| 1 | // Adapted from https://github.com/Alexhuszagh/rust-lexical. |
| 2 | |
| 3 | //! Cached exponents for basen values with 80-bit extended floats. |
| 4 | //! |
| 5 | //! Exact versions of base**n as an extended-precision float, with both |
| 6 | //! large and small powers. Use the large powers to minimize the amount |
| 7 | //! of compounded error. |
| 8 | //! |
| 9 | //! These values were calculated using Python, using the arbitrary-precision |
| 10 | //! integer to calculate exact extended-representation of each value. |
| 11 | //! These values are all normalized. |
| 12 | |
| 13 | use super::cached::{ExtendedFloatArray, ModeratePathPowers}; |
| 14 | |
| 15 | // LOW-LEVEL |
| 16 | // --------- |
| 17 | |
| 18 | // BASE10 |
| 19 | |
| 20 | const BASE10_SMALL_MANTISSA: [u64; 10] = [ |
| 21 | 9223372036854775808, // 10^0 |
| 22 | 11529215046068469760, // 10^1 |
| 23 | 14411518807585587200, // 10^2 |
| 24 | 18014398509481984000, // 10^3 |
| 25 | 11258999068426240000, // 10^4 |
| 26 | 14073748835532800000, // 10^5 |
| 27 | 17592186044416000000, // 10^6 |
| 28 | 10995116277760000000, // 10^7 |
| 29 | 13743895347200000000, // 10^8 |
| 30 | 17179869184000000000, // 10^9 |
| 31 | ]; |
| 32 | const BASE10_SMALL_EXPONENT: [i32; 10] = [ |
| 33 | -63, // 10^0 |
| 34 | -60, // 10^1 |
| 35 | -57, // 10^2 |
| 36 | -54, // 10^3 |
| 37 | -50, // 10^4 |
| 38 | -47, // 10^5 |
| 39 | -44, // 10^6 |
| 40 | -40, // 10^7 |
| 41 | -37, // 10^8 |
| 42 | -34, // 10^9 |
| 43 | ]; |
| 44 | const BASE10_LARGE_MANTISSA: [u64; 66] = [ |
| 45 | 11555125961253852697, // 10^-350 |
| 46 | 13451937075301367670, // 10^-340 |
| 47 | 15660115838168849784, // 10^-330 |
| 48 | 18230774251475056848, // 10^-320 |
| 49 | 10611707258198326947, // 10^-310 |
| 50 | 12353653155963782858, // 10^-300 |
| 51 | 14381545078898527261, // 10^-290 |
| 52 | 16742321987285426889, // 10^-280 |
| 53 | 9745314011399999080, // 10^-270 |
| 54 | 11345038669416679861, // 10^-260 |
| 55 | 13207363278391631158, // 10^-250 |
| 56 | 15375394465392026070, // 10^-240 |
| 57 | 17899314949046850752, // 10^-230 |
| 58 | 10418772551374772303, // 10^-220 |
| 59 | 12129047596099288555, // 10^-210 |
| 60 | 14120069793541087484, // 10^-200 |
| 61 | 16437924692338667210, // 10^-190 |
| 62 | 9568131466127621947, // 10^-180 |
| 63 | 11138771039116687545, // 10^-170 |
| 64 | 12967236152753102995, // 10^-160 |
| 65 | 15095849699286165408, // 10^-150 |
| 66 | 17573882009934360870, // 10^-140 |
| 67 | 10229345649675443343, // 10^-130 |
| 68 | 11908525658859223294, // 10^-120 |
| 69 | 13863348470604074297, // 10^-110 |
| 70 | 16139061738043178685, // 10^-100 |
| 71 | 9394170331095332911, // 10^-90 |
| 72 | 10936253623915059621, // 10^-80 |
| 73 | 12731474852090538039, // 10^-70 |
| 74 | 14821387422376473014, // 10^-60 |
| 75 | 17254365866976409468, // 10^-50 |
| 76 | 10043362776618689222, // 10^-40 |
| 77 | 11692013098647223345, // 10^-30 |
| 78 | 13611294676837538538, // 10^-20 |
| 79 | 15845632502852867518, // 10^-10 |
| 80 | 9223372036854775808, // 10^0 |
| 81 | 10737418240000000000, // 10^10 |
| 82 | 12500000000000000000, // 10^20 |
| 83 | 14551915228366851806, // 10^30 |
| 84 | 16940658945086006781, // 10^40 |
| 85 | 9860761315262647567, // 10^50 |
| 86 | 11479437019748901445, // 10^60 |
| 87 | 13363823550460978230, // 10^70 |
| 88 | 15557538194652854267, // 10^80 |
| 89 | 18111358157653424735, // 10^90 |
| 90 | 10542197943230523224, // 10^100 |
| 91 | 12272733663244316382, // 10^110 |
| 92 | 14287342391028437277, // 10^120 |
| 93 | 16632655625031838749, // 10^130 |
| 94 | 9681479787123295682, // 10^140 |
| 95 | 11270725851789228247, // 10^150 |
| 96 | 13120851772591970218, // 10^160 |
| 97 | 15274681817498023410, // 10^170 |
| 98 | 17782069995880619867, // 10^180 |
| 99 | 10350527006597618960, // 10^190 |
| 100 | 12049599325514420588, // 10^200 |
| 101 | 14027579833653779454, // 10^210 |
| 102 | 16330252207878254650, // 10^220 |
| 103 | 9505457831475799117, // 10^230 |
| 104 | 11065809325636130661, // 10^240 |
| 105 | 12882297539194266616, // 10^250 |
| 106 | 14996968138956309548, // 10^260 |
| 107 | 17458768723248864463, // 10^270 |
| 108 | 10162340898095201970, // 10^280 |
| 109 | 11830521861667747109, // 10^290 |
| 110 | 13772540099066387756, // 10^300 |
| 111 | ]; |
| 112 | const BASE10_LARGE_EXPONENT: [i32; 66] = [ |
| 113 | -1226, // 10^-350 |
| 114 | -1193, // 10^-340 |
| 115 | -1160, // 10^-330 |
| 116 | -1127, // 10^-320 |
| 117 | -1093, // 10^-310 |
| 118 | -1060, // 10^-300 |
| 119 | -1027, // 10^-290 |
| 120 | -994, // 10^-280 |
| 121 | -960, // 10^-270 |
| 122 | -927, // 10^-260 |
| 123 | -894, // 10^-250 |
| 124 | -861, // 10^-240 |
| 125 | -828, // 10^-230 |
| 126 | -794, // 10^-220 |
| 127 | -761, // 10^-210 |
| 128 | -728, // 10^-200 |
| 129 | -695, // 10^-190 |
| 130 | -661, // 10^-180 |
| 131 | -628, // 10^-170 |
| 132 | -595, // 10^-160 |
| 133 | -562, // 10^-150 |
| 134 | -529, // 10^-140 |
| 135 | -495, // 10^-130 |
| 136 | -462, // 10^-120 |
| 137 | -429, // 10^-110 |
| 138 | -396, // 10^-100 |
| 139 | -362, // 10^-90 |
| 140 | -329, // 10^-80 |
| 141 | -296, // 10^-70 |
| 142 | -263, // 10^-60 |
| 143 | -230, // 10^-50 |
| 144 | -196, // 10^-40 |
| 145 | -163, // 10^-30 |
| 146 | -130, // 10^-20 |
| 147 | -97, // 10^-10 |
| 148 | -63, // 10^0 |
| 149 | -30, // 10^10 |
| 150 | 3, // 10^20 |
| 151 | 36, // 10^30 |
| 152 | 69, // 10^40 |
| 153 | 103, // 10^50 |
| 154 | 136, // 10^60 |
| 155 | 169, // 10^70 |
| 156 | 202, // 10^80 |
| 157 | 235, // 10^90 |
| 158 | 269, // 10^100 |
| 159 | 302, // 10^110 |
| 160 | 335, // 10^120 |
| 161 | 368, // 10^130 |
| 162 | 402, // 10^140 |
| 163 | 435, // 10^150 |
| 164 | 468, // 10^160 |
| 165 | 501, // 10^170 |
| 166 | 534, // 10^180 |
| 167 | 568, // 10^190 |
| 168 | 601, // 10^200 |
| 169 | 634, // 10^210 |
| 170 | 667, // 10^220 |
| 171 | 701, // 10^230 |
| 172 | 734, // 10^240 |
| 173 | 767, // 10^250 |
| 174 | 800, // 10^260 |
| 175 | 833, // 10^270 |
| 176 | 867, // 10^280 |
| 177 | 900, // 10^290 |
| 178 | 933, // 10^300 |
| 179 | ]; |
| 180 | const BASE10_SMALL_INT_POWERS: [u64; 10] = [ |
| 181 | 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, |
| 182 | ]; |
| 183 | const BASE10_STEP: i32 = 10; |
| 184 | const BASE10_BIAS: i32 = 350; |
| 185 | |
| 186 | // HIGH LEVEL |
| 187 | // ---------- |
| 188 | |
| 189 | const BASE10_POWERS: ModeratePathPowers = ModeratePathPowers { |
| 190 | small: ExtendedFloatArray { |
| 191 | mant: &BASE10_SMALL_MANTISSA, |
| 192 | exp: &BASE10_SMALL_EXPONENT, |
| 193 | }, |
| 194 | large: ExtendedFloatArray { |
| 195 | mant: &BASE10_LARGE_MANTISSA, |
| 196 | exp: &BASE10_LARGE_EXPONENT, |
| 197 | }, |
| 198 | small_int: &BASE10_SMALL_INT_POWERS, |
| 199 | step: BASE10_STEP, |
| 200 | bias: BASE10_BIAS, |
| 201 | }; |
| 202 | |
| 203 | /// Get powers from base. |
| 204 | pub(crate) fn get_powers() -> &'static ModeratePathPowers { |
| 205 | &BASE10_POWERS |
| 206 | } |
| 207 | |