
3304 | ast::RepetitionRange::Exactly(5) |
3305 | ), |
3306 | }, |
3307 | greedy: false, |
3308 | ast: Box::new(lit('a' , 0)), |
3309 | })) |
3310 | ); |
3311 | assert_eq!( |
3312 | parser(r"ab{5}" ).parse(), |
3313 | Ok(concat( |
3314 | 0..5, |
3315 | vec![ |
3316 | lit('a' , 0), |
3317 | Ast::repetition(ast::Repetition { |
3318 | span: span(1..5), |
3319 | op: ast::RepetitionOp { |
3320 | span: span(2..5), |
3321 | kind: ast::RepetitionKind::Range( |
3322 | ast::RepetitionRange::Exactly(5) |
3323 | ), |
3324 | }, |
3325 | greedy: true, |
3326 | ast: Box::new(lit('b' , 1)), |
3327 | }), |
3328 | ] |
3329 | )) |
3330 | ); |
3331 | assert_eq!( |
3332 | parser(r"ab{5}c" ).parse(), |
3333 | Ok(concat( |
3334 | 0..6, |
3335 | vec![ |
3336 | lit('a' , 0), |
3337 | Ast::repetition(ast::Repetition { |
3338 | span: span(1..5), |
3339 | op: ast::RepetitionOp { |
3340 | span: span(2..5), |
3341 | kind: ast::RepetitionKind::Range( |
3342 | ast::RepetitionRange::Exactly(5) |
3343 | ), |
3344 | }, |
3345 | greedy: true, |
3346 | ast: Box::new(lit('b' , 1)), |
3347 | }), |
3348 | lit('c' , 5), |
3349 | ] |
3350 | )) |
3351 | ); |
3352 | |
3353 | assert_eq!( |
3354 | parser(r"a{ 5 }" ).parse(), |
3355 | Ok(Ast::repetition(ast::Repetition { |
3356 | span: span(0..6), |
3357 | op: ast::RepetitionOp { |
3358 | span: span(1..6), |
3359 | kind: ast::RepetitionKind::Range( |
3360 | ast::RepetitionRange::Exactly(5) |
3361 | ), |
3362 | }, |
3363 | greedy: true, |
3364 | ast: Box::new(lit('a' , 0)), |
3365 | })) |
3366 | ); |
3367 | assert_eq!( |
3368 | parser(r"a{ 5 , 9 }" ).parse(), |
3369 | Ok(Ast::repetition(ast::Repetition { |
3370 | span: span(0..10), |
3371 | op: ast::RepetitionOp { |
3372 | span: span(1..10), |
3373 | kind: ast::RepetitionKind::Range( |
3374 | ast::RepetitionRange::Bounded(5, 9) |
3375 | ), |
3376 | }, |
3377 | greedy: true, |
3378 | ast: Box::new(lit('a' , 0)), |
3379 | })) |
3380 | ); |
3381 | assert_eq!( |
3382 | parser_ignore_whitespace(r"a{5,9} ?" ).parse(), |
3383 | Ok(Ast::repetition(ast::Repetition { |
3384 | span: span(0..8), |
3385 | op: ast::RepetitionOp { |
3386 | span: span(1..8), |
3387 | kind: ast::RepetitionKind::Range( |
3388 | ast::RepetitionRange::Bounded(5, 9) |
3389 | ), |
3390 | }, |
3391 | greedy: false, |
3392 | ast: Box::new(lit('a' , 0)), |
3393 | })) |
3394 | ); |
3395 | assert_eq!( |
3396 | parser(r"\b{5,9}" ).parse(), |
3397 | Ok(Ast::repetition(ast::Repetition { |
3398 | span: span(0..7), |
3399 | op: ast::RepetitionOp { |
3400 | span: span(2..7), |
3401 | kind: ast::RepetitionKind::Range( |
3402 | ast::RepetitionRange::Bounded(5, 9) |
3403 | ), |
3404 | }, |
3405 | greedy: true, |
3406 | ast: Box::new(Ast::assertion(ast::Assertion { |
3407 | span: span(0..2), |
3408 | kind: ast::AssertionKind::WordBoundary, |
3409 | })), |
3410 | })) |
3411 | ); |
3412 | |
3413 | assert_eq!( |
3414 | parser(r"(?i){0}" ).parse().unwrap_err(), |
3415 | TestError { |
3416 | span: span(4..4), |
3417 | kind: ast::ErrorKind::RepetitionMissing, |
3418 | } |
3419 | ); |
3420 | assert_eq!( |
3421 | parser(r"(?m){1,1}" ).parse().unwrap_err(), |
3422 | TestError { |
3423 | span: span(4..4), |
3424 | kind: ast::ErrorKind::RepetitionMissing, |
3425 | } |
3426 | ); |
3427 | assert_eq!( |
3428 | parser(r"a{]}" ).parse().unwrap_err(), |
3429 | TestError { |
3430 | span: span(2..2), |
3431 | kind: ast::ErrorKind::RepetitionCountDecimalEmpty, |
3432 | } |
3433 | ); |
3434 | assert_eq!( |
3435 | parser(r"a{1,]}" ).parse().unwrap_err(), |
3436 | TestError { |
3437 | span: span(4..4), |
3438 | kind: ast::ErrorKind::RepetitionCountDecimalEmpty, |
3439 | } |
3440 | ); |
3441 | assert_eq!( |
3442 | parser(r"a{" ).parse().unwrap_err(), |
3443 | TestError { |
3444 | span: span(1..2), |
3445 | kind: ast::ErrorKind::RepetitionCountUnclosed, |
3446 | } |
3447 | ); |
3448 | assert_eq!( |
3449 | parser(r"a{}" ).parse().unwrap_err(), |
3450 | TestError { |
3451 | span: span(2..2), |
3452 | kind: ast::ErrorKind::RepetitionCountDecimalEmpty, |
3453 | } |
3454 | ); |
3455 | assert_eq!( |
3456 | parser(r"a{a" ).parse().unwrap_err(), |
3457 | TestError { |
3458 | span: span(2..2), |
3459 | kind: ast::ErrorKind::RepetitionCountDecimalEmpty, |
3460 | } |
3461 | ); |
3462 | assert_eq!( |
3463 | parser(r"a{9999999999}" ).parse().unwrap_err(), |
3464 | TestError { |
3465 | span: span(2..12), |
3466 | kind: ast::ErrorKind::DecimalInvalid, |
3467 | } |
3468 | ); |
3469 | assert_eq!( |
3470 | parser(r"a{9" ).parse().unwrap_err(), |
3471 | TestError { |
3472 | span: span(1..3), |
3473 | kind: ast::ErrorKind::RepetitionCountUnclosed, |
3474 | } |
3475 | ); |
3476 | assert_eq!( |
3477 | parser(r"a{9,a" ).parse().unwrap_err(), |
3478 | TestError { |
3479 | span: span(4..4), |
3480 | kind: ast::ErrorKind::RepetitionCountDecimalEmpty, |
3481 | } |
3482 | ); |
3483 | assert_eq!( |
3484 | parser(r"a{9,9999999999}" ).parse().unwrap_err(), |
3485 | TestError { |
3486 | span: span(4..14), |
3487 | kind: ast::ErrorKind::DecimalInvalid, |
3488 | } |
3489 | ); |
3490 | assert_eq!( |
3491 | parser(r"a{9," ).parse().unwrap_err(), |
3492 | TestError { |
3493 | span: span(1..4), |
3494 | kind: ast::ErrorKind::RepetitionCountUnclosed, |
3495 | } |
3496 | ); |
3497 | assert_eq!( |
3498 | parser(r"a{9,11" ).parse().unwrap_err(), |
3499 | TestError { |
3500 | span: span(1..6), |
3501 | kind: ast::ErrorKind::RepetitionCountUnclosed, |
3502 | } |
3503 | ); |
3504 | assert_eq!( |
3505 | parser(r"a{2,1}" ).parse().unwrap_err(), |
3506 | TestError { |
3507 | span: span(1..6), |
3508 | kind: ast::ErrorKind::RepetitionCountInvalid, |
3509 | } |
3510 | ); |
3511 | assert_eq!( |
3512 | parser(r"{5}" ).parse().unwrap_err(), |
3513 | TestError { |
3514 | span: span(0..0), |
3515 | kind: ast::ErrorKind::RepetitionMissing, |
3516 | } |
3517 | ); |
3518 | assert_eq!( |
3519 | parser(r"|{5}" ).parse().unwrap_err(), |
3520 | TestError { |
3521 | span: span(1..1), |
3522 | kind: ast::ErrorKind::RepetitionMissing, |
3523 | } |
3524 | ); |
3525 | } |
3526 | |
3527 | #[test] |
3528 | fn parse_alternate() { |
3529 | assert_eq!( |
3530 | parser(r"a|b" ).parse(), |
3531 | Ok(Ast::alternation(ast::Alternation { |
3532 | span: span(0..3), |
3533 | asts: vec![lit('a' , 0), lit('b' , 2)], |
3534 | })) |
3535 | ); |
3536 | assert_eq!( |
3537 | parser(r"(a|b)" ).parse(), |
3538 | Ok(group( |
3539 | 0..5, |
3540 | 1, |
3541 | Ast::alternation(ast::Alternation { |
3542 | span: span(1..4), |
3543 | asts: vec![lit('a' , 1), lit('b' , 3)], |
3544 | }) |
3545 | )) |
3546 | ); |
3547 | |
3548 | assert_eq!( |
3549 | parser(r"a|b|c" ).parse(), |
3550 | Ok(Ast::alternation(ast::Alternation { |
3551 | span: span(0..5), |
3552 | asts: vec![lit('a' , 0), lit('b' , 2), lit('c' , 4)], |
3553 | })) |
3554 | ); |
3555 | assert_eq!( |
3556 | parser(r"ax|by|cz" ).parse(), |
3557 | Ok(Ast::alternation(ast::Alternation { |
3558 | span: span(0..8), |
3559 | asts: vec![ |
3560 | concat(0..2, vec![lit('a' , 0), lit('x' , 1)]), |
3561 | concat(3..5, vec![lit('b' , 3), lit('y' , 4)]), |
3562 | concat(6..8, vec![lit('c' , 6), lit('z' , 7)]), |
3563 | ], |
3564 | })) |
3565 | ); |
3566 | assert_eq!( |
3567 | parser(r"(ax|by|cz)" ).parse(), |
3568 | Ok(group( |
3569 | 0..10, |
3570 | 1, |
3571 | Ast::alternation(ast::Alternation { |
3572 | span: span(1..9), |
3573 | asts: vec![ |
3574 | concat(1..3, vec![lit('a' , 1), lit('x' , 2)]), |
3575 | concat(4..6, vec![lit('b' , 4), lit('y' , 5)]), |
3576 | concat(7..9, vec![lit('c' , 7), lit('z' , 8)]), |
3577 | ], |
3578 | }) |
3579 | )) |
3580 | ); |
3581 | assert_eq!( |
3582 | parser(r"(ax|(by|(cz)))" ).parse(), |
3583 | Ok(group( |
3584 | 0..14, |
3585 | 1, |
3586 | alt( |
3587 | 1..13, |
3588 | vec![ |
3589 | concat(1..3, vec![lit('a' , 1), lit('x' , 2)]), |
3590 | group( |
3591 | 4..13, |
3592 | 2, |
3593 | alt( |
3594 | 5..12, |
3595 | vec![ |
3596 | concat( |
3597 | 5..7, |
3598 | vec![lit('b' , 5), lit('y' , 6)] |
3599 | ), |
3600 | group( |
3601 | 8..12, |
3602 | 3, |
3603 | concat( |
3604 | 9..11, |
3605 | vec![lit('c' , 9), lit('z' , 10),] |
3606 | ) |
3607 | ), |
3608 | ] |
3609 | ) |
3610 | ), |
3611 | ] |
3612 | ) |
3613 | )) |
3614 | ); |
3615 | |
3616 | assert_eq!( |
3617 | parser(r"|" ).parse(), |
3618 | Ok(alt( |
3619 | 0..1, |
3620 | vec![Ast::empty(span(0..0)), Ast::empty(span(1..1)),] |
3621 | )) |
3622 | ); |
3623 | assert_eq!( |
3624 | parser(r"||" ).parse(), |
3625 | Ok(alt( |
3626 | 0..2, |
3627 | vec![ |
3628 | Ast::empty(span(0..0)), |
3629 | Ast::empty(span(1..1)), |
3630 | Ast::empty(span(2..2)), |
3631 | ] |
3632 | )) |
3633 | ); |
3634 | assert_eq!( |
3635 | parser(r"a|" ).parse(), |
3636 | Ok(alt(0..2, vec![lit('a' , 0), Ast::empty(span(2..2)),])) |
3637 | ); |
3638 | assert_eq!( |
3639 | parser(r"|a" ).parse(), |
3640 | Ok(alt(0..2, vec![Ast::empty(span(0..0)), lit('a' , 1),])) |
3641 | ); |
3642 | |
3643 | assert_eq!( |
3644 | parser(r"(|)" ).parse(), |
3645 | Ok(group( |
3646 | 0..3, |
3647 | 1, |
3648 | alt( |
3649 | 1..2, |
3650 | vec![Ast::empty(span(1..1)), Ast::empty(span(2..2)),] |
3651 | ) |
3652 | )) |
3653 | ); |
3654 | assert_eq!( |
3655 | parser(r"(a|)" ).parse(), |
3656 | Ok(group( |
3657 | 0..4, |
3658 | 1, |
3659 | alt(1..3, vec![lit('a' , 1), Ast::empty(span(3..3)),]) |
3660 | )) |
3661 | ); |
3662 | assert_eq!( |
3663 | parser(r"(|a)" ).parse(), |
3664 | Ok(group( |
3665 | 0..4, |
3666 | 1, |
3667 | alt(1..3, vec![Ast::empty(span(1..1)), lit('a' , 2),]) |
3668 | )) |
3669 | ); |
3670 | |
3671 | assert_eq!( |
3672 | parser(r"a|b)" ).parse().unwrap_err(), |
3673 | TestError { |
3674 | span: span(3..4), |
3675 | kind: ast::ErrorKind::GroupUnopened, |
3676 | } |
3677 | ); |
3678 | assert_eq!( |
3679 | parser(r"(a|b" ).parse().unwrap_err(), |
3680 | TestError { |
3681 | span: span(0..1), |
3682 | kind: ast::ErrorKind::GroupUnclosed, |
3683 | } |
3684 | ); |
3685 | } |
3686 | |
3687 | #[test] |
3688 | fn parse_unsupported_lookaround() { |
3689 | assert_eq!( |
3690 | parser(r"(?=a)" ).parse().unwrap_err(), |
3691 | TestError { |
3692 | span: span(0..3), |
3693 | kind: ast::ErrorKind::UnsupportedLookAround, |
3694 | } |
3695 | ); |
3696 | assert_eq!( |
3697 | parser(r"(?!a)" ).parse().unwrap_err(), |
3698 | TestError { |
3699 | span: span(0..3), |
3700 | kind: ast::ErrorKind::UnsupportedLookAround, |
3701 | } |
3702 | ); |
3703 | assert_eq!( |
3704 | parser(r"(?<=a)" ).parse().unwrap_err(), |
3705 | TestError { |
3706 | span: span(0..4), |
3707 | kind: ast::ErrorKind::UnsupportedLookAround, |
3708 | } |
3709 | ); |
3710 | assert_eq!( |
3711 | parser(r"(?<!a)" ).parse().unwrap_err(), |
3712 | TestError { |
3713 | span: span(0..4), |
3714 | kind: ast::ErrorKind::UnsupportedLookAround, |
3715 | } |
3716 | ); |
3717 | } |
3718 | |
3719 | #[test] |
3720 | fn parse_group() { |
3721 | assert_eq!( |
3722 | parser("(?i)" ).parse(), |
3723 | Ok(Ast::flags(ast::SetFlags { |
3724 | span: span(0..4), |
3725 | flags: ast::Flags { |
3726 | span: span(2..3), |
3727 | items: vec![ast::FlagsItem { |
3728 | span: span(2..3), |
3729 | kind: ast::FlagsItemKind::Flag( |
3730 | ast::Flag::CaseInsensitive |
3731 | ), |
3732 | }], |
3733 | }, |
3734 | })) |
3735 | ); |
3736 | assert_eq!( |
3737 | parser("(?iU)" ).parse(), |
3738 | Ok(Ast::flags(ast::SetFlags { |
3739 | span: span(0..5), |
3740 | flags: ast::Flags { |
3741 | span: span(2..4), |
3742 | items: vec![ |
3743 | ast::FlagsItem { |
3744 | span: span(2..3), |
3745 | kind: ast::FlagsItemKind::Flag( |
3746 | ast::Flag::CaseInsensitive |
3747 | ), |
3748 | }, |
3749 | ast::FlagsItem { |
3750 | span: span(3..4), |
3751 | kind: ast::FlagsItemKind::Flag( |
3752 | ast::Flag::SwapGreed |
3753 | ), |
3754 | }, |
3755 | ], |
3756 | }, |
3757 | })) |
3758 | ); |
3759 | assert_eq!( |
3760 | parser("(?i-U)" ).parse(), |
3761 | Ok(Ast::flags(ast::SetFlags { |
3762 | span: span(0..6), |
3763 | flags: ast::Flags { |
3764 | span: span(2..5), |
3765 | items: vec![ |
3766 | ast::FlagsItem { |
3767 | span: span(2..3), |
3768 | kind: ast::FlagsItemKind::Flag( |
3769 | ast::Flag::CaseInsensitive |
3770 | ), |
3771 | }, |
3772 | ast::FlagsItem { |
3773 | span: span(3..4), |
3774 | kind: ast::FlagsItemKind::Negation, |
3775 | }, |
3776 | ast::FlagsItem { |
3777 | span: span(4..5), |
3778 | kind: ast::FlagsItemKind::Flag( |
3779 | ast::Flag::SwapGreed |
3780 | ), |
3781 | }, |
3782 | ], |
3783 | }, |
3784 | })) |
3785 | ); |
3786 | |
3787 | assert_eq!( |
3788 | parser("()" ).parse(), |
3789 | Ok(Ast::group(ast::Group { |
3790 | span: span(0..2), |
3791 | kind: ast::GroupKind::CaptureIndex(1), |
3792 | ast: Box::new(Ast::empty(span(1..1))), |
3793 | })) |
3794 | ); |
3795 | assert_eq!( |
3796 | parser("(a)" ).parse(), |
3797 | Ok(Ast::group(ast::Group { |
3798 | span: span(0..3), |
3799 | kind: ast::GroupKind::CaptureIndex(1), |
3800 | ast: Box::new(lit('a' , 1)), |
3801 | })) |
3802 | ); |
3803 | assert_eq!( |
3804 | parser("(())" ).parse(), |
3805 | Ok(Ast::group(ast::Group { |
3806 | span: span(0..4), |
3807 | kind: ast::GroupKind::CaptureIndex(1), |
3808 | ast: Box::new(Ast::group(ast::Group { |
3809 | span: span(1..3), |
3810 | kind: ast::GroupKind::CaptureIndex(2), |
3811 | ast: Box::new(Ast::empty(span(2..2))), |
3812 | })), |
3813 | })) |
3814 | ); |
3815 | |
3816 | assert_eq!( |
3817 | parser("(?:a)" ).parse(), |
3818 | Ok(Ast::group(ast::Group { |
3819 | span: span(0..5), |
3820 | kind: ast::GroupKind::NonCapturing(ast::Flags { |
3821 | span: span(2..2), |
3822 | items: vec![], |
3823 | }), |
3824 | ast: Box::new(lit('a' , 3)), |
3825 | })) |
3826 | ); |
3827 | |
3828 | assert_eq!( |
3829 | parser("(?i:a)" ).parse(), |
3830 | Ok(Ast::group(ast::Group { |
3831 | span: span(0..6), |
3832 | kind: ast::GroupKind::NonCapturing(ast::Flags { |
3833 | span: span(2..3), |
3834 | items: vec![ast::FlagsItem { |
3835 | span: span(2..3), |
3836 | kind: ast::FlagsItemKind::Flag( |
3837 | ast::Flag::CaseInsensitive |
3838 | ), |
3839 | },], |
3840 | }), |
3841 | ast: Box::new(lit('a' , 4)), |
3842 | })) |
3843 | ); |
3844 | assert_eq!( |
3845 | parser("(?i-U:a)" ).parse(), |
3846 | Ok(Ast::group(ast::Group { |
3847 | span: span(0..8), |
3848 | kind: ast::GroupKind::NonCapturing(ast::Flags { |
3849 | span: span(2..5), |
3850 | items: vec![ |
3851 | ast::FlagsItem { |
3852 | span: span(2..3), |
3853 | kind: ast::FlagsItemKind::Flag( |
3854 | ast::Flag::CaseInsensitive |
3855 | ), |
3856 | }, |
3857 | ast::FlagsItem { |
3858 | span: span(3..4), |
3859 | kind: ast::FlagsItemKind::Negation, |
3860 | }, |
3861 | ast::FlagsItem { |
3862 | span: span(4..5), |
3863 | kind: ast::FlagsItemKind::Flag( |
3864 | ast::Flag::SwapGreed |
3865 | ), |
3866 | }, |
3867 | ], |
3868 | }), |
3869 | ast: Box::new(lit('a' , 6)), |
3870 | })) |
3871 | ); |
3872 | |
3873 | assert_eq!( |
3874 | parser("(" ).parse().unwrap_err(), |
3875 | TestError { |
3876 | span: span(0..1), |
3877 | kind: ast::ErrorKind::GroupUnclosed, |
3878 | } |
3879 | ); |
3880 | assert_eq!( |
3881 | parser("(?" ).parse().unwrap_err(), |
3882 | TestError { |
3883 | span: span(0..1), |
3884 | kind: ast::ErrorKind::GroupUnclosed, |
3885 | } |
3886 | ); |
3887 | assert_eq!( |
3888 | parser("(?P" ).parse().unwrap_err(), |
3889 | TestError { |
3890 | span: span(2..3), |
3891 | kind: ast::ErrorKind::FlagUnrecognized, |
3892 | } |
3893 | ); |
3894 | assert_eq!( |
3895 | parser("(?P<" ).parse().unwrap_err(), |
3896 | TestError { |
3897 | span: span(4..4), |
3898 | kind: ast::ErrorKind::GroupNameUnexpectedEof, |
3899 | } |
3900 | ); |
3901 | assert_eq!( |
3902 | parser("(a" ).parse().unwrap_err(), |
3903 | TestError { |
3904 | span: span(0..1), |
3905 | kind: ast::ErrorKind::GroupUnclosed, |
3906 | } |
3907 | ); |
3908 | assert_eq!( |
3909 | parser("(()" ).parse().unwrap_err(), |
3910 | TestError { |
3911 | span: span(0..1), |
3912 | kind: ast::ErrorKind::GroupUnclosed, |
3913 | } |
3914 | ); |
3915 | assert_eq!( |
3916 | parser(")" ).parse().unwrap_err(), |
3917 | TestError { |
3918 | span: span(0..1), |
3919 | kind: ast::ErrorKind::GroupUnopened, |
3920 | } |
3921 | ); |
3922 | assert_eq!( |
3923 | parser("a)" ).parse().unwrap_err(), |
3924 | TestError { |
3925 | span: span(1..2), |
3926 | kind: ast::ErrorKind::GroupUnopened, |
3927 | } |
3928 | ); |
3929 | } |
3930 | |
3931 | #[test] |
3932 | fn parse_capture_name() { |
3933 | assert_eq!( |
3934 | parser("(?<a>z)" ).parse(), |
3935 | Ok(Ast::group(ast::Group { |
3936 | span: span(0..7), |
3937 | kind: ast::GroupKind::CaptureName { |
3938 | starts_with_p: false, |
3939 | name: ast::CaptureName { |
3940 | span: span(3..4), |
3941 | name: s("a" ), |
3942 | index: 1, |
3943 | } |
3944 | }, |
3945 | ast: Box::new(lit('z' , 5)), |
3946 | })) |
3947 | ); |
3948 | assert_eq!( |
3949 | parser("(?P<a>z)" ).parse(), |
3950 | Ok(Ast::group(ast::Group { |
3951 | span: span(0..8), |
3952 | kind: ast::GroupKind::CaptureName { |
3953 | starts_with_p: true, |
3954 | name: ast::CaptureName { |
3955 | span: span(4..5), |
3956 | name: s("a" ), |
3957 | index: 1, |
3958 | } |
3959 | }, |
3960 | ast: Box::new(lit('z' , 6)), |
3961 | })) |
3962 | ); |
3963 | assert_eq!( |
3964 | parser("(?P<abc>z)" ).parse(), |
3965 | Ok(Ast::group(ast::Group { |
3966 | span: span(0..10), |
3967 | kind: ast::GroupKind::CaptureName { |
3968 | starts_with_p: true, |
3969 | name: ast::CaptureName { |
3970 | span: span(4..7), |
3971 | name: s("abc" ), |
3972 | index: 1, |
3973 | } |
3974 | }, |
3975 | ast: Box::new(lit('z' , 8)), |
3976 | })) |
3977 | ); |
3978 | |
3979 | assert_eq!( |
3980 | parser("(?P<a_1>z)" ).parse(), |
3981 | Ok(Ast::group(ast::Group { |
3982 | span: span(0..10), |
3983 | kind: ast::GroupKind::CaptureName { |
3984 | starts_with_p: true, |
3985 | name: ast::CaptureName { |
3986 | span: span(4..7), |
3987 | name: s("a_1" ), |
3988 | index: 1, |
3989 | } |
3990 | }, |
3991 | ast: Box::new(lit('z' , 8)), |
3992 | })) |
3993 | ); |
3994 | |
3995 | assert_eq!( |
3996 | parser("(?P<a.1>z)" ).parse(), |
3997 | Ok(Ast::group(ast::Group { |
3998 | span: span(0..10), |
3999 | kind: ast::GroupKind::CaptureName { |
4000 | starts_with_p: true, |
4001 | name: ast::CaptureName { |
4002 | span: span(4..7), |
4003 | name: s("a.1" ), |
4004 | index: 1, |
4005 | } |
4006 | }, |
4007 | ast: Box::new(lit('z' , 8)), |
4008 | })) |
4009 | ); |
4010 | |
4011 | assert_eq!( |
4012 | parser("(?P<a[1]>z)" ).parse(), |
4013 | Ok(Ast::group(ast::Group { |
4014 | span: span(0..11), |
4015 | kind: ast::GroupKind::CaptureName { |
4016 | starts_with_p: true, |
4017 | name: ast::CaptureName { |
4018 | span: span(4..8), |
4019 | name: s("a[1]" ), |
4020 | index: 1, |
4021 | } |
4022 | }, |
4023 | ast: Box::new(lit('z' , 9)), |
4024 | })) |
4025 | ); |
4026 | |
4027 | assert_eq!( |
4028 | parser("(?P<a¾>)" ).parse(), |
4029 | Ok(Ast::group(ast::Group { |
4030 | span: Span::new( |
4031 | Position::new(0, 1, 1), |
4032 | Position::new(9, 1, 9), |
4033 | ), |
4034 | kind: ast::GroupKind::CaptureName { |
4035 | starts_with_p: true, |
4036 | name: ast::CaptureName { |
4037 | span: Span::new( |
4038 | Position::new(4, 1, 5), |
4039 | Position::new(7, 1, 7), |
4040 | ), |
4041 | name: s("a¾" ), |
4042 | index: 1, |
4043 | } |
4044 | }, |
4045 | ast: Box::new(Ast::empty(Span::new( |
4046 | Position::new(8, 1, 8), |
4047 | Position::new(8, 1, 8), |
4048 | ))), |
4049 | })) |
4050 | ); |
4051 | assert_eq!( |
4052 | parser("(?P<名字>)" ).parse(), |
4053 | Ok(Ast::group(ast::Group { |
4054 | span: Span::new( |
4055 | Position::new(0, 1, 1), |
4056 | Position::new(12, 1, 9), |
4057 | ), |
4058 | kind: ast::GroupKind::CaptureName { |
4059 | starts_with_p: true, |
4060 | name: ast::CaptureName { |
4061 | span: Span::new( |
4062 | Position::new(4, 1, 5), |
4063 | Position::new(10, 1, 7), |
4064 | ), |
4065 | name: s("名字" ), |
4066 | index: 1, |
4067 | } |
4068 | }, |
4069 | ast: Box::new(Ast::empty(Span::new( |
4070 | Position::new(11, 1, 8), |
4071 | Position::new(11, 1, 8), |
4072 | ))), |
4073 | })) |
4074 | ); |
4075 | |
4076 | assert_eq!( |
4077 | parser("(?P<" ).parse().unwrap_err(), |
4078 | TestError { |
4079 | span: span(4..4), |
4080 | kind: ast::ErrorKind::GroupNameUnexpectedEof, |
4081 | } |
4082 | ); |
4083 | assert_eq!( |
4084 | parser("(?P<>z)" ).parse().unwrap_err(), |
4085 | TestError { |
4086 | span: span(4..4), |
4087 | kind: ast::ErrorKind::GroupNameEmpty, |
4088 | } |
4089 | ); |
4090 | assert_eq!( |
4091 | parser("(?P<a" ).parse().unwrap_err(), |
4092 | TestError { |
4093 | span: span(5..5), |
4094 | kind: ast::ErrorKind::GroupNameUnexpectedEof, |
4095 | } |
4096 | ); |
4097 | assert_eq!( |
4098 | parser("(?P<ab" ).parse().unwrap_err(), |
4099 | TestError { |
4100 | span: span(6..6), |
4101 | kind: ast::ErrorKind::GroupNameUnexpectedEof, |
4102 | } |
4103 | ); |
4104 | assert_eq!( |
4105 | parser("(?P<0a" ).parse().unwrap_err(), |
4106 | TestError { |
4107 | span: span(4..5), |
4108 | kind: ast::ErrorKind::GroupNameInvalid, |
4109 | } |
4110 | ); |
4111 | assert_eq!( |
4112 | parser("(?P<~" ).parse().unwrap_err(), |
4113 | TestError { |
4114 | span: span(4..5), |
4115 | kind: ast::ErrorKind::GroupNameInvalid, |
4116 | } |
4117 | ); |
4118 | assert_eq!( |
4119 | parser("(?P<abc~" ).parse().unwrap_err(), |
4120 | TestError { |
4121 | span: span(7..8), |
4122 | kind: ast::ErrorKind::GroupNameInvalid, |
4123 | } |
4124 | ); |
4125 | assert_eq!( |
4126 | parser("(?P<a>y)(?P<a>z)" ).parse().unwrap_err(), |
4127 | TestError { |
4128 | span: span(12..13), |
4129 | kind: ast::ErrorKind::GroupNameDuplicate { |
4130 | original: span(4..5), |
4131 | }, |
4132 | } |
4133 | ); |
4134 | assert_eq!( |
4135 | parser("(?P<5>)" ).parse().unwrap_err(), |
4136 | TestError { |
4137 | span: span(4..5), |
4138 | kind: ast::ErrorKind::GroupNameInvalid, |
4139 | } |
4140 | ); |
4141 | assert_eq!( |
4142 | parser("(?P<5a>)" ).parse().unwrap_err(), |
4143 | TestError { |
4144 | span: span(4..5), |
4145 | kind: ast::ErrorKind::GroupNameInvalid, |
4146 | } |
4147 | ); |
4148 | assert_eq!( |
4149 | parser("(?P<¾>)" ).parse().unwrap_err(), |
4150 | TestError { |
4151 | span: Span::new( |
4152 | Position::new(4, 1, 5), |
4153 | Position::new(6, 1, 6), |
4154 | ), |
4155 | kind: ast::ErrorKind::GroupNameInvalid, |
4156 | } |
4157 | ); |
4158 | assert_eq!( |
4159 | parser("(?P<¾a>)" ).parse().unwrap_err(), |
4160 | TestError { |
4161 | span: Span::new( |
4162 | Position::new(4, 1, 5), |
4163 | Position::new(6, 1, 6), |
4164 | ), |
4165 | kind: ast::ErrorKind::GroupNameInvalid, |
4166 | } |
4167 | ); |
4168 | assert_eq!( |
4169 | parser("(?P<☃>)" ).parse().unwrap_err(), |
4170 | TestError { |
4171 | span: Span::new( |
4172 | Position::new(4, 1, 5), |
4173 | Position::new(7, 1, 6), |
4174 | ), |
4175 | kind: ast::ErrorKind::GroupNameInvalid, |
4176 | } |
4177 | ); |
4178 | assert_eq!( |
4179 | parser("(?P<a☃>)" ).parse().unwrap_err(), |
4180 | TestError { |
4181 | span: Span::new( |
4182 | Position::new(5, 1, 6), |
4183 | Position::new(8, 1, 7), |
4184 | ), |
4185 | kind: ast::ErrorKind::GroupNameInvalid, |
4186 | } |
4187 | ); |
4188 | } |
4189 | |
4190 | #[test] |
4191 | fn parse_flags() { |
4192 | assert_eq!( |
4193 | parser("i:" ).parse_flags(), |
4194 | Ok(ast::Flags { |
4195 | span: span(0..1), |
4196 | items: vec![ast::FlagsItem { |
4197 | span: span(0..1), |
4198 | kind: ast::FlagsItemKind::Flag(ast::Flag::CaseInsensitive), |
4199 | }], |
4200 | }) |
4201 | ); |
4202 | assert_eq!( |
4203 | parser("i)" ).parse_flags(), |
4204 | Ok(ast::Flags { |
4205 | span: span(0..1), |
4206 | items: vec![ast::FlagsItem { |
4207 | span: span(0..1), |
4208 | kind: ast::FlagsItemKind::Flag(ast::Flag::CaseInsensitive), |
4209 | }], |
4210 | }) |
4211 | ); |
4212 | |
4213 | assert_eq!( |
4214 | parser("isU:" ).parse_flags(), |
4215 | Ok(ast::Flags { |
4216 | span: span(0..3), |
4217 | items: vec![ |
4218 | ast::FlagsItem { |
4219 | span: span(0..1), |
4220 | kind: ast::FlagsItemKind::Flag( |
4221 | ast::Flag::CaseInsensitive |
4222 | ), |
4223 | }, |
4224 | ast::FlagsItem { |
4225 | span: span(1..2), |
4226 | kind: ast::FlagsItemKind::Flag( |
4227 | ast::Flag::DotMatchesNewLine |
4228 | ), |
4229 | }, |
4230 | ast::FlagsItem { |
4231 | span: span(2..3), |
4232 | kind: ast::FlagsItemKind::Flag(ast::Flag::SwapGreed), |
4233 | }, |
4234 | ], |
4235 | }) |
4236 | ); |
4237 | |
4238 | assert_eq!( |
4239 | parser("-isU:" ).parse_flags(), |
4240 | Ok(ast::Flags { |
4241 | span: span(0..4), |
4242 | items: vec![ |
4243 | ast::FlagsItem { |
4244 | span: span(0..1), |
4245 | kind: ast::FlagsItemKind::Negation, |
4246 | }, |
4247 | ast::FlagsItem { |
4248 | span: span(1..2), |
4249 | kind: ast::FlagsItemKind::Flag( |
4250 | ast::Flag::CaseInsensitive |
4251 | ), |
4252 | }, |
4253 | ast::FlagsItem { |
4254 | span: span(2..3), |
4255 | kind: ast::FlagsItemKind::Flag( |
4256 | ast::Flag::DotMatchesNewLine |
4257 | ), |
4258 | }, |
4259 | ast::FlagsItem { |
4260 | span: span(3..4), |
4261 | kind: ast::FlagsItemKind::Flag(ast::Flag::SwapGreed), |
4262 | }, |
4263 | ], |
4264 | }) |
4265 | ); |
4266 | assert_eq!( |
4267 | parser("i-sU:" ).parse_flags(), |
4268 | Ok(ast::Flags { |
4269 | span: span(0..4), |
4270 | items: vec![ |
4271 | ast::FlagsItem { |
4272 | span: span(0..1), |
4273 | kind: ast::FlagsItemKind::Flag( |
4274 | ast::Flag::CaseInsensitive |
4275 | ), |
4276 | }, |
4277 | ast::FlagsItem { |
4278 | span: span(1..2), |
4279 | kind: ast::FlagsItemKind::Negation, |
4280 | }, |
4281 | ast::FlagsItem { |
4282 | span: span(2..3), |
4283 | kind: ast::FlagsItemKind::Flag( |
4284 | ast::Flag::DotMatchesNewLine |
4285 | ), |
4286 | }, |
4287 | ast::FlagsItem { |
4288 | span: span(3..4), |
4289 | kind: ast::FlagsItemKind::Flag(ast::Flag::SwapGreed), |
4290 | }, |
4291 | ], |
4292 | }) |
4293 | ); |
4294 | assert_eq!( |
4295 | parser("i-sR:" ).parse_flags(), |
4296 | Ok(ast::Flags { |
4297 | span: span(0..4), |
4298 | items: vec![ |
4299 | ast::FlagsItem { |
4300 | span: span(0..1), |
4301 | kind: ast::FlagsItemKind::Flag( |
4302 | ast::Flag::CaseInsensitive |
4303 | ), |
4304 | }, |
4305 | ast::FlagsItem { |
4306 | span: span(1..2), |
4307 | kind: ast::FlagsItemKind::Negation, |
4308 | }, |
4309 | ast::FlagsItem { |
4310 | span: span(2..3), |
4311 | kind: ast::FlagsItemKind::Flag( |
4312 | ast::Flag::DotMatchesNewLine |
4313 | ), |
4314 | }, |
4315 | ast::FlagsItem { |
4316 | span: span(3..4), |
4317 | kind: ast::FlagsItemKind::Flag(ast::Flag::CRLF), |
4318 | }, |
4319 | ], |
4320 | }) |
4321 | ); |
4322 | |
4323 | assert_eq!( |
4324 | parser("isU" ).parse_flags().unwrap_err(), |
4325 | TestError { |
4326 | span: span(3..3), |
4327 | kind: ast::ErrorKind::FlagUnexpectedEof, |
4328 | } |
4329 | ); |
4330 | assert_eq!( |
4331 | parser("isUa:" ).parse_flags().unwrap_err(), |
4332 | TestError { |
4333 | span: span(3..4), |
4334 | kind: ast::ErrorKind::FlagUnrecognized, |
4335 | } |
4336 | ); |
4337 | assert_eq!( |
4338 | parser("isUi:" ).parse_flags().unwrap_err(), |
4339 | TestError { |
4340 | span: span(3..4), |
4341 | kind: ast::ErrorKind::FlagDuplicate { original: span(0..1) }, |
4342 | } |
4343 | ); |
4344 | assert_eq!( |
4345 | parser("i-sU-i:" ).parse_flags().unwrap_err(), |
4346 | TestError { |
4347 | span: span(4..5), |
4348 | kind: ast::ErrorKind::FlagRepeatedNegation { |
4349 | original: span(1..2), |
4350 | }, |
4351 | } |
4352 | ); |
4353 | assert_eq!( |
4354 | parser("-)" ).parse_flags().unwrap_err(), |
4355 | TestError { |
4356 | span: span(0..1), |
4357 | kind: ast::ErrorKind::FlagDanglingNegation, |
4358 | } |
4359 | ); |
4360 | assert_eq!( |
4361 | parser("i-)" ).parse_flags().unwrap_err(), |
4362 | TestError { |
4363 | span: span(1..2), |
4364 | kind: ast::ErrorKind::FlagDanglingNegation, |
4365 | } |
4366 | ); |
4367 | assert_eq!( |
4368 | parser("iU-)" ).parse_flags().unwrap_err(), |
4369 | TestError { |
4370 | span: span(2..3), |
4371 | kind: ast::ErrorKind::FlagDanglingNegation, |
4372 | } |
4373 | ); |
4374 | } |
4375 | |
4376 | #[test] |
4377 | fn parse_flag() { |
4378 | assert_eq!(parser("i" ).parse_flag(), Ok(ast::Flag::CaseInsensitive)); |
4379 | assert_eq!(parser("m" ).parse_flag(), Ok(ast::Flag::MultiLine)); |
4380 | assert_eq!(parser("s" ).parse_flag(), Ok(ast::Flag::DotMatchesNewLine)); |
4381 | assert_eq!(parser("U" ).parse_flag(), Ok(ast::Flag::SwapGreed)); |
4382 | assert_eq!(parser("u" ).parse_flag(), Ok(ast::Flag::Unicode)); |
4383 | assert_eq!(parser("R" ).parse_flag(), Ok(ast::Flag::CRLF)); |
4384 | assert_eq!(parser("x" ).parse_flag(), Ok(ast::Flag::IgnoreWhitespace)); |
4385 | |
4386 | assert_eq!( |
4387 | parser("a" ).parse_flag().unwrap_err(), |
4388 | TestError { |
4389 | span: span(0..1), |
4390 | kind: ast::ErrorKind::FlagUnrecognized, |
4391 | } |
4392 | ); |
4393 | assert_eq!( |
4394 | parser("☃" ).parse_flag().unwrap_err(), |
4395 | TestError { |
4396 | span: span_range("☃" , 0..3), |
4397 | kind: ast::ErrorKind::FlagUnrecognized, |
4398 | } |
4399 | ); |
4400 | } |
4401 | |
4402 | #[test] |
4403 | fn parse_primitive_non_escape() { |
4404 | assert_eq!( |
4405 | parser(r"." ).parse_primitive(), |
4406 | Ok(Primitive::Dot(span(0..1))) |
4407 | ); |
4408 | assert_eq!( |
4409 | parser(r"^" ).parse_primitive(), |
4410 | Ok(Primitive::Assertion(ast::Assertion { |
4411 | span: span(0..1), |
4412 | kind: ast::AssertionKind::StartLine, |
4413 | })) |
4414 | ); |
4415 | assert_eq!( |
4416 | parser(r"$" ).parse_primitive(), |
4417 | Ok(Primitive::Assertion(ast::Assertion { |
4418 | span: span(0..1), |
4419 | kind: ast::AssertionKind::EndLine, |
4420 | })) |
4421 | ); |
4422 | |
4423 | assert_eq!( |
4424 | parser(r"a" ).parse_primitive(), |
4425 | Ok(Primitive::Literal(ast::Literal { |
4426 | span: span(0..1), |
4427 | kind: ast::LiteralKind::Verbatim, |
4428 | c: 'a' , |
4429 | })) |
4430 | ); |
4431 | assert_eq!( |
4432 | parser(r"|" ).parse_primitive(), |
4433 | Ok(Primitive::Literal(ast::Literal { |
4434 | span: span(0..1), |
4435 | kind: ast::LiteralKind::Verbatim, |
4436 | c: '|' , |
4437 | })) |
4438 | ); |
4439 | assert_eq!( |
4440 | parser(r"☃" ).parse_primitive(), |
4441 | Ok(Primitive::Literal(ast::Literal { |
4442 | span: span_range("☃" , 0..3), |
4443 | kind: ast::LiteralKind::Verbatim, |
4444 | c: '☃' , |
4445 | })) |
4446 | ); |
4447 | } |
4448 | |
4449 | #[test] |
4450 | fn parse_escape() { |
4451 | assert_eq!( |
4452 | parser(r"\|" ).parse_primitive(), |
4453 | Ok(Primitive::Literal(ast::Literal { |
4454 | span: span(0..2), |
4455 | kind: ast::LiteralKind::Meta, |
4456 | c: '|' , |
4457 | })) |
4458 | ); |
4459 | let specials = &[ |
4460 | (r"\a" , ' \x07' , ast::SpecialLiteralKind::Bell), |
4461 | (r"\f" , ' \x0C' , ast::SpecialLiteralKind::FormFeed), |
4462 | (r"\t" , ' \t' , ast::SpecialLiteralKind::Tab), |
4463 | (r"\n" , ' \n' , ast::SpecialLiteralKind::LineFeed), |
4464 | (r"\r" , ' \r' , ast::SpecialLiteralKind::CarriageReturn), |
4465 | (r"\v" , ' \x0B' , ast::SpecialLiteralKind::VerticalTab), |
4466 | ]; |
4467 | for &(pat, c, ref kind) in specials { |
4468 | assert_eq!( |
4469 | parser(pat).parse_primitive(), |
4470 | Ok(Primitive::Literal(ast::Literal { |
4471 | span: span(0..2), |
4472 | kind: ast::LiteralKind::Special(kind.clone()), |
4473 | c, |
4474 | })) |
4475 | ); |
4476 | } |
4477 | assert_eq!( |
4478 | parser(r"\A" ).parse_primitive(), |
4479 | Ok(Primitive::Assertion(ast::Assertion { |
4480 | span: span(0..2), |
4481 | kind: ast::AssertionKind::StartText, |
4482 | })) |
4483 | ); |
4484 | assert_eq!( |
4485 | parser(r"\z" ).parse_primitive(), |
4486 | Ok(Primitive::Assertion(ast::Assertion { |
4487 | span: span(0..2), |
4488 | kind: ast::AssertionKind::EndText, |
4489 | })) |
4490 | ); |
4491 | assert_eq!( |
4492 | parser(r"\b" ).parse_primitive(), |
4493 | Ok(Primitive::Assertion(ast::Assertion { |
4494 | span: span(0..2), |
4495 | kind: ast::AssertionKind::WordBoundary, |
4496 | })) |
4497 | ); |
4498 | assert_eq!( |
4499 | parser(r"\b{start}" ).parse_primitive(), |
4500 | Ok(Primitive::Assertion(ast::Assertion { |
4501 | span: span(0..9), |
4502 | kind: ast::AssertionKind::WordBoundaryStart, |
4503 | })) |
4504 | ); |
4505 | assert_eq!( |
4506 | parser(r"\b{end}" ).parse_primitive(), |
4507 | Ok(Primitive::Assertion(ast::Assertion { |
4508 | span: span(0..7), |
4509 | kind: ast::AssertionKind::WordBoundaryEnd, |
4510 | })) |
4511 | ); |
4512 | assert_eq!( |
4513 | parser(r"\b{start-half}" ).parse_primitive(), |
4514 | Ok(Primitive::Assertion(ast::Assertion { |
4515 | span: span(0..14), |
4516 | kind: ast::AssertionKind::WordBoundaryStartHalf, |
4517 | })) |
4518 | ); |
4519 | assert_eq!( |
4520 | parser(r"\b{end-half}" ).parse_primitive(), |
4521 | Ok(Primitive::Assertion(ast::Assertion { |
4522 | span: span(0..12), |
4523 | kind: ast::AssertionKind::WordBoundaryEndHalf, |
4524 | })) |
4525 | ); |
4526 | assert_eq!( |
4527 | parser(r"\<" ).parse_primitive(), |
4528 | Ok(Primitive::Assertion(ast::Assertion { |
4529 | span: span(0..2), |
4530 | kind: ast::AssertionKind::WordBoundaryStartAngle, |
4531 | })) |
4532 | ); |
4533 | assert_eq!( |
4534 | parser(r"\>" ).parse_primitive(), |
4535 | Ok(Primitive::Assertion(ast::Assertion { |
4536 | span: span(0..2), |
4537 | kind: ast::AssertionKind::WordBoundaryEndAngle, |
4538 | })) |
4539 | ); |
4540 | assert_eq!( |
4541 | parser(r"\B" ).parse_primitive(), |
4542 | Ok(Primitive::Assertion(ast::Assertion { |
4543 | span: span(0..2), |
4544 | kind: ast::AssertionKind::NotWordBoundary, |
4545 | })) |
4546 | ); |
4547 | |
4548 | // We also support superfluous escapes in most cases now too. |
4549 | for c in ['!' , '@' , '%' , '"' , ' \'' , '/' , ' ' ] { |
4550 | let pat = format!(r"\{}" , c); |
4551 | assert_eq!( |
4552 | parser(&pat).parse_primitive(), |
4553 | Ok(Primitive::Literal(ast::Literal { |
4554 | span: span(0..2), |
4555 | kind: ast::LiteralKind::Superfluous, |
4556 | c, |
4557 | })) |
4558 | ); |
4559 | } |
4560 | |
4561 | // Some superfluous escapes, namely [0-9A-Za-z], are still banned. This |
4562 | // gives flexibility for future evolution. |
4563 | assert_eq!( |
4564 | parser(r"\e" ).parse_escape().unwrap_err(), |
4565 | TestError { |
4566 | span: span(0..2), |
4567 | kind: ast::ErrorKind::EscapeUnrecognized, |
4568 | } |
4569 | ); |
4570 | assert_eq!( |
4571 | parser(r"\y" ).parse_escape().unwrap_err(), |
4572 | TestError { |
4573 | span: span(0..2), |
4574 | kind: ast::ErrorKind::EscapeUnrecognized, |
4575 | } |
4576 | ); |
4577 | |
4578 | // Starting a special word boundary without any non-whitespace chars |
4579 | // after the brace makes it ambiguous whether the user meant to write |
4580 | // a counted repetition (probably not?) or an actual special word |
4581 | // boundary assertion. |
4582 | assert_eq!( |
4583 | parser(r"\b{" ).parse_escape().unwrap_err(), |
4584 | TestError { |
4585 | span: span(0..3), |
4586 | kind: ast::ErrorKind::SpecialWordOrRepetitionUnexpectedEof, |
4587 | } |
4588 | ); |
4589 | assert_eq!( |
4590 | parser_ignore_whitespace(r"\b{ " ).parse_escape().unwrap_err(), |
4591 | TestError { |
4592 | span: span(0..4), |
4593 | kind: ast::ErrorKind::SpecialWordOrRepetitionUnexpectedEof, |
4594 | } |
4595 | ); |
4596 | // When 'x' is not enabled, the space is seen as a non-[-A-Za-z] char, |
4597 | // and thus causes the parser to treat it as a counted repetition. |
4598 | assert_eq!( |
4599 | parser(r"\b{ " ).parse().unwrap_err(), |
4600 | TestError { |
4601 | span: span(4..4), |
4602 | kind: ast::ErrorKind::RepetitionCountDecimalEmpty, |
4603 | } |
4604 | ); |
4605 | // In this case, we got some valid chars that makes it look like the |
4606 | // user is writing one of the special word boundary assertions, but |
4607 | // we forget to close the brace. |
4608 | assert_eq!( |
4609 | parser(r"\b{foo" ).parse_escape().unwrap_err(), |
4610 | TestError { |
4611 | span: span(2..6), |
4612 | kind: ast::ErrorKind::SpecialWordBoundaryUnclosed, |
4613 | } |
4614 | ); |
4615 | // We get the same error as above, except it is provoked by seeing a |
4616 | // char that we know is invalid before seeing a closing brace. |
4617 | assert_eq!( |
4618 | parser(r"\b{foo!}" ).parse_escape().unwrap_err(), |
4619 | TestError { |
4620 | span: span(2..6), |
4621 | kind: ast::ErrorKind::SpecialWordBoundaryUnclosed, |
4622 | } |
4623 | ); |
4624 | // And this one occurs when, syntactically, everything looks okay, but |
4625 | // we don't use a valid spelling of a word boundary assertion. |
4626 | assert_eq!( |
4627 | parser(r"\b{foo}" ).parse_escape().unwrap_err(), |
4628 | TestError { |
4629 | span: span(3..6), |
4630 | kind: ast::ErrorKind::SpecialWordBoundaryUnrecognized, |
4631 | } |
4632 | ); |
4633 | |
4634 | // An unfinished escape is illegal. |
4635 | assert_eq!( |
4636 | parser(r"\" ).parse_escape().unwrap_err(), |
4637 | TestError { |
4638 | span: span(0..1), |
4639 | kind: ast::ErrorKind::EscapeUnexpectedEof, |
4640 | } |
4641 | ); |
4642 | } |
4643 | |
4644 | #[test] |
4645 | fn parse_unsupported_backreference() { |
4646 | assert_eq!( |
4647 | parser(r"\0" ).parse_escape().unwrap_err(), |
4648 | TestError { |
4649 | span: span(0..2), |
4650 | kind: ast::ErrorKind::UnsupportedBackreference, |
4651 | } |
4652 | ); |
4653 | assert_eq!( |
4654 | parser(r"\9" ).parse_escape().unwrap_err(), |
4655 | TestError { |
4656 | span: span(0..2), |
4657 | kind: ast::ErrorKind::UnsupportedBackreference, |
4658 | } |
4659 | ); |
4660 | } |
4661 | |
4662 | #[test] |
4663 | fn parse_octal() { |
4664 | for i in 0..511 { |
4665 | let pat = format!(r"\{:o}" , i); |
4666 | assert_eq!( |
4667 | parser_octal(&pat).parse_escape(), |
4668 | Ok(Primitive::Literal(ast::Literal { |
4669 | span: span(0..pat.len()), |
4670 | kind: ast::LiteralKind::Octal, |
4671 | c: char::from_u32(i).unwrap(), |
4672 | })) |
4673 | ); |
4674 | } |
4675 | assert_eq!( |
4676 | parser_octal(r"\778" ).parse_escape(), |
4677 | Ok(Primitive::Literal(ast::Literal { |
4678 | span: span(0..3), |
4679 | kind: ast::LiteralKind::Octal, |
4680 | c: '?' , |
4681 | })) |
4682 | ); |
4683 | assert_eq!( |
4684 | parser_octal(r"\7777" ).parse_escape(), |
4685 | Ok(Primitive::Literal(ast::Literal { |
4686 | span: span(0..4), |
4687 | kind: ast::LiteralKind::Octal, |
4688 | c: ' \u{01FF}' , |
4689 | })) |
4690 | ); |
4691 | assert_eq!( |
4692 | parser_octal(r"\778" ).parse(), |
4693 | Ok(Ast::concat(ast::Concat { |
4694 | span: span(0..4), |
4695 | asts: vec![ |
4696 | Ast::literal(ast::Literal { |
4697 | span: span(0..3), |
4698 | kind: ast::LiteralKind::Octal, |
4699 | c: '?' , |
4700 | }), |
4701 | Ast::literal(ast::Literal { |
4702 | span: span(3..4), |
4703 | kind: ast::LiteralKind::Verbatim, |
4704 | c: '8' , |
4705 | }), |
4706 | ], |
4707 | })) |
4708 | ); |
4709 | assert_eq!( |
4710 | parser_octal(r"\7777" ).parse(), |
4711 | Ok(Ast::concat(ast::Concat { |
4712 | span: span(0..5), |
4713 | asts: vec![ |
4714 | Ast::literal(ast::Literal { |
4715 | span: span(0..4), |
4716 | kind: ast::LiteralKind::Octal, |
4717 | c: ' \u{01FF}' , |
4718 | }), |
4719 | Ast::literal(ast::Literal { |
4720 | span: span(4..5), |
4721 | kind: ast::LiteralKind::Verbatim, |
4722 | c: '7' , |
4723 | }), |
4724 | ], |
4725 | })) |
4726 | ); |
4727 | |
4728 | assert_eq!( |
4729 | parser_octal(r"\8" ).parse_escape().unwrap_err(), |
4730 | TestError { |
4731 | span: span(0..2), |
4732 | kind: ast::ErrorKind::EscapeUnrecognized, |
4733 | } |
4734 | ); |
4735 | } |
4736 | |
4737 | #[test] |
4738 | fn parse_hex_two() { |
4739 | for i in 0..256 { |
4740 | let pat = format!(r"\x{:02x}" , i); |
4741 | assert_eq!( |
4742 | parser(&pat).parse_escape(), |
4743 | Ok(Primitive::Literal(ast::Literal { |
4744 | span: span(0..pat.len()), |
4745 | kind: ast::LiteralKind::HexFixed(ast::HexLiteralKind::X), |
4746 | c: char::from_u32(i).unwrap(), |
4747 | })) |
4748 | ); |
4749 | } |
4750 | |
4751 | assert_eq!( |
4752 | parser(r"\xF" ).parse_escape().unwrap_err(), |
4753 | TestError { |
4754 | span: span(3..3), |
4755 | kind: ast::ErrorKind::EscapeUnexpectedEof, |
4756 | } |
4757 | ); |
4758 | assert_eq!( |
4759 | parser(r"\xG" ).parse_escape().unwrap_err(), |
4760 | TestError { |
4761 | span: span(2..3), |
4762 | kind: ast::ErrorKind::EscapeHexInvalidDigit, |
4763 | } |
4764 | ); |
4765 | assert_eq!( |
4766 | parser(r"\xFG" ).parse_escape().unwrap_err(), |
4767 | TestError { |
4768 | span: span(3..4), |
4769 | kind: ast::ErrorKind::EscapeHexInvalidDigit, |
4770 | } |
4771 | ); |
4772 | } |
4773 | |
4774 | #[test] |
4775 | fn parse_hex_four() { |
4776 | for i in 0..65536 { |
4777 | let c = match char::from_u32(i) { |
4778 | None => continue, |
4779 | Some(c) => c, |
4780 | }; |
4781 | let pat = format!(r"\u{:04x}" , i); |
4782 | assert_eq!( |
4783 | parser(&pat).parse_escape(), |
4784 | Ok(Primitive::Literal(ast::Literal { |
4785 | span: span(0..pat.len()), |
4786 | kind: ast::LiteralKind::HexFixed( |
4787 | ast::HexLiteralKind::UnicodeShort |
4788 | ), |
4789 | c, |
4790 | })) |
4791 | ); |
4792 | } |
4793 | |
4794 | assert_eq!( |
4795 | parser(r"\uF" ).parse_escape().unwrap_err(), |
4796 | TestError { |
4797 | span: span(3..3), |
4798 | kind: ast::ErrorKind::EscapeUnexpectedEof, |
4799 | } |
4800 | ); |
4801 | assert_eq!( |
4802 | parser(r"\uG" ).parse_escape().unwrap_err(), |
4803 | TestError { |
4804 | span: span(2..3), |
4805 | kind: ast::ErrorKind::EscapeHexInvalidDigit, |
4806 | } |
4807 | ); |
4808 | assert_eq!( |
4809 | parser(r"\uFG" ).parse_escape().unwrap_err(), |
4810 | TestError { |
4811 | span: span(3..4), |
4812 | kind: ast::ErrorKind::EscapeHexInvalidDigit, |
4813 | } |
4814 | ); |
4815 | assert_eq!( |
4816 | parser(r"\uFFG" ).parse_escape().unwrap_err(), |
4817 | TestError { |
4818 | span: span(4..5), |
4819 | kind: ast::ErrorKind::EscapeHexInvalidDigit, |
4820 | } |
4821 | ); |
4822 | assert_eq!( |
4823 | parser(r"\uFFFG" ).parse_escape().unwrap_err(), |
4824 | TestError { |
4825 | span: span(5..6), |
4826 | kind: ast::ErrorKind::EscapeHexInvalidDigit, |
4827 | } |
4828 | ); |
4829 | assert_eq!( |
4830 | parser(r"\uD800" ).parse_escape().unwrap_err(), |
4831 | TestError { |
4832 | span: span(2..6), |
4833 | kind: ast::ErrorKind::EscapeHexInvalid, |
4834 | } |
4835 | ); |
4836 | } |
4837 | |
4838 | #[test] |
4839 | fn parse_hex_eight() { |
4840 | for i in 0..65536 { |
4841 | let c = match char::from_u32(i) { |
4842 | None => continue, |
4843 | Some(c) => c, |
4844 | }; |
4845 | let pat = format!(r"\U{:08x}" , i); |
4846 | assert_eq!( |
4847 | parser(&pat).parse_escape(), |
4848 | Ok(Primitive::Literal(ast::Literal { |
4849 | span: span(0..pat.len()), |
4850 | kind: ast::LiteralKind::HexFixed( |
4851 | ast::HexLiteralKind::UnicodeLong |
4852 | ), |
4853 | c, |
4854 | })) |
4855 | ); |
4856 | } |
4857 | |
4858 | assert_eq!( |
4859 | parser(r"\UF" ).parse_escape().unwrap_err(), |
4860 | TestError { |
4861 | span: span(3..3), |
4862 | kind: ast::ErrorKind::EscapeUnexpectedEof, |
4863 | } |
4864 | ); |
4865 | assert_eq!( |
4866 | parser(r"\UG" ).parse_escape().unwrap_err(), |
4867 | TestError { |
4868 | span: span(2..3), |
4869 | kind: ast::ErrorKind::EscapeHexInvalidDigit, |
4870 | } |
4871 | ); |
4872 | assert_eq!( |
4873 | parser(r"\UFG" ).parse_escape().unwrap_err(), |
4874 | TestError { |
4875 | span: span(3..4), |
4876 | kind: ast::ErrorKind::EscapeHexInvalidDigit, |
4877 | } |
4878 | ); |
4879 | assert_eq!( |
4880 | parser(r"\UFFG" ).parse_escape().unwrap_err(), |
4881 | TestError { |
4882 | span: span(4..5), |
4883 | kind: ast::ErrorKind::EscapeHexInvalidDigit, |
4884 | } |
4885 | ); |
4886 | assert_eq!( |
4887 | parser(r"\UFFFG" ).parse_escape().unwrap_err(), |
4888 | TestError { |
4889 | span: span(5..6), |
4890 | kind: ast::ErrorKind::EscapeHexInvalidDigit, |
4891 | } |
4892 | ); |
4893 | assert_eq!( |
4894 | parser(r"\UFFFFG" ).parse_escape().unwrap_err(), |
4895 | TestError { |
4896 | span: span(6..7), |
4897 | kind: ast::ErrorKind::EscapeHexInvalidDigit, |
4898 | } |
4899 | ); |
4900 | assert_eq!( |
4901 | parser(r"\UFFFFFG" ).parse_escape().unwrap_err(), |
4902 | TestError { |
4903 | span: span(7..8), |
4904 | kind: ast::ErrorKind::EscapeHexInvalidDigit, |
4905 | } |
4906 | ); |
4907 | assert_eq!( |
4908 | parser(r"\UFFFFFFG" ).parse_escape().unwrap_err(), |
4909 | TestError { |
4910 | span: span(8..9), |
4911 | kind: ast::ErrorKind::EscapeHexInvalidDigit, |
4912 | } |
4913 | ); |
4914 | assert_eq!( |
4915 | parser(r"\UFFFFFFFG" ).parse_escape().unwrap_err(), |
4916 | TestError { |
4917 | span: span(9..10), |
4918 | kind: ast::ErrorKind::EscapeHexInvalidDigit, |
4919 | } |
4920 | ); |
4921 | } |
4922 | |
4923 | #[test] |
4924 | fn parse_hex_brace() { |
4925 | assert_eq!( |
4926 | parser(r"\u{26c4}" ).parse_escape(), |
4927 | Ok(Primitive::Literal(ast::Literal { |
4928 | span: span(0..8), |
4929 | kind: ast::LiteralKind::HexBrace( |
4930 | ast::HexLiteralKind::UnicodeShort |
4931 | ), |
4932 | c: '⛄' , |
4933 | })) |
4934 | ); |
4935 | assert_eq!( |
4936 | parser(r"\U{26c4}" ).parse_escape(), |
4937 | Ok(Primitive::Literal(ast::Literal { |
4938 | span: span(0..8), |
4939 | kind: ast::LiteralKind::HexBrace( |
4940 | ast::HexLiteralKind::UnicodeLong |
4941 | ), |
4942 | c: '⛄' , |
4943 | })) |
4944 | ); |
4945 | assert_eq!( |
4946 | parser(r"\x{26c4}" ).parse_escape(), |
4947 | Ok(Primitive::Literal(ast::Literal { |
4948 | span: span(0..8), |
4949 | kind: ast::LiteralKind::HexBrace(ast::HexLiteralKind::X), |
4950 | c: '⛄' , |
4951 | })) |
4952 | ); |
4953 | assert_eq!( |
4954 | parser(r"\x{26C4}" ).parse_escape(), |
4955 | Ok(Primitive::Literal(ast::Literal { |
4956 | span: span(0..8), |
4957 | kind: ast::LiteralKind::HexBrace(ast::HexLiteralKind::X), |
4958 | c: '⛄' , |
4959 | })) |
4960 | ); |
4961 | assert_eq!( |
4962 | parser(r"\x{10fFfF}" ).parse_escape(), |
4963 | Ok(Primitive::Literal(ast::Literal { |
4964 | span: span(0..10), |
4965 | kind: ast::LiteralKind::HexBrace(ast::HexLiteralKind::X), |
4966 | c: ' \u{10FFFF}' , |
4967 | })) |
4968 | ); |
4969 | |
4970 | assert_eq!( |
4971 | parser(r"\x" ).parse_escape().unwrap_err(), |
4972 | TestError { |
4973 | span: span(2..2), |
4974 | kind: ast::ErrorKind::EscapeUnexpectedEof, |
4975 | } |
4976 | ); |
4977 | assert_eq!( |
4978 | parser(r"\x{" ).parse_escape().unwrap_err(), |
4979 | TestError { |
4980 | span: span(2..3), |
4981 | kind: ast::ErrorKind::EscapeUnexpectedEof, |
4982 | } |
4983 | ); |
4984 | assert_eq!( |
4985 | parser(r"\x{FF" ).parse_escape().unwrap_err(), |
4986 | TestError { |
4987 | span: span(2..5), |
4988 | kind: ast::ErrorKind::EscapeUnexpectedEof, |
4989 | } |
4990 | ); |
4991 | assert_eq!( |
4992 | parser(r"\x{}" ).parse_escape().unwrap_err(), |
4993 | TestError { |
4994 | span: span(2..4), |
4995 | kind: ast::ErrorKind::EscapeHexEmpty, |
4996 | } |
4997 | ); |
4998 | assert_eq!( |
4999 | parser(r"\x{FGF}" ).parse_escape().unwrap_err(), |
5000 | TestError { |
5001 | span: span(4..5), |
5002 | kind: ast::ErrorKind::EscapeHexInvalidDigit, |
5003 | } |
5004 | ); |
5005 | assert_eq!( |
5006 | parser(r"\x{FFFFFF}" ).parse_escape().unwrap_err(), |
5007 | TestError { |
5008 | span: span(3..9), |
5009 | kind: ast::ErrorKind::EscapeHexInvalid, |
5010 | } |
5011 | ); |
5012 | assert_eq!( |
5013 | parser(r"\x{D800}" ).parse_escape().unwrap_err(), |
5014 | TestError { |
5015 | span: span(3..7), |
5016 | kind: ast::ErrorKind::EscapeHexInvalid, |
5017 | } |
5018 | ); |
5019 | assert_eq!( |
5020 | parser(r"\x{FFFFFFFFF}" ).parse_escape().unwrap_err(), |
5021 | TestError { |
5022 | span: span(3..12), |
5023 | kind: ast::ErrorKind::EscapeHexInvalid, |
5024 | } |
5025 | ); |
5026 | } |
5027 | |
5028 | #[test] |
5029 | fn parse_decimal() { |
5030 | assert_eq!(parser("123" ).parse_decimal(), Ok(123)); |
5031 | assert_eq!(parser("0" ).parse_decimal(), Ok(0)); |
5032 | assert_eq!(parser("01" ).parse_decimal(), Ok(1)); |
5033 | |
5034 | assert_eq!( |
5035 | parser("-1" ).parse_decimal().unwrap_err(), |
5036 | TestError { span: span(0..0), kind: ast::ErrorKind::DecimalEmpty } |
5037 | ); |
5038 | assert_eq!( |
5039 | parser("" ).parse_decimal().unwrap_err(), |
5040 | TestError { span: span(0..0), kind: ast::ErrorKind::DecimalEmpty } |
5041 | ); |
5042 | assert_eq!( |
5043 | parser("9999999999" ).parse_decimal().unwrap_err(), |
5044 | TestError { |
5045 | span: span(0..10), |
5046 | kind: ast::ErrorKind::DecimalInvalid, |
5047 | } |
5048 | ); |
5049 | } |
5050 | |
5051 | #[test] |
5052 | fn parse_set_class() { |
5053 | fn union(span: Span, items: Vec<ast::ClassSetItem>) -> ast::ClassSet { |
5054 | ast::ClassSet::union(ast::ClassSetUnion { span, items }) |
5055 | } |
5056 | |
5057 | fn intersection( |
5058 | span: Span, |
5059 | lhs: ast::ClassSet, |
5060 | rhs: ast::ClassSet, |
5061 | ) -> ast::ClassSet { |
5062 | ast::ClassSet::BinaryOp(ast::ClassSetBinaryOp { |
5063 | span, |
5064 | kind: ast::ClassSetBinaryOpKind::Intersection, |
5065 | lhs: Box::new(lhs), |
5066 | rhs: Box::new(rhs), |
5067 | }) |
5068 | } |
5069 | |
5070 | fn difference( |
5071 | span: Span, |
5072 | lhs: ast::ClassSet, |
5073 | rhs: ast::ClassSet, |
5074 | ) -> ast::ClassSet { |
5075 | ast::ClassSet::BinaryOp(ast::ClassSetBinaryOp { |
5076 | span, |
5077 | kind: ast::ClassSetBinaryOpKind::Difference, |
5078 | lhs: Box::new(lhs), |
5079 | rhs: Box::new(rhs), |
5080 | }) |
5081 | } |
5082 | |
5083 | fn symdifference( |
5084 | span: Span, |
5085 | lhs: ast::ClassSet, |
5086 | rhs: ast::ClassSet, |
5087 | ) -> ast::ClassSet { |
5088 | ast::ClassSet::BinaryOp(ast::ClassSetBinaryOp { |
5089 | span, |
5090 | kind: ast::ClassSetBinaryOpKind::SymmetricDifference, |
5091 | lhs: Box::new(lhs), |
5092 | rhs: Box::new(rhs), |
5093 | }) |
5094 | } |
5095 | |
5096 | fn itemset(item: ast::ClassSetItem) -> ast::ClassSet { |
5097 | ast::ClassSet::Item(item) |
5098 | } |
5099 | |
5100 | fn item_ascii(cls: ast::ClassAscii) -> ast::ClassSetItem { |
5101 | ast::ClassSetItem::Ascii(cls) |
5102 | } |
5103 | |
5104 | fn item_unicode(cls: ast::ClassUnicode) -> ast::ClassSetItem { |
5105 | ast::ClassSetItem::Unicode(cls) |
5106 | } |
5107 | |
5108 | fn item_perl(cls: ast::ClassPerl) -> ast::ClassSetItem { |
5109 | ast::ClassSetItem::Perl(cls) |
5110 | } |
5111 | |
5112 | fn item_bracket(cls: ast::ClassBracketed) -> ast::ClassSetItem { |
5113 | ast::ClassSetItem::Bracketed(Box::new(cls)) |
5114 | } |
5115 | |
5116 | fn lit(span: Span, c: char) -> ast::ClassSetItem { |
5117 | ast::ClassSetItem::Literal(ast::Literal { |
5118 | span, |
5119 | kind: ast::LiteralKind::Verbatim, |
5120 | c, |
5121 | }) |
5122 | } |
5123 | |
5124 | fn empty(span: Span) -> ast::ClassSetItem { |
5125 | ast::ClassSetItem::Empty(span) |
5126 | } |
5127 | |
5128 | fn range(span: Span, start: char, end: char) -> ast::ClassSetItem { |
5129 | let pos1 = Position { |
5130 | offset: span.start.offset + start.len_utf8(), |
5131 | column: span.start.column + 1, |
5132 | ..span.start |
5133 | }; |
5134 | let pos2 = Position { |
5135 | offset: span.end.offset - end.len_utf8(), |
5136 | column: span.end.column - 1, |
5137 | ..span.end |
5138 | }; |
5139 | ast::ClassSetItem::Range(ast::ClassSetRange { |
5140 | span, |
5141 | start: ast::Literal { |
5142 | span: Span { end: pos1, ..span }, |
5143 | kind: ast::LiteralKind::Verbatim, |
5144 | c: start, |
5145 | }, |
5146 | end: ast::Literal { |
5147 | span: Span { start: pos2, ..span }, |
5148 | kind: ast::LiteralKind::Verbatim, |
5149 | c: end, |
5150 | }, |
5151 | }) |
5152 | } |
5153 | |
5154 | fn alnum(span: Span, negated: bool) -> ast::ClassAscii { |
5155 | ast::ClassAscii { span, kind: ast::ClassAsciiKind::Alnum, negated } |
5156 | } |
5157 | |
5158 | fn lower(span: Span, negated: bool) -> ast::ClassAscii { |
5159 | ast::ClassAscii { span, kind: ast::ClassAsciiKind::Lower, negated } |
5160 | } |
5161 | |
5162 | assert_eq!( |
5163 | parser("[[:alnum:]]" ).parse(), |
5164 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5165 | span: span(0..11), |
5166 | negated: false, |
5167 | kind: itemset(item_ascii(alnum(span(1..10), false))), |
5168 | })) |
5169 | ); |
5170 | assert_eq!( |
5171 | parser("[[[:alnum:]]]" ).parse(), |
5172 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5173 | span: span(0..13), |
5174 | negated: false, |
5175 | kind: itemset(item_bracket(ast::ClassBracketed { |
5176 | span: span(1..12), |
5177 | negated: false, |
5178 | kind: itemset(item_ascii(alnum(span(2..11), false))), |
5179 | })), |
5180 | })) |
5181 | ); |
5182 | assert_eq!( |
5183 | parser("[[:alnum:]&&[:lower:]]" ).parse(), |
5184 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5185 | span: span(0..22), |
5186 | negated: false, |
5187 | kind: intersection( |
5188 | span(1..21), |
5189 | itemset(item_ascii(alnum(span(1..10), false))), |
5190 | itemset(item_ascii(lower(span(12..21), false))), |
5191 | ), |
5192 | })) |
5193 | ); |
5194 | assert_eq!( |
5195 | parser("[[:alnum:]--[:lower:]]" ).parse(), |
5196 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5197 | span: span(0..22), |
5198 | negated: false, |
5199 | kind: difference( |
5200 | span(1..21), |
5201 | itemset(item_ascii(alnum(span(1..10), false))), |
5202 | itemset(item_ascii(lower(span(12..21), false))), |
5203 | ), |
5204 | })) |
5205 | ); |
5206 | assert_eq!( |
5207 | parser("[[:alnum:]~~[:lower:]]" ).parse(), |
5208 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5209 | span: span(0..22), |
5210 | negated: false, |
5211 | kind: symdifference( |
5212 | span(1..21), |
5213 | itemset(item_ascii(alnum(span(1..10), false))), |
5214 | itemset(item_ascii(lower(span(12..21), false))), |
5215 | ), |
5216 | })) |
5217 | ); |
5218 | |
5219 | assert_eq!( |
5220 | parser("[a]" ).parse(), |
5221 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5222 | span: span(0..3), |
5223 | negated: false, |
5224 | kind: itemset(lit(span(1..2), 'a' )), |
5225 | })) |
5226 | ); |
5227 | assert_eq!( |
5228 | parser(r"[a\]]" ).parse(), |
5229 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5230 | span: span(0..5), |
5231 | negated: false, |
5232 | kind: union( |
5233 | span(1..4), |
5234 | vec![ |
5235 | lit(span(1..2), 'a' ), |
5236 | ast::ClassSetItem::Literal(ast::Literal { |
5237 | span: span(2..4), |
5238 | kind: ast::LiteralKind::Meta, |
5239 | c: ']' , |
5240 | }), |
5241 | ] |
5242 | ), |
5243 | })) |
5244 | ); |
5245 | assert_eq!( |
5246 | parser(r"[a\-z]" ).parse(), |
5247 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5248 | span: span(0..6), |
5249 | negated: false, |
5250 | kind: union( |
5251 | span(1..5), |
5252 | vec![ |
5253 | lit(span(1..2), 'a' ), |
5254 | ast::ClassSetItem::Literal(ast::Literal { |
5255 | span: span(2..4), |
5256 | kind: ast::LiteralKind::Meta, |
5257 | c: '-' , |
5258 | }), |
5259 | lit(span(4..5), 'z' ), |
5260 | ] |
5261 | ), |
5262 | })) |
5263 | ); |
5264 | assert_eq!( |
5265 | parser("[ab]" ).parse(), |
5266 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5267 | span: span(0..4), |
5268 | negated: false, |
5269 | kind: union( |
5270 | span(1..3), |
5271 | vec![lit(span(1..2), 'a' ), lit(span(2..3), 'b' ),] |
5272 | ), |
5273 | })) |
5274 | ); |
5275 | assert_eq!( |
5276 | parser("[a-]" ).parse(), |
5277 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5278 | span: span(0..4), |
5279 | negated: false, |
5280 | kind: union( |
5281 | span(1..3), |
5282 | vec![lit(span(1..2), 'a' ), lit(span(2..3), '-' ),] |
5283 | ), |
5284 | })) |
5285 | ); |
5286 | assert_eq!( |
5287 | parser("[-a]" ).parse(), |
5288 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5289 | span: span(0..4), |
5290 | negated: false, |
5291 | kind: union( |
5292 | span(1..3), |
5293 | vec![lit(span(1..2), '-' ), lit(span(2..3), 'a' ),] |
5294 | ), |
5295 | })) |
5296 | ); |
5297 | assert_eq!( |
5298 | parser(r"[\pL]" ).parse(), |
5299 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5300 | span: span(0..5), |
5301 | negated: false, |
5302 | kind: itemset(item_unicode(ast::ClassUnicode { |
5303 | span: span(1..4), |
5304 | negated: false, |
5305 | kind: ast::ClassUnicodeKind::OneLetter('L' ), |
5306 | })), |
5307 | })) |
5308 | ); |
5309 | assert_eq!( |
5310 | parser(r"[\w]" ).parse(), |
5311 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5312 | span: span(0..4), |
5313 | negated: false, |
5314 | kind: itemset(item_perl(ast::ClassPerl { |
5315 | span: span(1..3), |
5316 | kind: ast::ClassPerlKind::Word, |
5317 | negated: false, |
5318 | })), |
5319 | })) |
5320 | ); |
5321 | assert_eq!( |
5322 | parser(r"[a\wz]" ).parse(), |
5323 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5324 | span: span(0..6), |
5325 | negated: false, |
5326 | kind: union( |
5327 | span(1..5), |
5328 | vec![ |
5329 | lit(span(1..2), 'a' ), |
5330 | item_perl(ast::ClassPerl { |
5331 | span: span(2..4), |
5332 | kind: ast::ClassPerlKind::Word, |
5333 | negated: false, |
5334 | }), |
5335 | lit(span(4..5), 'z' ), |
5336 | ] |
5337 | ), |
5338 | })) |
5339 | ); |
5340 | |
5341 | assert_eq!( |
5342 | parser("[a-z]" ).parse(), |
5343 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5344 | span: span(0..5), |
5345 | negated: false, |
5346 | kind: itemset(range(span(1..4), 'a' , 'z' )), |
5347 | })) |
5348 | ); |
5349 | assert_eq!( |
5350 | parser("[a-cx-z]" ).parse(), |
5351 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5352 | span: span(0..8), |
5353 | negated: false, |
5354 | kind: union( |
5355 | span(1..7), |
5356 | vec![ |
5357 | range(span(1..4), 'a' , 'c' ), |
5358 | range(span(4..7), 'x' , 'z' ), |
5359 | ] |
5360 | ), |
5361 | })) |
5362 | ); |
5363 | assert_eq!( |
5364 | parser(r"[\w&&a-cx-z]" ).parse(), |
5365 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5366 | span: span(0..12), |
5367 | negated: false, |
5368 | kind: intersection( |
5369 | span(1..11), |
5370 | itemset(item_perl(ast::ClassPerl { |
5371 | span: span(1..3), |
5372 | kind: ast::ClassPerlKind::Word, |
5373 | negated: false, |
5374 | })), |
5375 | union( |
5376 | span(5..11), |
5377 | vec![ |
5378 | range(span(5..8), 'a' , 'c' ), |
5379 | range(span(8..11), 'x' , 'z' ), |
5380 | ] |
5381 | ), |
5382 | ), |
5383 | })) |
5384 | ); |
5385 | assert_eq!( |
5386 | parser(r"[a-cx-z&&\w]" ).parse(), |
5387 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5388 | span: span(0..12), |
5389 | negated: false, |
5390 | kind: intersection( |
5391 | span(1..11), |
5392 | union( |
5393 | span(1..7), |
5394 | vec![ |
5395 | range(span(1..4), 'a' , 'c' ), |
5396 | range(span(4..7), 'x' , 'z' ), |
5397 | ] |
5398 | ), |
5399 | itemset(item_perl(ast::ClassPerl { |
5400 | span: span(9..11), |
5401 | kind: ast::ClassPerlKind::Word, |
5402 | negated: false, |
5403 | })), |
5404 | ), |
5405 | })) |
5406 | ); |
5407 | assert_eq!( |
5408 | parser(r"[a--b--c]" ).parse(), |
5409 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5410 | span: span(0..9), |
5411 | negated: false, |
5412 | kind: difference( |
5413 | span(1..8), |
5414 | difference( |
5415 | span(1..5), |
5416 | itemset(lit(span(1..2), 'a' )), |
5417 | itemset(lit(span(4..5), 'b' )), |
5418 | ), |
5419 | itemset(lit(span(7..8), 'c' )), |
5420 | ), |
5421 | })) |
5422 | ); |
5423 | assert_eq!( |
5424 | parser(r"[a~~b~~c]" ).parse(), |
5425 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5426 | span: span(0..9), |
5427 | negated: false, |
5428 | kind: symdifference( |
5429 | span(1..8), |
5430 | symdifference( |
5431 | span(1..5), |
5432 | itemset(lit(span(1..2), 'a' )), |
5433 | itemset(lit(span(4..5), 'b' )), |
5434 | ), |
5435 | itemset(lit(span(7..8), 'c' )), |
5436 | ), |
5437 | })) |
5438 | ); |
5439 | assert_eq!( |
5440 | parser(r"[\^&&^]" ).parse(), |
5441 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5442 | span: span(0..7), |
5443 | negated: false, |
5444 | kind: intersection( |
5445 | span(1..6), |
5446 | itemset(ast::ClassSetItem::Literal(ast::Literal { |
5447 | span: span(1..3), |
5448 | kind: ast::LiteralKind::Meta, |
5449 | c: '^' , |
5450 | })), |
5451 | itemset(lit(span(5..6), '^' )), |
5452 | ), |
5453 | })) |
5454 | ); |
5455 | assert_eq!( |
5456 | parser(r"[\&&&&]" ).parse(), |
5457 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5458 | span: span(0..7), |
5459 | negated: false, |
5460 | kind: intersection( |
5461 | span(1..6), |
5462 | itemset(ast::ClassSetItem::Literal(ast::Literal { |
5463 | span: span(1..3), |
5464 | kind: ast::LiteralKind::Meta, |
5465 | c: '&' , |
5466 | })), |
5467 | itemset(lit(span(5..6), '&' )), |
5468 | ), |
5469 | })) |
5470 | ); |
5471 | assert_eq!( |
5472 | parser(r"[&&&&]" ).parse(), |
5473 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5474 | span: span(0..6), |
5475 | negated: false, |
5476 | kind: intersection( |
5477 | span(1..5), |
5478 | intersection( |
5479 | span(1..3), |
5480 | itemset(empty(span(1..1))), |
5481 | itemset(empty(span(3..3))), |
5482 | ), |
5483 | itemset(empty(span(5..5))), |
5484 | ), |
5485 | })) |
5486 | ); |
5487 | |
5488 | let pat = "[☃-⛄]" ; |
5489 | assert_eq!( |
5490 | parser(pat).parse(), |
5491 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5492 | span: span_range(pat, 0..9), |
5493 | negated: false, |
5494 | kind: itemset(ast::ClassSetItem::Range(ast::ClassSetRange { |
5495 | span: span_range(pat, 1..8), |
5496 | start: ast::Literal { |
5497 | span: span_range(pat, 1..4), |
5498 | kind: ast::LiteralKind::Verbatim, |
5499 | c: '☃' , |
5500 | }, |
5501 | end: ast::Literal { |
5502 | span: span_range(pat, 5..8), |
5503 | kind: ast::LiteralKind::Verbatim, |
5504 | c: '⛄' , |
5505 | }, |
5506 | })), |
5507 | })) |
5508 | ); |
5509 | |
5510 | assert_eq!( |
5511 | parser(r"[]]" ).parse(), |
5512 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5513 | span: span(0..3), |
5514 | negated: false, |
5515 | kind: itemset(lit(span(1..2), ']' )), |
5516 | })) |
5517 | ); |
5518 | assert_eq!( |
5519 | parser(r"[]\[]" ).parse(), |
5520 | Ok(Ast::class_bracketed(ast::ClassBracketed { |
5521 | span: span(0..5), |
5522 | negated: false, |
5523 | kind: union( |
5524 | span(1..4), |
5525 | vec![ |
5526 | lit(span(1..2), ']' ), |
5527 | ast::ClassSetItem::Literal(ast::Literal { |
5528 | span: span(2..4), |
5529 | kind: ast::LiteralKind::Meta, |
5530 | c: '[' , |
5531 | }), |
5532 | ] |
5533 | ), |
5534 | })) |
5535 | ); |
5536 | assert_eq!( |
5537 | parser(r"[\[]]" ).parse(), |
5538 | Ok(concat( |
5539 | 0..5, |
5540 | vec![ |
5541 | Ast::class_bracketed(ast::ClassBracketed { |
5542 | span: span(0..4), |
5543 | negated: false, |
5544 | kind: itemset(ast::ClassSetItem::Literal( |
5545 | ast::Literal { |
5546 | span: span(1..3), |
5547 | kind: ast::LiteralKind::Meta, |
5548 | c: '[' , |
5549 | } |
5550 | )), |
5551 | }), |
5552 | Ast::literal(ast::Literal { |
5553 | span: span(4..5), |
5554 | kind: ast::LiteralKind::Verbatim, |
5555 | c: ']' , |
5556 | }), |
5557 | ] |
5558 | )) |
5559 | ); |
5560 | |
5561 | assert_eq!( |
5562 | parser("[" ).parse().unwrap_err(), |
5563 | TestError { |
5564 | span: span(0..1), |
5565 | kind: ast::ErrorKind::ClassUnclosed, |
5566 | } |
5567 | ); |
5568 | assert_eq!( |
5569 | parser("[[" ).parse().unwrap_err(), |
5570 | TestError { |
5571 | span: span(1..2), |
5572 | kind: ast::ErrorKind::ClassUnclosed, |
5573 | } |
5574 | ); |
5575 | assert_eq!( |
5576 | parser("[[-]" ).parse().unwrap_err(), |
5577 | TestError { |
5578 | span: span(0..1), |
5579 | kind: ast::ErrorKind::ClassUnclosed, |
5580 | } |
5581 | ); |
5582 | assert_eq!( |
5583 | parser("[[[:alnum:]" ).parse().unwrap_err(), |
5584 | TestError { |
5585 | span: span(1..2), |
5586 | kind: ast::ErrorKind::ClassUnclosed, |
5587 | } |
5588 | ); |
5589 | assert_eq!( |
5590 | parser(r"[\b]" ).parse().unwrap_err(), |
5591 | TestError { |
5592 | span: span(1..3), |
5593 | kind: ast::ErrorKind::ClassEscapeInvalid, |
5594 | } |
5595 | ); |
5596 | assert_eq!( |
5597 | parser(r"[\w-a]" ).parse().unwrap_err(), |
5598 | TestError { |
5599 | span: span(1..3), |
5600 | kind: ast::ErrorKind::ClassRangeLiteral, |
5601 | } |
5602 | ); |
5603 | assert_eq!( |
5604 | parser(r"[a-\w]" ).parse().unwrap_err(), |
5605 | TestError { |
5606 | span: span(3..5), |
5607 | kind: ast::ErrorKind::ClassRangeLiteral, |
5608 | } |
5609 | ); |
5610 | assert_eq!( |
5611 | parser(r"[z-a]" ).parse().unwrap_err(), |
5612 | TestError { |
5613 | span: span(1..4), |
5614 | kind: ast::ErrorKind::ClassRangeInvalid, |
5615 | } |
5616 | ); |
5617 | |
5618 | assert_eq!( |
5619 | parser_ignore_whitespace("[a " ).parse().unwrap_err(), |
5620 | TestError { |
5621 | span: span(0..1), |
5622 | kind: ast::ErrorKind::ClassUnclosed, |
5623 | } |
5624 | ); |
5625 | assert_eq!( |
5626 | parser_ignore_whitespace("[a- " ).parse().unwrap_err(), |
5627 | TestError { |
5628 | span: span(0..1), |
5629 | kind: ast::ErrorKind::ClassUnclosed, |
5630 | } |
5631 | ); |
5632 | } |
5633 | |
5634 | #[test] |
5635 | fn parse_set_class_open() { |
5636 | assert_eq!(parser("[a]" ).parse_set_class_open(), { |
5637 | let set = ast::ClassBracketed { |
5638 | span: span(0..1), |
5639 | negated: false, |
5640 | kind: ast::ClassSet::union(ast::ClassSetUnion { |
5641 | span: span(1..1), |
5642 | items: vec![], |
5643 | }), |
5644 | }; |
5645 | let union = ast::ClassSetUnion { span: span(1..1), items: vec![] }; |
5646 | Ok((set, union)) |
5647 | }); |
5648 | assert_eq!( |
5649 | parser_ignore_whitespace("[ a]" ).parse_set_class_open(), |
5650 | { |
5651 | let set = ast::ClassBracketed { |
5652 | span: span(0..4), |
5653 | negated: false, |
5654 | kind: ast::ClassSet::union(ast::ClassSetUnion { |
5655 | span: span(4..4), |
5656 | items: vec![], |
5657 | }), |
5658 | }; |
5659 | let union = |
5660 | ast::ClassSetUnion { span: span(4..4), items: vec![] }; |
5661 | Ok((set, union)) |
5662 | } |
5663 | ); |
5664 | assert_eq!(parser("[^a]" ).parse_set_class_open(), { |
5665 | let set = ast::ClassBracketed { |
5666 | span: span(0..2), |
5667 | negated: true, |
5668 | kind: ast::ClassSet::union(ast::ClassSetUnion { |
5669 | span: span(2..2), |
5670 | items: vec![], |
5671 | }), |
5672 | }; |
5673 | let union = ast::ClassSetUnion { span: span(2..2), items: vec![] }; |
5674 | Ok((set, union)) |
5675 | }); |
5676 | assert_eq!( |
5677 | parser_ignore_whitespace("[ ^ a]" ).parse_set_class_open(), |
5678 | { |
5679 | let set = ast::ClassBracketed { |
5680 | span: span(0..4), |
5681 | negated: true, |
5682 | kind: ast::ClassSet::union(ast::ClassSetUnion { |
5683 | span: span(4..4), |
5684 | items: vec![], |
5685 | }), |
5686 | }; |
5687 | let union = |
5688 | ast::ClassSetUnion { span: span(4..4), items: vec![] }; |
5689 | Ok((set, union)) |
5690 | } |
5691 | ); |
5692 | assert_eq!(parser("[-a]" ).parse_set_class_open(), { |
5693 | let set = ast::ClassBracketed { |
5694 | span: span(0..2), |
5695 | negated: false, |
5696 | kind: ast::ClassSet::union(ast::ClassSetUnion { |
5697 | span: span(1..1), |
5698 | items: vec![], |
5699 | }), |
5700 | }; |
5701 | let union = ast::ClassSetUnion { |
5702 | span: span(1..2), |
5703 | items: vec![ast::ClassSetItem::Literal(ast::Literal { |
5704 | span: span(1..2), |
5705 | kind: ast::LiteralKind::Verbatim, |
5706 | c: '-' , |
5707 | })], |
5708 | }; |
5709 | Ok((set, union)) |
5710 | }); |
5711 | assert_eq!( |
5712 | parser_ignore_whitespace("[ - a]" ).parse_set_class_open(), |
5713 | { |
5714 | let set = ast::ClassBracketed { |
5715 | span: span(0..4), |
5716 | negated: false, |
5717 | kind: ast::ClassSet::union(ast::ClassSetUnion { |
5718 | span: span(2..2), |
5719 | items: vec![], |
5720 | }), |
5721 | }; |
5722 | let union = ast::ClassSetUnion { |
5723 | span: span(2..3), |
5724 | items: vec![ast::ClassSetItem::Literal(ast::Literal { |
5725 | span: span(2..3), |
5726 | kind: ast::LiteralKind::Verbatim, |
5727 | c: '-' , |
5728 | })], |
5729 | }; |
5730 | Ok((set, union)) |
5731 | } |
5732 | ); |
5733 | assert_eq!(parser("[^-a]" ).parse_set_class_open(), { |
5734 | let set = ast::ClassBracketed { |
5735 | span: span(0..3), |
5736 | negated: true, |
5737 | kind: ast::ClassSet::union(ast::ClassSetUnion { |
5738 | span: span(2..2), |
5739 | items: vec![], |
5740 | }), |
5741 | }; |
5742 | let union = ast::ClassSetUnion { |
5743 | span: span(2..3), |
5744 | items: vec![ast::ClassSetItem::Literal(ast::Literal { |
5745 | span: span(2..3), |
5746 | kind: ast::LiteralKind::Verbatim, |
5747 | c: '-' , |
5748 | })], |
5749 | }; |
5750 | Ok((set, union)) |
5751 | }); |
5752 | assert_eq!(parser("[--a]" ).parse_set_class_open(), { |
5753 | let set = ast::ClassBracketed { |
5754 | span: span(0..3), |
5755 | negated: false, |
5756 | kind: ast::ClassSet::union(ast::ClassSetUnion { |
5757 | span: span(1..1), |
5758 | items: vec![], |
5759 | }), |
5760 | }; |
5761 | let union = ast::ClassSetUnion { |
5762 | span: span(1..3), |
5763 | items: vec![ |
5764 | ast::ClassSetItem::Literal(ast::Literal { |
5765 | span: span(1..2), |
5766 | kind: ast::LiteralKind::Verbatim, |
5767 | c: '-' , |
5768 | }), |
5769 | ast::ClassSetItem::Literal(ast::Literal { |
5770 | span: span(2..3), |
5771 | kind: ast::LiteralKind::Verbatim, |
5772 | c: '-' , |
5773 | }), |
5774 | ], |
5775 | }; |
5776 | Ok((set, union)) |
5777 | }); |
5778 | assert_eq!(parser("[]a]" ).parse_set_class_open(), { |
5779 | let set = ast::ClassBracketed { |
5780 | span: span(0..2), |
5781 | negated: false, |
5782 | kind: ast::ClassSet::union( |
---|