1/*!
2Converts ranges of Unicode scalar values to equivalent ranges of UTF-8 bytes.
3
4This is sub-module is useful for constructing byte based automatons that need
5to embed UTF-8 decoding. The most common use of this module is in conjunction
6with the [`hir::ClassUnicodeRange`](crate::hir::ClassUnicodeRange) type.
7
8See the documentation on the `Utf8Sequences` iterator for more details and
9an example.
10
11# Wait, what is this?
12
13This is simplest to explain with an example. Let's say you wanted to test
14whether a particular byte sequence was a Cyrillic character. One possible
15scalar value range is `[0400-04FF]`. The set of allowed bytes for this
16range can be expressed as a sequence of byte ranges:
17
18```text
19[D0-D3][80-BF]
20```
21
22This is simple enough: simply encode the boundaries, `0400` encodes to
23`D0 80` and `04FF` encodes to `D3 BF`, and create ranges from each
24corresponding pair of bytes: `D0` to `D3` and `80` to `BF`.
25
26However, what if you wanted to add the Cyrillic Supplementary characters to
27your range? Your range might then become `[0400-052F]`. The same procedure
28as above doesn't quite work because `052F` encodes to `D4 AF`. The byte ranges
29you'd get from the previous transformation would be `[D0-D4][80-AF]`. However,
30this isn't quite correct because this range doesn't capture many characters,
31for example, `04FF` (because its last byte, `BF` isn't in the range `80-AF`).
32
33Instead, you need multiple sequences of byte ranges:
34
35```text
36[D0-D3][80-BF] # matches codepoints 0400-04FF
37[D4][80-AF] # matches codepoints 0500-052F
38```
39
40This gets even more complicated if you want bigger ranges, particularly if
41they naively contain surrogate codepoints. For example, the sequence of byte
42ranges for the basic multilingual plane (`[0000-FFFF]`) look like this:
43
44```text
45[0-7F]
46[C2-DF][80-BF]
47[E0][A0-BF][80-BF]
48[E1-EC][80-BF][80-BF]
49[ED][80-9F][80-BF]
50[EE-EF][80-BF][80-BF]
51```
52
53Note that the byte ranges above will *not* match any erroneous encoding of
54UTF-8, including encodings of surrogate codepoints.
55
56And, of course, for all of Unicode (`[000000-10FFFF]`):
57
58```text
59[0-7F]
60[C2-DF][80-BF]
61[E0][A0-BF][80-BF]
62[E1-EC][80-BF][80-BF]
63[ED][80-9F][80-BF]
64[EE-EF][80-BF][80-BF]
65[F0][90-BF][80-BF][80-BF]
66[F1-F3][80-BF][80-BF][80-BF]
67[F4][80-8F][80-BF][80-BF]
68```
69
70This module automates the process of creating these byte ranges from ranges of
71Unicode scalar values.
72
73# Lineage
74
75I got the idea and general implementation strategy from Russ Cox in his
76[article on regexps](https://web.archive.org/web/20160404141123/https://swtch.com/~rsc/regexp/regexp3.html) and RE2.
77Russ Cox got it from Ken Thompson's `grep` (no source, folk lore?).
78I also got the idea from
79[Lucene](https://github.com/apache/lucene-solr/blob/ae93f4e7ac6a3908046391de35d4f50a0d3c59ca/lucene/core/src/java/org/apache/lucene/util/automaton/UTF32ToUTF8.java),
80which uses it for executing automata on their term index.
81*/
82
83use core::{char, fmt, iter::FusedIterator, slice};
84
85use alloc::{vec, vec::Vec};
86
87const MAX_UTF8_BYTES: usize = 4;
88
89/// Utf8Sequence represents a sequence of byte ranges.
90///
91/// To match a Utf8Sequence, a candidate byte sequence must match each
92/// successive range.
93///
94/// For example, if there are two ranges, `[C2-DF][80-BF]`, then the byte
95/// sequence `\xDD\x61` would not match because `0x61 < 0x80`.
96#[derive(Copy, Clone, Eq, PartialEq, PartialOrd, Ord)]
97pub enum Utf8Sequence {
98 /// One byte range.
99 One(Utf8Range),
100 /// Two successive byte ranges.
101 Two([Utf8Range; 2]),
102 /// Three successive byte ranges.
103 Three([Utf8Range; 3]),
104 /// Four successive byte ranges.
105 Four([Utf8Range; 4]),
106}
107
108impl Utf8Sequence {
109 /// Creates a new UTF-8 sequence from the encoded bytes of a scalar value
110 /// range.
111 ///
112 /// This assumes that `start` and `end` have the same length.
113 fn from_encoded_range(start: &[u8], end: &[u8]) -> Self {
114 assert_eq!(start.len(), end.len());
115 match start.len() {
116 2 => Utf8Sequence::Two([
117 Utf8Range::new(start[0], end[0]),
118 Utf8Range::new(start[1], end[1]),
119 ]),
120 3 => Utf8Sequence::Three([
121 Utf8Range::new(start[0], end[0]),
122 Utf8Range::new(start[1], end[1]),
123 Utf8Range::new(start[2], end[2]),
124 ]),
125 4 => Utf8Sequence::Four([
126 Utf8Range::new(start[0], end[0]),
127 Utf8Range::new(start[1], end[1]),
128 Utf8Range::new(start[2], end[2]),
129 Utf8Range::new(start[3], end[3]),
130 ]),
131 n => unreachable!("invalid encoded length: {}", n),
132 }
133 }
134
135 /// Returns the underlying sequence of byte ranges as a slice.
136 pub fn as_slice(&self) -> &[Utf8Range] {
137 use self::Utf8Sequence::*;
138 match *self {
139 One(ref r) => slice::from_ref(r),
140 Two(ref r) => &r[..],
141 Three(ref r) => &r[..],
142 Four(ref r) => &r[..],
143 }
144 }
145
146 /// Returns the number of byte ranges in this sequence.
147 ///
148 /// The length is guaranteed to be in the closed interval `[1, 4]`.
149 pub fn len(&self) -> usize {
150 self.as_slice().len()
151 }
152
153 /// Reverses the ranges in this sequence.
154 ///
155 /// For example, if this corresponds to the following sequence:
156 ///
157 /// ```text
158 /// [D0-D3][80-BF]
159 /// ```
160 ///
161 /// Then after reversal, it will be
162 ///
163 /// ```text
164 /// [80-BF][D0-D3]
165 /// ```
166 ///
167 /// This is useful when one is constructing a UTF-8 automaton to match
168 /// character classes in reverse.
169 pub fn reverse(&mut self) {
170 match *self {
171 Utf8Sequence::One(_) => {}
172 Utf8Sequence::Two(ref mut x) => x.reverse(),
173 Utf8Sequence::Three(ref mut x) => x.reverse(),
174 Utf8Sequence::Four(ref mut x) => x.reverse(),
175 }
176 }
177
178 /// Returns true if and only if a prefix of `bytes` matches this sequence
179 /// of byte ranges.
180 pub fn matches(&self, bytes: &[u8]) -> bool {
181 if bytes.len() < self.len() {
182 return false;
183 }
184 for (&b, r) in bytes.iter().zip(self) {
185 if !r.matches(b) {
186 return false;
187 }
188 }
189 true
190 }
191}
192
193impl<'a> IntoIterator for &'a Utf8Sequence {
194 type IntoIter = slice::Iter<'a, Utf8Range>;
195 type Item = &'a Utf8Range;
196
197 fn into_iter(self) -> Self::IntoIter {
198 self.as_slice().iter()
199 }
200}
201
202impl fmt::Debug for Utf8Sequence {
203 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
204 use self::Utf8Sequence::*;
205 match *self {
206 One(ref r) => write!(f, "{:?}", r),
207 Two(ref r) => write!(f, "{:?}{:?}", r[0], r[1]),
208 Three(ref r) => write!(f, "{:?}{:?}{:?}", r[0], r[1], r[2]),
209 Four(ref r) => {
210 write!(f, "{:?}{:?}{:?}{:?}", r[0], r[1], r[2], r[3])
211 }
212 }
213 }
214}
215
216/// A single inclusive range of UTF-8 bytes.
217#[derive(Clone, Copy, Eq, PartialEq, PartialOrd, Ord)]
218pub struct Utf8Range {
219 /// Start of byte range (inclusive).
220 pub start: u8,
221 /// End of byte range (inclusive).
222 pub end: u8,
223}
224
225impl Utf8Range {
226 fn new(start: u8, end: u8) -> Self {
227 Utf8Range { start, end }
228 }
229
230 /// Returns true if and only if the given byte is in this range.
231 pub fn matches(&self, b: u8) -> bool {
232 self.start <= b && b <= self.end
233 }
234}
235
236impl fmt::Debug for Utf8Range {
237 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
238 if self.start == self.end {
239 write!(f, "[{:X}]", self.start)
240 } else {
241 write!(f, "[{:X}-{:X}]", self.start, self.end)
242 }
243 }
244}
245
246/// An iterator over ranges of matching UTF-8 byte sequences.
247///
248/// The iteration represents an alternation of comprehensive byte sequences
249/// that match precisely the set of UTF-8 encoded scalar values.
250///
251/// A byte sequence corresponds to one of the scalar values in the range given
252/// if and only if it completely matches exactly one of the sequences of byte
253/// ranges produced by this iterator.
254///
255/// Each sequence of byte ranges matches a unique set of bytes. That is, no two
256/// sequences will match the same bytes.
257///
258/// # Example
259///
260/// This shows how to match an arbitrary byte sequence against a range of
261/// scalar values.
262///
263/// ```rust
264/// use regex_syntax::utf8::{Utf8Sequences, Utf8Sequence};
265///
266/// fn matches(seqs: &[Utf8Sequence], bytes: &[u8]) -> bool {
267/// for range in seqs {
268/// if range.matches(bytes) {
269/// return true;
270/// }
271/// }
272/// false
273/// }
274///
275/// // Test the basic multilingual plane.
276/// let seqs: Vec<_> = Utf8Sequences::new('\u{0}', '\u{FFFF}').collect();
277///
278/// // UTF-8 encoding of 'a'.
279/// assert!(matches(&seqs, &[0x61]));
280/// // UTF-8 encoding of '☃' (`\u{2603}`).
281/// assert!(matches(&seqs, &[0xE2, 0x98, 0x83]));
282/// // UTF-8 encoding of `\u{10348}` (outside the BMP).
283/// assert!(!matches(&seqs, &[0xF0, 0x90, 0x8D, 0x88]));
284/// // Tries to match against a UTF-8 encoding of a surrogate codepoint,
285/// // which is invalid UTF-8, and therefore fails, despite the fact that
286/// // the corresponding codepoint (0xD800) falls in the range given.
287/// assert!(!matches(&seqs, &[0xED, 0xA0, 0x80]));
288/// // And fails against plain old invalid UTF-8.
289/// assert!(!matches(&seqs, &[0xFF, 0xFF]));
290/// ```
291///
292/// If this example seems circuitous, that's because it is! It's meant to be
293/// illustrative. In practice, you could just try to decode your byte sequence
294/// and compare it with the scalar value range directly. However, this is not
295/// always possible (for example, in a byte based automaton).
296#[derive(Debug)]
297pub struct Utf8Sequences {
298 range_stack: Vec<ScalarRange>,
299}
300
301impl Utf8Sequences {
302 /// Create a new iterator over UTF-8 byte ranges for the scalar value range
303 /// given.
304 pub fn new(start: char, end: char) -> Self {
305 let mut it = Utf8Sequences { range_stack: vec![] };
306 it.push(u32::from(start), u32::from(end));
307 it
308 }
309
310 /// reset resets the scalar value range.
311 /// Any existing state is cleared, but resources may be reused.
312 ///
313 /// N.B. Benchmarks say that this method is dubious.
314 #[doc(hidden)]
315 pub fn reset(&mut self, start: char, end: char) {
316 self.range_stack.clear();
317 self.push(u32::from(start), u32::from(end));
318 }
319
320 fn push(&mut self, start: u32, end: u32) {
321 self.range_stack.push(ScalarRange { start, end });
322 }
323}
324
325struct ScalarRange {
326 start: u32,
327 end: u32,
328}
329
330impl fmt::Debug for ScalarRange {
331 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
332 write!(f, "ScalarRange({:X}, {:X})", self.start, self.end)
333 }
334}
335
336impl Iterator for Utf8Sequences {
337 type Item = Utf8Sequence;
338
339 fn next(&mut self) -> Option<Self::Item> {
340 'TOP: while let Some(mut r) = self.range_stack.pop() {
341 'INNER: loop {
342 if let Some((r1, r2)) = r.split() {
343 self.push(r2.start, r2.end);
344 r.start = r1.start;
345 r.end = r1.end;
346 continue 'INNER;
347 }
348 if !r.is_valid() {
349 continue 'TOP;
350 }
351 for i in 1..MAX_UTF8_BYTES {
352 let max = max_scalar_value(i);
353 if r.start <= max && max < r.end {
354 self.push(max + 1, r.end);
355 r.end = max;
356 continue 'INNER;
357 }
358 }
359 if let Some(ascii_range) = r.as_ascii() {
360 return Some(Utf8Sequence::One(ascii_range));
361 }
362 for i in 1..MAX_UTF8_BYTES {
363 let m = (1 << (6 * i)) - 1;
364 if (r.start & !m) != (r.end & !m) {
365 if (r.start & m) != 0 {
366 self.push((r.start | m) + 1, r.end);
367 r.end = r.start | m;
368 continue 'INNER;
369 }
370 if (r.end & m) != m {
371 self.push(r.end & !m, r.end);
372 r.end = (r.end & !m) - 1;
373 continue 'INNER;
374 }
375 }
376 }
377 let mut start = [0; MAX_UTF8_BYTES];
378 let mut end = [0; MAX_UTF8_BYTES];
379 let n = r.encode(&mut start, &mut end);
380 return Some(Utf8Sequence::from_encoded_range(
381 &start[0..n],
382 &end[0..n],
383 ));
384 }
385 }
386 None
387 }
388}
389
390impl FusedIterator for Utf8Sequences {}
391
392impl ScalarRange {
393 /// split splits this range if it overlaps with a surrogate codepoint.
394 ///
395 /// Either or both ranges may be invalid.
396 fn split(&self) -> Option<(ScalarRange, ScalarRange)> {
397 if self.start < 0xE000 && self.end > 0xD7FF {
398 Some((
399 ScalarRange { start: self.start, end: 0xD7FF },
400 ScalarRange { start: 0xE000, end: self.end },
401 ))
402 } else {
403 None
404 }
405 }
406
407 /// is_valid returns true if and only if start <= end.
408 fn is_valid(&self) -> bool {
409 self.start <= self.end
410 }
411
412 /// as_ascii returns this range as a Utf8Range if and only if all scalar
413 /// values in this range can be encoded as a single byte.
414 fn as_ascii(&self) -> Option<Utf8Range> {
415 if self.is_ascii() {
416 let start = u8::try_from(self.start).unwrap();
417 let end = u8::try_from(self.end).unwrap();
418 Some(Utf8Range::new(start, end))
419 } else {
420 None
421 }
422 }
423
424 /// is_ascii returns true if the range is ASCII only (i.e., takes a single
425 /// byte to encode any scalar value).
426 fn is_ascii(&self) -> bool {
427 self.is_valid() && self.end <= 0x7f
428 }
429
430 /// encode writes the UTF-8 encoding of the start and end of this range
431 /// to the corresponding destination slices, and returns the number of
432 /// bytes written.
433 ///
434 /// The slices should have room for at least `MAX_UTF8_BYTES`.
435 fn encode(&self, start: &mut [u8], end: &mut [u8]) -> usize {
436 let cs = char::from_u32(self.start).unwrap();
437 let ce = char::from_u32(self.end).unwrap();
438 let ss = cs.encode_utf8(start);
439 let se = ce.encode_utf8(end);
440 assert_eq!(ss.len(), se.len());
441 ss.len()
442 }
443}
444
445fn max_scalar_value(nbytes: usize) -> u32 {
446 match nbytes {
447 1 => 0x007F,
448 2 => 0x07FF,
449 3 => 0xFFFF,
450 4 => 0x0010_FFFF,
451 _ => unreachable!("invalid UTF-8 byte sequence size"),
452 }
453}
454
455#[cfg(test)]
456mod tests {
457 use core::char;
458
459 use alloc::{vec, vec::Vec};
460
461 use crate::utf8::{Utf8Range, Utf8Sequences};
462
463 fn rutf8(s: u8, e: u8) -> Utf8Range {
464 Utf8Range::new(s, e)
465 }
466
467 fn never_accepts_surrogate_codepoints(start: char, end: char) {
468 for cp in 0xD800..0xE000 {
469 let buf = encode_surrogate(cp);
470 for r in Utf8Sequences::new(start, end) {
471 if r.matches(&buf) {
472 panic!(
473 "Sequence ({:X}, {:X}) contains range {:?}, \
474 which matches surrogate code point {:X} \
475 with encoded bytes {:?}",
476 u32::from(start),
477 u32::from(end),
478 r,
479 cp,
480 buf,
481 );
482 }
483 }
484 }
485 }
486
487 #[test]
488 fn codepoints_no_surrogates() {
489 never_accepts_surrogate_codepoints('\u{0}', '\u{FFFF}');
490 never_accepts_surrogate_codepoints('\u{0}', '\u{10FFFF}');
491 never_accepts_surrogate_codepoints('\u{0}', '\u{10FFFE}');
492 never_accepts_surrogate_codepoints('\u{80}', '\u{10FFFF}');
493 never_accepts_surrogate_codepoints('\u{D7FF}', '\u{E000}');
494 }
495
496 #[test]
497 fn single_codepoint_one_sequence() {
498 // Tests that every range of scalar values that contains a single
499 // scalar value is recognized by one sequence of byte ranges.
500 for i in 0x0..=0x0010_FFFF {
501 let c = match char::from_u32(i) {
502 None => continue,
503 Some(c) => c,
504 };
505 let seqs: Vec<_> = Utf8Sequences::new(c, c).collect();
506 assert_eq!(seqs.len(), 1);
507 }
508 }
509
510 #[test]
511 fn bmp() {
512 use crate::utf8::Utf8Sequence::*;
513
514 let seqs = Utf8Sequences::new('\u{0}', '\u{FFFF}').collect::<Vec<_>>();
515 assert_eq!(
516 seqs,
517 vec![
518 One(rutf8(0x0, 0x7F)),
519 Two([rutf8(0xC2, 0xDF), rutf8(0x80, 0xBF)]),
520 Three([
521 rutf8(0xE0, 0xE0),
522 rutf8(0xA0, 0xBF),
523 rutf8(0x80, 0xBF)
524 ]),
525 Three([
526 rutf8(0xE1, 0xEC),
527 rutf8(0x80, 0xBF),
528 rutf8(0x80, 0xBF)
529 ]),
530 Three([
531 rutf8(0xED, 0xED),
532 rutf8(0x80, 0x9F),
533 rutf8(0x80, 0xBF)
534 ]),
535 Three([
536 rutf8(0xEE, 0xEF),
537 rutf8(0x80, 0xBF),
538 rutf8(0x80, 0xBF)
539 ]),
540 ]
541 );
542 }
543
544 #[test]
545 fn reverse() {
546 use crate::utf8::Utf8Sequence::*;
547
548 let mut s = One(rutf8(0xA, 0xB));
549 s.reverse();
550 assert_eq!(s.as_slice(), &[rutf8(0xA, 0xB)]);
551
552 let mut s = Two([rutf8(0xA, 0xB), rutf8(0xB, 0xC)]);
553 s.reverse();
554 assert_eq!(s.as_slice(), &[rutf8(0xB, 0xC), rutf8(0xA, 0xB)]);
555
556 let mut s = Three([rutf8(0xA, 0xB), rutf8(0xB, 0xC), rutf8(0xC, 0xD)]);
557 s.reverse();
558 assert_eq!(
559 s.as_slice(),
560 &[rutf8(0xC, 0xD), rutf8(0xB, 0xC), rutf8(0xA, 0xB)]
561 );
562
563 let mut s = Four([
564 rutf8(0xA, 0xB),
565 rutf8(0xB, 0xC),
566 rutf8(0xC, 0xD),
567 rutf8(0xD, 0xE),
568 ]);
569 s.reverse();
570 assert_eq!(
571 s.as_slice(),
572 &[
573 rutf8(0xD, 0xE),
574 rutf8(0xC, 0xD),
575 rutf8(0xB, 0xC),
576 rutf8(0xA, 0xB)
577 ]
578 );
579 }
580
581 fn encode_surrogate(cp: u32) -> [u8; 3] {
582 const TAG_CONT: u8 = 0b1000_0000;
583 const TAG_THREE_B: u8 = 0b1110_0000;
584
585 assert!(0xD800 <= cp && cp < 0xE000);
586 let mut dst = [0; 3];
587 dst[0] = u8::try_from(cp >> 12 & 0x0F).unwrap() | TAG_THREE_B;
588 dst[1] = u8::try_from(cp >> 6 & 0x3F).unwrap() | TAG_CONT;
589 dst[2] = u8::try_from(cp & 0x3F).unwrap() | TAG_CONT;
590 dst
591 }
592}
593