| 1 | // Adapted from https://github.com/Alexhuszagh/rust-lexical. |
| 2 | |
| 3 | //! Building-blocks for arbitrary-precision math. |
| 4 | //! |
| 5 | //! These algorithms assume little-endian order for the large integer |
| 6 | //! buffers, so for a `vec![0, 1, 2, 3]`, `3` is the most significant limb, |
| 7 | //! and `0` is the least significant limb. |
| 8 | |
| 9 | use super::large_powers; |
| 10 | use super::num::*; |
| 11 | use super::small_powers::*; |
| 12 | use alloc::vec::Vec; |
| 13 | use core::{cmp, iter, mem}; |
| 14 | |
| 15 | // ALIASES |
| 16 | // ------- |
| 17 | |
| 18 | // Type for a single limb of the big integer. |
| 19 | // |
| 20 | // A limb is analogous to a digit in base10, except, it stores 32-bit |
| 21 | // or 64-bit numbers instead. |
| 22 | // |
| 23 | // This should be all-known 64-bit platforms supported by Rust. |
| 24 | // https://forge.rust-lang.org/platform-support.html |
| 25 | // |
| 26 | // Platforms where native 128-bit multiplication is explicitly supported: |
| 27 | // - x86_64 (Supported via `MUL`). |
| 28 | // - mips64 (Supported via `DMULTU`, which `HI` and `LO` can be read-from). |
| 29 | // |
| 30 | // Platforms where native 64-bit multiplication is supported and |
| 31 | // you can extract hi-lo for 64-bit multiplications. |
| 32 | // aarch64 (Requires `UMULH` and `MUL` to capture high and low bits). |
| 33 | // powerpc64 (Requires `MULHDU` and `MULLD` to capture high and low bits). |
| 34 | // |
| 35 | // Platforms where native 128-bit multiplication is not supported, |
| 36 | // requiring software emulation. |
| 37 | // sparc64 (`UMUL` only supported double-word arguments). |
| 38 | |
| 39 | // 32-BIT LIMB |
| 40 | #[cfg (limb_width_32)] |
| 41 | pub type Limb = u32; |
| 42 | |
| 43 | #[cfg (limb_width_32)] |
| 44 | pub const POW5_LIMB: &[Limb] = &POW5_32; |
| 45 | |
| 46 | #[cfg (limb_width_32)] |
| 47 | pub const POW10_LIMB: &[Limb] = &POW10_32; |
| 48 | |
| 49 | #[cfg (limb_width_32)] |
| 50 | type Wide = u64; |
| 51 | |
| 52 | // 64-BIT LIMB |
| 53 | #[cfg (limb_width_64)] |
| 54 | pub type Limb = u64; |
| 55 | |
| 56 | #[cfg (limb_width_64)] |
| 57 | pub const POW5_LIMB: &[Limb] = &POW5_64; |
| 58 | |
| 59 | #[cfg (limb_width_64)] |
| 60 | pub const POW10_LIMB: &[Limb] = &POW10_64; |
| 61 | |
| 62 | #[cfg (limb_width_64)] |
| 63 | type Wide = u128; |
| 64 | |
| 65 | /// Cast to limb type. |
| 66 | #[inline ] |
| 67 | pub(crate) fn as_limb<T: Integer>(t: T) -> Limb { |
| 68 | Limb::as_cast(t) |
| 69 | } |
| 70 | |
| 71 | /// Cast to wide type. |
| 72 | #[inline ] |
| 73 | fn as_wide<T: Integer>(t: T) -> Wide { |
| 74 | Wide::as_cast(t) |
| 75 | } |
| 76 | |
| 77 | // SPLIT |
| 78 | // ----- |
| 79 | |
| 80 | /// Split u64 into limbs, in little-endian order. |
| 81 | #[inline ] |
| 82 | #[cfg (limb_width_32)] |
| 83 | fn split_u64(x: u64) -> [Limb; 2] { |
| 84 | [as_limb(x), as_limb(x >> 32)] |
| 85 | } |
| 86 | |
| 87 | /// Split u64 into limbs, in little-endian order. |
| 88 | #[inline ] |
| 89 | #[cfg (limb_width_64)] |
| 90 | fn split_u64(x: u64) -> [Limb; 1] { |
| 91 | [as_limb(x)] |
| 92 | } |
| 93 | |
| 94 | // HI64 |
| 95 | // ---- |
| 96 | |
| 97 | // NONZERO |
| 98 | |
| 99 | /// Check if any of the remaining bits are non-zero. |
| 100 | #[inline ] |
| 101 | pub fn nonzero<T: Integer>(x: &[T], rindex: usize) -> bool { |
| 102 | let len = x.len(); |
| 103 | let slc = &x[..len - rindex]; |
| 104 | slc.iter().rev().any(|&x| x != T::ZERO) |
| 105 | } |
| 106 | |
| 107 | /// Shift 64-bit integer to high 64-bits. |
| 108 | #[inline ] |
| 109 | fn u64_to_hi64_1(r0: u64) -> (u64, bool) { |
| 110 | debug_assert!(r0 != 0); |
| 111 | let ls = r0.leading_zeros(); |
| 112 | (r0 << ls, false) |
| 113 | } |
| 114 | |
| 115 | /// Shift 2 64-bit integers to high 64-bits. |
| 116 | #[inline ] |
| 117 | fn u64_to_hi64_2(r0: u64, r1: u64) -> (u64, bool) { |
| 118 | debug_assert!(r0 != 0); |
| 119 | let ls = r0.leading_zeros(); |
| 120 | let rs = 64 - ls; |
| 121 | let v = match ls { |
| 122 | 0 => r0, |
| 123 | _ => (r0 << ls) | (r1 >> rs), |
| 124 | }; |
| 125 | let n = r1 << ls != 0; |
| 126 | (v, n) |
| 127 | } |
| 128 | |
| 129 | /// Trait to export the high 64-bits from a little-endian slice. |
| 130 | trait Hi64<T>: AsRef<[T]> { |
| 131 | /// Get the hi64 bits from a 1-limb slice. |
| 132 | fn hi64_1(&self) -> (u64, bool); |
| 133 | |
| 134 | /// Get the hi64 bits from a 2-limb slice. |
| 135 | fn hi64_2(&self) -> (u64, bool); |
| 136 | |
| 137 | /// Get the hi64 bits from a 3-limb slice. |
| 138 | fn hi64_3(&self) -> (u64, bool); |
| 139 | |
| 140 | /// High-level exporter to extract the high 64 bits from a little-endian slice. |
| 141 | #[inline ] |
| 142 | fn hi64(&self) -> (u64, bool) { |
| 143 | match self.as_ref().len() { |
| 144 | 0 => (0, false), |
| 145 | 1 => self.hi64_1(), |
| 146 | 2 => self.hi64_2(), |
| 147 | _ => self.hi64_3(), |
| 148 | } |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | impl Hi64<u32> for [u32] { |
| 153 | #[inline ] |
| 154 | fn hi64_1(&self) -> (u64, bool) { |
| 155 | debug_assert!(self.len() == 1); |
| 156 | let r0 = self[0] as u64; |
| 157 | u64_to_hi64_1(r0) |
| 158 | } |
| 159 | |
| 160 | #[inline ] |
| 161 | fn hi64_2(&self) -> (u64, bool) { |
| 162 | debug_assert!(self.len() == 2); |
| 163 | let r0 = (self[1] as u64) << 32; |
| 164 | let r1 = self[0] as u64; |
| 165 | u64_to_hi64_1(r0 | r1) |
| 166 | } |
| 167 | |
| 168 | #[inline ] |
| 169 | fn hi64_3(&self) -> (u64, bool) { |
| 170 | debug_assert!(self.len() >= 3); |
| 171 | let r0 = self[self.len() - 1] as u64; |
| 172 | let r1 = (self[self.len() - 2] as u64) << 32; |
| 173 | let r2 = self[self.len() - 3] as u64; |
| 174 | let (v, n) = u64_to_hi64_2(r0, r1 | r2); |
| 175 | (v, n || nonzero(self, 3)) |
| 176 | } |
| 177 | } |
| 178 | |
| 179 | impl Hi64<u64> for [u64] { |
| 180 | #[inline ] |
| 181 | fn hi64_1(&self) -> (u64, bool) { |
| 182 | debug_assert!(self.len() == 1); |
| 183 | let r0 = self[0]; |
| 184 | u64_to_hi64_1(r0) |
| 185 | } |
| 186 | |
| 187 | #[inline ] |
| 188 | fn hi64_2(&self) -> (u64, bool) { |
| 189 | debug_assert!(self.len() >= 2); |
| 190 | let r0 = self[self.len() - 1]; |
| 191 | let r1 = self[self.len() - 2]; |
| 192 | let (v, n) = u64_to_hi64_2(r0, r1); |
| 193 | (v, n || nonzero(self, 2)) |
| 194 | } |
| 195 | |
| 196 | #[inline ] |
| 197 | fn hi64_3(&self) -> (u64, bool) { |
| 198 | self.hi64_2() |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | // SCALAR |
| 203 | // ------ |
| 204 | |
| 205 | // Scalar-to-scalar operations, for building-blocks for arbitrary-precision |
| 206 | // operations. |
| 207 | |
| 208 | mod scalar { |
| 209 | use super::*; |
| 210 | |
| 211 | // ADDITION |
| 212 | |
| 213 | /// Add two small integers and return the resulting value and if overflow happens. |
| 214 | #[inline ] |
| 215 | pub fn add(x: Limb, y: Limb) -> (Limb, bool) { |
| 216 | x.overflowing_add(y) |
| 217 | } |
| 218 | |
| 219 | /// AddAssign two small integers and return if overflow happens. |
| 220 | #[inline ] |
| 221 | pub fn iadd(x: &mut Limb, y: Limb) -> bool { |
| 222 | let t = add(*x, y); |
| 223 | *x = t.0; |
| 224 | t.1 |
| 225 | } |
| 226 | |
| 227 | // SUBTRACTION |
| 228 | |
| 229 | /// Subtract two small integers and return the resulting value and if overflow happens. |
| 230 | #[inline ] |
| 231 | pub fn sub(x: Limb, y: Limb) -> (Limb, bool) { |
| 232 | x.overflowing_sub(y) |
| 233 | } |
| 234 | |
| 235 | /// SubAssign two small integers and return if overflow happens. |
| 236 | #[inline ] |
| 237 | pub fn isub(x: &mut Limb, y: Limb) -> bool { |
| 238 | let t = sub(*x, y); |
| 239 | *x = t.0; |
| 240 | t.1 |
| 241 | } |
| 242 | |
| 243 | // MULTIPLICATION |
| 244 | |
| 245 | /// Multiply two small integers (with carry) (and return the overflow contribution). |
| 246 | /// |
| 247 | /// Returns the (low, high) components. |
| 248 | #[inline ] |
| 249 | pub fn mul(x: Limb, y: Limb, carry: Limb) -> (Limb, Limb) { |
| 250 | // Cannot overflow, as long as wide is 2x as wide. This is because |
| 251 | // the following is always true: |
| 252 | // `Wide::max_value() - (Narrow::max_value() * Narrow::max_value()) >= Narrow::max_value()` |
| 253 | let z: Wide = as_wide(x) * as_wide(y) + as_wide(carry); |
| 254 | let bits = mem::size_of::<Limb>() * 8; |
| 255 | (as_limb(z), as_limb(z >> bits)) |
| 256 | } |
| 257 | |
| 258 | /// Multiply two small integers (with carry) (and return if overflow happens). |
| 259 | #[inline ] |
| 260 | pub fn imul(x: &mut Limb, y: Limb, carry: Limb) -> Limb { |
| 261 | let t = mul(*x, y, carry); |
| 262 | *x = t.0; |
| 263 | t.1 |
| 264 | } |
| 265 | } // scalar |
| 266 | |
| 267 | // SMALL |
| 268 | // ----- |
| 269 | |
| 270 | // Large-to-small operations, to modify a big integer from a native scalar. |
| 271 | |
| 272 | mod small { |
| 273 | use super::*; |
| 274 | |
| 275 | // MULTIPLICATIION |
| 276 | |
| 277 | /// ADDITION |
| 278 | |
| 279 | /// Implied AddAssign implementation for adding a small integer to bigint. |
| 280 | /// |
| 281 | /// Allows us to choose a start-index in x to store, to allow incrementing |
| 282 | /// from a non-zero start. |
| 283 | #[inline ] |
| 284 | pub fn iadd_impl(x: &mut Vec<Limb>, y: Limb, xstart: usize) { |
| 285 | if x.len() <= xstart { |
| 286 | x.push(y); |
| 287 | } else { |
| 288 | // Initial add |
| 289 | let mut carry = scalar::iadd(&mut x[xstart], y); |
| 290 | |
| 291 | // Increment until overflow stops occurring. |
| 292 | let mut size = xstart + 1; |
| 293 | while carry && size < x.len() { |
| 294 | carry = scalar::iadd(&mut x[size], 1); |
| 295 | size += 1; |
| 296 | } |
| 297 | |
| 298 | // If we overflowed the buffer entirely, need to add 1 to the end |
| 299 | // of the buffer. |
| 300 | if carry { |
| 301 | x.push(1); |
| 302 | } |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | /// AddAssign small integer to bigint. |
| 307 | #[inline ] |
| 308 | pub fn iadd(x: &mut Vec<Limb>, y: Limb) { |
| 309 | iadd_impl(x, y, 0); |
| 310 | } |
| 311 | |
| 312 | // SUBTRACTION |
| 313 | |
| 314 | /// SubAssign small integer to bigint. |
| 315 | /// Does not do overflowing subtraction. |
| 316 | #[inline ] |
| 317 | pub fn isub_impl(x: &mut Vec<Limb>, y: Limb, xstart: usize) { |
| 318 | debug_assert!(x.len() > xstart && (x[xstart] >= y || x.len() > xstart + 1)); |
| 319 | |
| 320 | // Initial subtraction |
| 321 | let mut carry = scalar::isub(&mut x[xstart], y); |
| 322 | |
| 323 | // Increment until overflow stops occurring. |
| 324 | let mut size = xstart + 1; |
| 325 | while carry && size < x.len() { |
| 326 | carry = scalar::isub(&mut x[size], 1); |
| 327 | size += 1; |
| 328 | } |
| 329 | normalize(x); |
| 330 | } |
| 331 | |
| 332 | // MULTIPLICATION |
| 333 | |
| 334 | /// MulAssign small integer to bigint. |
| 335 | #[inline ] |
| 336 | pub fn imul(x: &mut Vec<Limb>, y: Limb) { |
| 337 | // Multiply iteratively over all elements, adding the carry each time. |
| 338 | let mut carry: Limb = 0; |
| 339 | for xi in &mut *x { |
| 340 | carry = scalar::imul(xi, y, carry); |
| 341 | } |
| 342 | |
| 343 | // Overflow of value, add to end. |
| 344 | if carry != 0 { |
| 345 | x.push(carry); |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | /// Mul small integer to bigint. |
| 350 | #[inline ] |
| 351 | pub fn mul(x: &[Limb], y: Limb) -> Vec<Limb> { |
| 352 | let mut z = Vec::<Limb>::default(); |
| 353 | z.extend_from_slice(x); |
| 354 | imul(&mut z, y); |
| 355 | z |
| 356 | } |
| 357 | |
| 358 | /// MulAssign by a power. |
| 359 | /// |
| 360 | /// Theoretically... |
| 361 | /// |
| 362 | /// Use an exponentiation by squaring method, since it reduces the time |
| 363 | /// complexity of the multiplication to ~`O(log(n))` for the squaring, |
| 364 | /// and `O(n*m)` for the result. Since `m` is typically a lower-order |
| 365 | /// factor, this significantly reduces the number of multiplications |
| 366 | /// we need to do. Iteratively multiplying by small powers follows |
| 367 | /// the nth triangular number series, which scales as `O(p^2)`, but |
| 368 | /// where `p` is `n+m`. In short, it scales very poorly. |
| 369 | /// |
| 370 | /// Practically.... |
| 371 | /// |
| 372 | /// Exponentiation by Squaring: |
| 373 | /// running 2 tests |
| 374 | /// test bigcomp_f32_lexical ... bench: 1,018 ns/iter (+/- 78) |
| 375 | /// test bigcomp_f64_lexical ... bench: 3,639 ns/iter (+/- 1,007) |
| 376 | /// |
| 377 | /// Exponentiation by Iterative Small Powers: |
| 378 | /// running 2 tests |
| 379 | /// test bigcomp_f32_lexical ... bench: 518 ns/iter (+/- 31) |
| 380 | /// test bigcomp_f64_lexical ... bench: 583 ns/iter (+/- 47) |
| 381 | /// |
| 382 | /// Exponentiation by Iterative Large Powers (of 2): |
| 383 | /// running 2 tests |
| 384 | /// test bigcomp_f32_lexical ... bench: 671 ns/iter (+/- 31) |
| 385 | /// test bigcomp_f64_lexical ... bench: 1,394 ns/iter (+/- 47) |
| 386 | /// |
| 387 | /// Even using worst-case scenarios, exponentiation by squaring is |
| 388 | /// significantly slower for our workloads. Just multiply by small powers, |
| 389 | /// in simple cases, and use precalculated large powers in other cases. |
| 390 | pub fn imul_pow5(x: &mut Vec<Limb>, n: u32) { |
| 391 | use super::large::KARATSUBA_CUTOFF; |
| 392 | |
| 393 | let small_powers = POW5_LIMB; |
| 394 | let large_powers = large_powers::POW5; |
| 395 | |
| 396 | if n == 0 { |
| 397 | // No exponent, just return. |
| 398 | // The 0-index of the large powers is `2^0`, which is 1, so we want |
| 399 | // to make sure we don't take that path with a literal 0. |
| 400 | return; |
| 401 | } |
| 402 | |
| 403 | // We want to use the asymptotically faster algorithm if we're going |
| 404 | // to be using Karabatsu multiplication sometime during the result, |
| 405 | // otherwise, just use exponentiation by squaring. |
| 406 | let bit_length = 32 - n.leading_zeros() as usize; |
| 407 | debug_assert!(bit_length != 0 && bit_length <= large_powers.len()); |
| 408 | if x.len() + large_powers[bit_length - 1].len() < 2 * KARATSUBA_CUTOFF { |
| 409 | // We can use iterative small powers to make this faster for the |
| 410 | // easy cases. |
| 411 | |
| 412 | // Multiply by the largest small power until n < step. |
| 413 | let step = small_powers.len() - 1; |
| 414 | let power = small_powers[step]; |
| 415 | let mut n = n as usize; |
| 416 | while n >= step { |
| 417 | imul(x, power); |
| 418 | n -= step; |
| 419 | } |
| 420 | |
| 421 | // Multiply by the remainder. |
| 422 | imul(x, small_powers[n]); |
| 423 | } else { |
| 424 | // In theory, this code should be asymptotically a lot faster, |
| 425 | // in practice, our small::imul seems to be the limiting step, |
| 426 | // and large imul is slow as well. |
| 427 | |
| 428 | // Multiply by higher order powers. |
| 429 | let mut idx: usize = 0; |
| 430 | let mut bit: usize = 1; |
| 431 | let mut n = n as usize; |
| 432 | while n != 0 { |
| 433 | if n & bit != 0 { |
| 434 | debug_assert!(idx < large_powers.len()); |
| 435 | large::imul(x, large_powers[idx]); |
| 436 | n ^= bit; |
| 437 | } |
| 438 | idx += 1; |
| 439 | bit <<= 1; |
| 440 | } |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | // BIT LENGTH |
| 445 | |
| 446 | /// Get number of leading zero bits in the storage. |
| 447 | #[inline ] |
| 448 | pub fn leading_zeros(x: &[Limb]) -> usize { |
| 449 | x.last().map_or(0, |x| x.leading_zeros() as usize) |
| 450 | } |
| 451 | |
| 452 | /// Calculate the bit-length of the big-integer. |
| 453 | #[inline ] |
| 454 | pub fn bit_length(x: &[Limb]) -> usize { |
| 455 | let bits = mem::size_of::<Limb>() * 8; |
| 456 | // Avoid overflowing, calculate via total number of bits |
| 457 | // minus leading zero bits. |
| 458 | let nlz = leading_zeros(x); |
| 459 | bits.checked_mul(x.len()) |
| 460 | .map_or_else(usize::max_value, |v| v - nlz) |
| 461 | } |
| 462 | |
| 463 | // SHL |
| 464 | |
| 465 | /// Shift-left bits inside a buffer. |
| 466 | /// |
| 467 | /// Assumes `n < Limb::BITS`, IE, internally shifting bits. |
| 468 | #[inline ] |
| 469 | pub fn ishl_bits(x: &mut Vec<Limb>, n: usize) { |
| 470 | // Need to shift by the number of `bits % Limb::BITS)`. |
| 471 | let bits = mem::size_of::<Limb>() * 8; |
| 472 | debug_assert!(n < bits); |
| 473 | if n == 0 { |
| 474 | return; |
| 475 | } |
| 476 | |
| 477 | // Internally, for each item, we shift left by n, and add the previous |
| 478 | // right shifted limb-bits. |
| 479 | // For example, we transform (for u8) shifted left 2, to: |
| 480 | // b10100100 b01000010 |
| 481 | // b10 b10010001 b00001000 |
| 482 | let rshift = bits - n; |
| 483 | let lshift = n; |
| 484 | let mut prev: Limb = 0; |
| 485 | for xi in &mut *x { |
| 486 | let tmp = *xi; |
| 487 | *xi <<= lshift; |
| 488 | *xi |= prev >> rshift; |
| 489 | prev = tmp; |
| 490 | } |
| 491 | |
| 492 | // Always push the carry, even if it creates a non-normal result. |
| 493 | let carry = prev >> rshift; |
| 494 | if carry != 0 { |
| 495 | x.push(carry); |
| 496 | } |
| 497 | } |
| 498 | |
| 499 | /// Shift-left `n` digits inside a buffer. |
| 500 | /// |
| 501 | /// Assumes `n` is not 0. |
| 502 | #[inline ] |
| 503 | pub fn ishl_limbs(x: &mut Vec<Limb>, n: usize) { |
| 504 | debug_assert!(n != 0); |
| 505 | if !x.is_empty() { |
| 506 | x.reserve(n); |
| 507 | x.splice(..0, iter::repeat(0).take(n)); |
| 508 | } |
| 509 | } |
| 510 | |
| 511 | /// Shift-left buffer by n bits. |
| 512 | #[inline ] |
| 513 | pub fn ishl(x: &mut Vec<Limb>, n: usize) { |
| 514 | let bits = mem::size_of::<Limb>() * 8; |
| 515 | // Need to pad with zeros for the number of `bits / Limb::BITS`, |
| 516 | // and shift-left with carry for `bits % Limb::BITS`. |
| 517 | let rem = n % bits; |
| 518 | let div = n / bits; |
| 519 | ishl_bits(x, rem); |
| 520 | if div != 0 { |
| 521 | ishl_limbs(x, div); |
| 522 | } |
| 523 | } |
| 524 | |
| 525 | // NORMALIZE |
| 526 | |
| 527 | /// Normalize the container by popping any leading zeros. |
| 528 | #[inline ] |
| 529 | pub fn normalize(x: &mut Vec<Limb>) { |
| 530 | // Remove leading zero if we cause underflow. Since we're dividing |
| 531 | // by a small power, we have at max 1 int removed. |
| 532 | while x.last() == Some(&0) { |
| 533 | x.pop(); |
| 534 | } |
| 535 | } |
| 536 | } // small |
| 537 | |
| 538 | // LARGE |
| 539 | // ----- |
| 540 | |
| 541 | // Large-to-large operations, to modify a big integer from a native scalar. |
| 542 | |
| 543 | mod large { |
| 544 | use super::*; |
| 545 | |
| 546 | // RELATIVE OPERATORS |
| 547 | |
| 548 | /// Compare `x` to `y`, in little-endian order. |
| 549 | #[inline ] |
| 550 | pub fn compare(x: &[Limb], y: &[Limb]) -> cmp::Ordering { |
| 551 | if x.len() > y.len() { |
| 552 | cmp::Ordering::Greater |
| 553 | } else if x.len() < y.len() { |
| 554 | cmp::Ordering::Less |
| 555 | } else { |
| 556 | let iter = x.iter().rev().zip(y.iter().rev()); |
| 557 | for (&xi, &yi) in iter { |
| 558 | if xi > yi { |
| 559 | return cmp::Ordering::Greater; |
| 560 | } else if xi < yi { |
| 561 | return cmp::Ordering::Less; |
| 562 | } |
| 563 | } |
| 564 | // Equal case. |
| 565 | cmp::Ordering::Equal |
| 566 | } |
| 567 | } |
| 568 | |
| 569 | /// Check if x is less than y. |
| 570 | #[inline ] |
| 571 | pub fn less(x: &[Limb], y: &[Limb]) -> bool { |
| 572 | compare(x, y) == cmp::Ordering::Less |
| 573 | } |
| 574 | |
| 575 | /// Check if x is greater than or equal to y. |
| 576 | #[inline ] |
| 577 | pub fn greater_equal(x: &[Limb], y: &[Limb]) -> bool { |
| 578 | !less(x, y) |
| 579 | } |
| 580 | |
| 581 | // ADDITION |
| 582 | |
| 583 | /// Implied AddAssign implementation for bigints. |
| 584 | /// |
| 585 | /// Allows us to choose a start-index in x to store, so we can avoid |
| 586 | /// padding the buffer with zeros when not needed, optimized for vectors. |
| 587 | pub fn iadd_impl(x: &mut Vec<Limb>, y: &[Limb], xstart: usize) { |
| 588 | // The effective x buffer is from `xstart..x.len()`, so we need to treat |
| 589 | // that as the current range. If the effective y buffer is longer, need |
| 590 | // to resize to that, + the start index. |
| 591 | if y.len() > x.len() - xstart { |
| 592 | x.resize(y.len() + xstart, 0); |
| 593 | } |
| 594 | |
| 595 | // Iteratively add elements from y to x. |
| 596 | let mut carry = false; |
| 597 | for (xi, yi) in x[xstart..].iter_mut().zip(y.iter()) { |
| 598 | // Only one op of the two can overflow, since we added at max |
| 599 | // Limb::max_value() + Limb::max_value(). Add the previous carry, |
| 600 | // and store the current carry for the next. |
| 601 | let mut tmp = scalar::iadd(xi, *yi); |
| 602 | if carry { |
| 603 | tmp |= scalar::iadd(xi, 1); |
| 604 | } |
| 605 | carry = tmp; |
| 606 | } |
| 607 | |
| 608 | // Overflow from the previous bit. |
| 609 | if carry { |
| 610 | small::iadd_impl(x, 1, y.len() + xstart); |
| 611 | } |
| 612 | } |
| 613 | |
| 614 | /// AddAssign bigint to bigint. |
| 615 | #[inline ] |
| 616 | pub fn iadd(x: &mut Vec<Limb>, y: &[Limb]) { |
| 617 | iadd_impl(x, y, 0); |
| 618 | } |
| 619 | |
| 620 | /// Add bigint to bigint. |
| 621 | #[inline ] |
| 622 | pub fn add(x: &[Limb], y: &[Limb]) -> Vec<Limb> { |
| 623 | let mut z = Vec::<Limb>::default(); |
| 624 | z.extend_from_slice(x); |
| 625 | iadd(&mut z, y); |
| 626 | z |
| 627 | } |
| 628 | |
| 629 | // SUBTRACTION |
| 630 | |
| 631 | /// SubAssign bigint to bigint. |
| 632 | pub fn isub(x: &mut Vec<Limb>, y: &[Limb]) { |
| 633 | // Basic underflow checks. |
| 634 | debug_assert!(greater_equal(x, y)); |
| 635 | |
| 636 | // Iteratively add elements from y to x. |
| 637 | let mut carry = false; |
| 638 | for (xi, yi) in x.iter_mut().zip(y.iter()) { |
| 639 | // Only one op of the two can overflow, since we added at max |
| 640 | // Limb::max_value() + Limb::max_value(). Add the previous carry, |
| 641 | // and store the current carry for the next. |
| 642 | let mut tmp = scalar::isub(xi, *yi); |
| 643 | if carry { |
| 644 | tmp |= scalar::isub(xi, 1); |
| 645 | } |
| 646 | carry = tmp; |
| 647 | } |
| 648 | |
| 649 | if carry { |
| 650 | small::isub_impl(x, 1, y.len()); |
| 651 | } else { |
| 652 | small::normalize(x); |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | // MULTIPLICATION |
| 657 | |
| 658 | /// Number of digits to bottom-out to asymptotically slow algorithms. |
| 659 | /// |
| 660 | /// Karatsuba tends to out-perform long-multiplication at ~320-640 bits, |
| 661 | /// so we go halfway, while Newton division tends to out-perform |
| 662 | /// Algorithm D at ~1024 bits. We can toggle this for optimal performance. |
| 663 | pub const KARATSUBA_CUTOFF: usize = 32; |
| 664 | |
| 665 | /// Grade-school multiplication algorithm. |
| 666 | /// |
| 667 | /// Slow, naive algorithm, using limb-bit bases and just shifting left for |
| 668 | /// each iteration. This could be optimized with numerous other algorithms, |
| 669 | /// but it's extremely simple, and works in O(n*m) time, which is fine |
| 670 | /// by me. Each iteration, of which there are `m` iterations, requires |
| 671 | /// `n` multiplications, and `n` additions, or grade-school multiplication. |
| 672 | fn long_mul(x: &[Limb], y: &[Limb]) -> Vec<Limb> { |
| 673 | // Using the immutable value, multiply by all the scalars in y, using |
| 674 | // the algorithm defined above. Use a single buffer to avoid |
| 675 | // frequent reallocations. Handle the first case to avoid a redundant |
| 676 | // addition, since we know y.len() >= 1. |
| 677 | let mut z: Vec<Limb> = small::mul(x, y[0]); |
| 678 | z.resize(x.len() + y.len(), 0); |
| 679 | |
| 680 | // Handle the iterative cases. |
| 681 | for (i, &yi) in y[1..].iter().enumerate() { |
| 682 | let zi: Vec<Limb> = small::mul(x, yi); |
| 683 | iadd_impl(&mut z, &zi, i + 1); |
| 684 | } |
| 685 | |
| 686 | small::normalize(&mut z); |
| 687 | |
| 688 | z |
| 689 | } |
| 690 | |
| 691 | /// Split two buffers into halfway, into (lo, hi). |
| 692 | #[inline ] |
| 693 | pub fn karatsuba_split(z: &[Limb], m: usize) -> (&[Limb], &[Limb]) { |
| 694 | (&z[..m], &z[m..]) |
| 695 | } |
| 696 | |
| 697 | /// Karatsuba multiplication algorithm with roughly equal input sizes. |
| 698 | /// |
| 699 | /// Assumes `y.len() >= x.len()`. |
| 700 | fn karatsuba_mul(x: &[Limb], y: &[Limb]) -> Vec<Limb> { |
| 701 | if y.len() <= KARATSUBA_CUTOFF { |
| 702 | // Bottom-out to long division for small cases. |
| 703 | long_mul(x, y) |
| 704 | } else if x.len() < y.len() / 2 { |
| 705 | karatsuba_uneven_mul(x, y) |
| 706 | } else { |
| 707 | // Do our 3 multiplications. |
| 708 | let m = y.len() / 2; |
| 709 | let (xl, xh) = karatsuba_split(x, m); |
| 710 | let (yl, yh) = karatsuba_split(y, m); |
| 711 | let sumx = add(xl, xh); |
| 712 | let sumy = add(yl, yh); |
| 713 | let z0 = karatsuba_mul(xl, yl); |
| 714 | let mut z1 = karatsuba_mul(&sumx, &sumy); |
| 715 | let z2 = karatsuba_mul(xh, yh); |
| 716 | // Properly scale z1, which is `z1 - z2 - zo`. |
| 717 | isub(&mut z1, &z2); |
| 718 | isub(&mut z1, &z0); |
| 719 | |
| 720 | // Create our result, which is equal to, in little-endian order: |
| 721 | // [z0, z1 - z2 - z0, z2] |
| 722 | // z1 must be shifted m digits (2^(32m)) over. |
| 723 | // z2 must be shifted 2*m digits (2^(64m)) over. |
| 724 | let len = z0.len().max(m + z1.len()).max(2 * m + z2.len()); |
| 725 | let mut result = z0; |
| 726 | result.reserve_exact(len - result.len()); |
| 727 | iadd_impl(&mut result, &z1, m); |
| 728 | iadd_impl(&mut result, &z2, 2 * m); |
| 729 | |
| 730 | result |
| 731 | } |
| 732 | } |
| 733 | |
| 734 | /// Karatsuba multiplication algorithm where y is substantially larger than x. |
| 735 | /// |
| 736 | /// Assumes `y.len() >= x.len()`. |
| 737 | fn karatsuba_uneven_mul(x: &[Limb], mut y: &[Limb]) -> Vec<Limb> { |
| 738 | let mut result = Vec::<Limb>::default(); |
| 739 | result.resize(x.len() + y.len(), 0); |
| 740 | |
| 741 | // This effectively is like grade-school multiplication between |
| 742 | // two numbers, except we're using splits on `y`, and the intermediate |
| 743 | // step is a Karatsuba multiplication. |
| 744 | let mut start = 0; |
| 745 | while !y.is_empty() { |
| 746 | let m = x.len().min(y.len()); |
| 747 | let (yl, yh) = karatsuba_split(y, m); |
| 748 | let prod = karatsuba_mul(x, yl); |
| 749 | iadd_impl(&mut result, &prod, start); |
| 750 | y = yh; |
| 751 | start += m; |
| 752 | } |
| 753 | small::normalize(&mut result); |
| 754 | |
| 755 | result |
| 756 | } |
| 757 | |
| 758 | /// Forwarder to the proper Karatsuba algorithm. |
| 759 | #[inline ] |
| 760 | fn karatsuba_mul_fwd(x: &[Limb], y: &[Limb]) -> Vec<Limb> { |
| 761 | if x.len() < y.len() { |
| 762 | karatsuba_mul(x, y) |
| 763 | } else { |
| 764 | karatsuba_mul(y, x) |
| 765 | } |
| 766 | } |
| 767 | |
| 768 | /// MulAssign bigint to bigint. |
| 769 | #[inline ] |
| 770 | pub fn imul(x: &mut Vec<Limb>, y: &[Limb]) { |
| 771 | if y.len() == 1 { |
| 772 | small::imul(x, y[0]); |
| 773 | } else { |
| 774 | // We're not really in a condition where using Karatsuba |
| 775 | // multiplication makes sense, so we're just going to use long |
| 776 | // division. ~20% speedup compared to: |
| 777 | // *x = karatsuba_mul_fwd(x, y); |
| 778 | *x = karatsuba_mul_fwd(x, y); |
| 779 | } |
| 780 | } |
| 781 | } // large |
| 782 | |
| 783 | // TRAITS |
| 784 | // ------ |
| 785 | |
| 786 | /// Traits for shared operations for big integers. |
| 787 | /// |
| 788 | /// None of these are implemented using normal traits, since these |
| 789 | /// are very expensive operations, and we want to deliberately |
| 790 | /// and explicitly use these functions. |
| 791 | pub(crate) trait Math: Clone + Sized + Default { |
| 792 | // DATA |
| 793 | |
| 794 | /// Get access to the underlying data |
| 795 | fn data(&self) -> &Vec<Limb>; |
| 796 | |
| 797 | /// Get access to the underlying data |
| 798 | fn data_mut(&mut self) -> &mut Vec<Limb>; |
| 799 | |
| 800 | // RELATIVE OPERATIONS |
| 801 | |
| 802 | /// Compare self to y. |
| 803 | #[inline ] |
| 804 | fn compare(&self, y: &Self) -> cmp::Ordering { |
| 805 | large::compare(self.data(), y.data()) |
| 806 | } |
| 807 | |
| 808 | // PROPERTIES |
| 809 | |
| 810 | /// Get the high 64-bits from the bigint and if there are remaining bits. |
| 811 | #[inline ] |
| 812 | fn hi64(&self) -> (u64, bool) { |
| 813 | self.data().as_slice().hi64() |
| 814 | } |
| 815 | |
| 816 | /// Calculate the bit-length of the big-integer. |
| 817 | /// Returns usize::max_value() if the value overflows, |
| 818 | /// IE, if `self.data().len() > usize::max_value() / 8`. |
| 819 | #[inline ] |
| 820 | fn bit_length(&self) -> usize { |
| 821 | small::bit_length(self.data()) |
| 822 | } |
| 823 | |
| 824 | // INTEGER CONVERSIONS |
| 825 | |
| 826 | /// Create new big integer from u64. |
| 827 | #[inline ] |
| 828 | fn from_u64(x: u64) -> Self { |
| 829 | let mut v = Self::default(); |
| 830 | let slc = split_u64(x); |
| 831 | v.data_mut().extend_from_slice(&slc); |
| 832 | v.normalize(); |
| 833 | v |
| 834 | } |
| 835 | |
| 836 | // NORMALIZE |
| 837 | |
| 838 | /// Normalize the integer, so any leading zero values are removed. |
| 839 | #[inline ] |
| 840 | fn normalize(&mut self) { |
| 841 | small::normalize(self.data_mut()); |
| 842 | } |
| 843 | |
| 844 | // ADDITION |
| 845 | |
| 846 | /// AddAssign small integer. |
| 847 | #[inline ] |
| 848 | fn iadd_small(&mut self, y: Limb) { |
| 849 | small::iadd(self.data_mut(), y); |
| 850 | } |
| 851 | |
| 852 | // MULTIPLICATION |
| 853 | |
| 854 | /// MulAssign small integer. |
| 855 | #[inline ] |
| 856 | fn imul_small(&mut self, y: Limb) { |
| 857 | small::imul(self.data_mut(), y); |
| 858 | } |
| 859 | |
| 860 | /// Multiply by a power of 2. |
| 861 | #[inline ] |
| 862 | fn imul_pow2(&mut self, n: u32) { |
| 863 | self.ishl(n as usize); |
| 864 | } |
| 865 | |
| 866 | /// Multiply by a power of 5. |
| 867 | #[inline ] |
| 868 | fn imul_pow5(&mut self, n: u32) { |
| 869 | small::imul_pow5(self.data_mut(), n); |
| 870 | } |
| 871 | |
| 872 | /// MulAssign by a power of 10. |
| 873 | #[inline ] |
| 874 | fn imul_pow10(&mut self, n: u32) { |
| 875 | self.imul_pow5(n); |
| 876 | self.imul_pow2(n); |
| 877 | } |
| 878 | |
| 879 | // SHIFTS |
| 880 | |
| 881 | /// Shift-left the entire buffer n bits. |
| 882 | #[inline ] |
| 883 | fn ishl(&mut self, n: usize) { |
| 884 | small::ishl(self.data_mut(), n); |
| 885 | } |
| 886 | } |
| 887 | |