| 1 | // Adapted from https://github.com/Alexhuszagh/rust-lexical. |
| 2 | |
| 3 | // FLOAT TYPE |
| 4 | |
| 5 | use super::num::*; |
| 6 | use super::rounding::*; |
| 7 | use super::shift::*; |
| 8 | |
| 9 | /// Extended precision floating-point type. |
| 10 | /// |
| 11 | /// Private implementation, exposed only for testing purposes. |
| 12 | #[doc (hidden)] |
| 13 | #[derive(Clone, Copy, Debug, PartialEq, Eq)] |
| 14 | pub(crate) struct ExtendedFloat { |
| 15 | /// Mantissa for the extended-precision float. |
| 16 | pub mant: u64, |
| 17 | /// Binary exponent for the extended-precision float. |
| 18 | pub exp: i32, |
| 19 | } |
| 20 | |
| 21 | impl ExtendedFloat { |
| 22 | // PROPERTIES |
| 23 | |
| 24 | // OPERATIONS |
| 25 | |
| 26 | /// Multiply two normalized extended-precision floats, as if by `a*b`. |
| 27 | /// |
| 28 | /// The precision is maximal when the numbers are normalized, however, |
| 29 | /// decent precision will occur as long as both values have high bits |
| 30 | /// set. The result is not normalized. |
| 31 | /// |
| 32 | /// Algorithm: |
| 33 | /// 1. Non-signed multiplication of mantissas (requires 2x as many bits as input). |
| 34 | /// 2. Normalization of the result (not done here). |
| 35 | /// 3. Addition of exponents. |
| 36 | pub(crate) fn mul(&self, b: &ExtendedFloat) -> ExtendedFloat { |
| 37 | // Logic check, values must be decently normalized prior to multiplication. |
| 38 | debug_assert!((self.mant & u64::HIMASK != 0) && (b.mant & u64::HIMASK != 0)); |
| 39 | |
| 40 | // Extract high-and-low masks. |
| 41 | let ah = self.mant >> u64::HALF; |
| 42 | let al = self.mant & u64::LOMASK; |
| 43 | let bh = b.mant >> u64::HALF; |
| 44 | let bl = b.mant & u64::LOMASK; |
| 45 | |
| 46 | // Get our products |
| 47 | let ah_bl = ah * bl; |
| 48 | let al_bh = al * bh; |
| 49 | let al_bl = al * bl; |
| 50 | let ah_bh = ah * bh; |
| 51 | |
| 52 | let mut tmp = (ah_bl & u64::LOMASK) + (al_bh & u64::LOMASK) + (al_bl >> u64::HALF); |
| 53 | // round up |
| 54 | tmp += 1 << (u64::HALF - 1); |
| 55 | |
| 56 | ExtendedFloat { |
| 57 | mant: ah_bh + (ah_bl >> u64::HALF) + (al_bh >> u64::HALF) + (tmp >> u64::HALF), |
| 58 | exp: self.exp + b.exp + u64::FULL, |
| 59 | } |
| 60 | } |
| 61 | |
| 62 | /// Multiply in-place, as if by `a*b`. |
| 63 | /// |
| 64 | /// The result is not normalized. |
| 65 | #[inline ] |
| 66 | pub(crate) fn imul(&mut self, b: &ExtendedFloat) { |
| 67 | *self = self.mul(b); |
| 68 | } |
| 69 | |
| 70 | // NORMALIZE |
| 71 | |
| 72 | /// Normalize float-point number. |
| 73 | /// |
| 74 | /// Shift the mantissa so the number of leading zeros is 0, or the value |
| 75 | /// itself is 0. |
| 76 | /// |
| 77 | /// Get the number of bytes shifted. |
| 78 | #[inline ] |
| 79 | pub(crate) fn normalize(&mut self) -> u32 { |
| 80 | // Note: |
| 81 | // Using the cltz intrinsic via leading_zeros is way faster (~10x) |
| 82 | // than shifting 1-bit at a time, via while loop, and also way |
| 83 | // faster (~2x) than an unrolled loop that checks at 32, 16, 4, |
| 84 | // 2, and 1 bit. |
| 85 | // |
| 86 | // Using a modulus of pow2 (which will get optimized to a bitwise |
| 87 | // and with 0x3F or faster) is slightly slower than an if/then, |
| 88 | // however, removing the if/then will likely optimize more branched |
| 89 | // code as it removes conditional logic. |
| 90 | |
| 91 | // Calculate the number of leading zeros, and then zero-out |
| 92 | // any overflowing bits, to avoid shl overflow when self.mant == 0. |
| 93 | let shift = if self.mant == 0 { |
| 94 | 0 |
| 95 | } else { |
| 96 | self.mant.leading_zeros() |
| 97 | }; |
| 98 | shl(self, shift as i32); |
| 99 | shift |
| 100 | } |
| 101 | |
| 102 | // ROUND |
| 103 | |
| 104 | /// Lossy round float-point number to native mantissa boundaries. |
| 105 | #[inline ] |
| 106 | pub(crate) fn round_to_native<F, Algorithm>(&mut self, algorithm: Algorithm) |
| 107 | where |
| 108 | F: Float, |
| 109 | Algorithm: FnOnce(&mut ExtendedFloat, i32), |
| 110 | { |
| 111 | round_to_native::<F, _>(self, algorithm); |
| 112 | } |
| 113 | |
| 114 | // FROM |
| 115 | |
| 116 | /// Create extended float from native float. |
| 117 | #[inline ] |
| 118 | pub fn from_float<F: Float>(f: F) -> ExtendedFloat { |
| 119 | from_float(f) |
| 120 | } |
| 121 | |
| 122 | // INTO |
| 123 | |
| 124 | /// Convert into default-rounded, lower-precision native float. |
| 125 | #[inline ] |
| 126 | pub(crate) fn into_float<F: Float>(mut self) -> F { |
| 127 | self.round_to_native::<F, _>(round_nearest_tie_even); |
| 128 | into_float(self) |
| 129 | } |
| 130 | |
| 131 | /// Convert into downward-rounded, lower-precision native float. |
| 132 | #[inline ] |
| 133 | pub(crate) fn into_downward_float<F: Float>(mut self) -> F { |
| 134 | self.round_to_native::<F, _>(round_downward); |
| 135 | into_float(self) |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | // FROM FLOAT |
| 140 | |
| 141 | // Import ExtendedFloat from native float. |
| 142 | #[inline ] |
| 143 | pub(crate) fn from_float<F>(f: F) -> ExtendedFloat |
| 144 | where |
| 145 | F: Float, |
| 146 | { |
| 147 | ExtendedFloat { |
| 148 | mant: u64::as_cast(f.mantissa()), |
| 149 | exp: f.exponent(), |
| 150 | } |
| 151 | } |
| 152 | |
| 153 | // INTO FLOAT |
| 154 | |
| 155 | // Export extended-precision float to native float. |
| 156 | // |
| 157 | // The extended-precision float must be in native float representation, |
| 158 | // with overflow/underflow appropriately handled. |
| 159 | #[inline ] |
| 160 | pub(crate) fn into_float<F>(fp: ExtendedFloat) -> F |
| 161 | where |
| 162 | F: Float, |
| 163 | { |
| 164 | // Export floating-point number. |
| 165 | if fp.mant == 0 || fp.exp < F::DENORMAL_EXPONENT { |
| 166 | // sub-denormal, underflow |
| 167 | F::ZERO |
| 168 | } else if fp.exp >= F::MAX_EXPONENT { |
| 169 | // overflow |
| 170 | F::from_bits(F::INFINITY_BITS) |
| 171 | } else { |
| 172 | // calculate the exp and fraction bits, and return a float from bits. |
| 173 | let exp: u64; |
| 174 | if (fp.exp == F::DENORMAL_EXPONENT) && (fp.mant & F::HIDDEN_BIT_MASK.as_u64()) == 0 { |
| 175 | exp = 0; |
| 176 | } else { |
| 177 | exp = (fp.exp + F::EXPONENT_BIAS) as u64; |
| 178 | } |
| 179 | let exp = exp << F::MANTISSA_SIZE; |
| 180 | let mant = fp.mant & F::MANTISSA_MASK.as_u64(); |
| 181 | F::from_bits(F::Unsigned::as_cast(mant | exp)) |
| 182 | } |
| 183 | } |
| 184 | |