1//! Spans represent periods of time in which a program was executing in a
2//! particular context.
3//!
4//! A span consists of [fields], user-defined key-value pairs of arbitrary data
5//! that describe the context the span represents, and a set of fixed attributes
6//! that describe all `tracing` spans and events. Attributes describing spans
7//! include:
8//!
9//! - An [`Id`] assigned by the subscriber that uniquely identifies it in relation
10//! to other spans.
11//! - The span's [parent] in the trace tree.
12//! - [Metadata] that describes static characteristics of all spans
13//! originating from that callsite, such as its name, source code location,
14//! [verbosity level], and the names of its fields.
15//!
16//! # Creating Spans
17//!
18//! Spans are created using the [`span!`] macro. This macro is invoked with the
19//! following arguments, in order:
20//!
21//! - The [`target`] and/or [`parent`][parent] attributes, if the user wishes to
22//! override their default values.
23//! - The span's [verbosity level]
24//! - A string literal providing the span's name.
25//! - Finally, zero or more arbitrary key/value fields.
26//!
27//! [`target`]: super::Metadata::target
28//!
29//! For example:
30//! ```rust
31//! use tracing::{span, Level};
32//!
33//! /// Construct a new span at the `INFO` level named "my_span", with a single
34//! /// field named answer , with the value `42`.
35//! let my_span = span!(Level::INFO, "my_span", answer = 42);
36//! ```
37//!
38//! The documentation for the [`span!`] macro provides additional examples of
39//! the various options that exist when creating spans.
40//!
41//! The [`trace_span!`], [`debug_span!`], [`info_span!`], [`warn_span!`], and
42//! [`error_span!`] exist as shorthand for constructing spans at various
43//! verbosity levels.
44//!
45//! ## Recording Span Creation
46//!
47//! The [`Attributes`] type contains data associated with a span, and is
48//! provided to the [`Subscriber`] when a new span is created. It contains
49//! the span's metadata, the ID of [the span's parent][parent] if one was
50//! explicitly set, and any fields whose values were recorded when the span was
51//! constructed. The subscriber, which is responsible for recording `tracing`
52//! data, can then store or record these values.
53//!
54//! # The Span Lifecycle
55//!
56//! ## Entering a Span
57//!
58//! A thread of execution is said to _enter_ a span when it begins executing,
59//! and _exit_ the span when it switches to another context. Spans may be
60//! entered through the [`enter`], [`entered`], and [`in_scope`] methods.
61//!
62//! The [`enter`] method enters a span, returning a [guard] that exits the span
63//! when dropped
64//! ```
65//! # use tracing::{span, Level};
66//! let my_var: u64 = 5;
67//! let my_span = span!(Level::TRACE, "my_span", my_var);
68//!
69//! // `my_span` exists but has not been entered.
70//!
71//! // Enter `my_span`...
72//! let _enter = my_span.enter();
73//!
74//! // Perform some work inside of the context of `my_span`...
75//! // Dropping the `_enter` guard will exit the span.
76//!```
77//!
78//! <div class="example-wrap" style="display:inline-block"><pre class="compile_fail" style="white-space:normal;font:inherit;">
79//! <strong>Warning</strong>: In asynchronous code that uses async/await syntax,
80//! <code>Span::enter</code> may produce incorrect traces if the returned drop
81//! guard is held across an await point. See
82//! <a href="struct.Span.html#in-asynchronous-code">the method documentation</a>
83//! for details.
84//! </pre></div>
85//!
86//! The [`entered`] method is analogous to [`enter`], but moves the span into
87//! the returned guard, rather than borrowing it. This allows creating and
88//! entering a span in a single expression:
89//!
90//! ```
91//! # use tracing::{span, Level};
92//! // Create a span and enter it, returning a guard:
93//! let span = span!(Level::INFO, "my_span").entered();
94//!
95//! // We are now inside the span! Like `enter()`, the guard returned by
96//! // `entered()` will exit the span when it is dropped...
97//!
98//! // ...but, it can also be exited explicitly, returning the `Span`
99//! // struct:
100//! let span = span.exit();
101//! ```
102//!
103//! Finally, [`in_scope`] takes a closure or function pointer and executes it
104//! inside the span:
105//!
106//! ```
107//! # use tracing::{span, Level};
108//! let my_var: u64 = 5;
109//! let my_span = span!(Level::TRACE, "my_span", my_var = &my_var);
110//!
111//! my_span.in_scope(|| {
112//! // perform some work in the context of `my_span`...
113//! });
114//!
115//! // Perform some work outside of the context of `my_span`...
116//!
117//! my_span.in_scope(|| {
118//! // Perform some more work in the context of `my_span`.
119//! });
120//! ```
121//!
122//! <pre class="ignore" style="white-space:normal;font:inherit;">
123//! <strong>Note</strong>: Since entering a span takes <code>&self</code>, and
124//! <code>Span</code>s are <code>Clone</code>, <code>Send</code>, and
125//! <code>Sync</code>, it is entirely valid for multiple threads to enter the
126//! same span concurrently.
127//! </pre>
128//!
129//! ## Span Relationships
130//!
131//! Spans form a tree structure — unless it is a root span, all spans have a
132//! _parent_, and may have one or more _children_. When a new span is created,
133//! the current span becomes the new span's parent. The total execution time of
134//! a span consists of the time spent in that span and in the entire subtree
135//! represented by its children. Thus, a parent span always lasts for at least
136//! as long as the longest-executing span in its subtree.
137//!
138//! ```
139//! # use tracing::{Level, span};
140//! // this span is considered the "root" of a new trace tree:
141//! span!(Level::INFO, "root").in_scope(|| {
142//! // since we are now inside "root", this span is considered a child
143//! // of "root":
144//! span!(Level::DEBUG, "outer_child").in_scope(|| {
145//! // this span is a child of "outer_child", which is in turn a
146//! // child of "root":
147//! span!(Level::TRACE, "inner_child").in_scope(|| {
148//! // and so on...
149//! });
150//! });
151//! // another span created here would also be a child of "root".
152//! });
153//!```
154//!
155//! In addition, the parent of a span may be explicitly specified in
156//! the `span!` macro. For example:
157//!
158//! ```rust
159//! # use tracing::{Level, span};
160//! // Create, but do not enter, a span called "foo".
161//! let foo = span!(Level::INFO, "foo");
162//!
163//! // Create and enter a span called "bar".
164//! let bar = span!(Level::INFO, "bar");
165//! let _enter = bar.enter();
166//!
167//! // Although we have currently entered "bar", "baz"'s parent span
168//! // will be "foo".
169//! let baz = span!(parent: &foo, Level::INFO, "baz");
170//! ```
171//!
172//! A child span should typically be considered _part_ of its parent. For
173//! example, if a subscriber is recording the length of time spent in various
174//! spans, it should generally include the time spent in a span's children as
175//! part of that span's duration.
176//!
177//! In addition to having zero or one parent, a span may also _follow from_ any
178//! number of other spans. This indicates a causal relationship between the span
179//! and the spans that it follows from, but a follower is *not* typically
180//! considered part of the duration of the span it follows. Unlike the parent, a
181//! span may record that it follows from another span after it is created, using
182//! the [`follows_from`] method.
183//!
184//! As an example, consider a listener task in a server. As the listener accepts
185//! incoming connections, it spawns new tasks that handle those connections. We
186//! might want to have a span representing the listener, and instrument each
187//! spawned handler task with its own span. We would want our instrumentation to
188//! record that the handler tasks were spawned as a result of the listener task.
189//! However, we might not consider the handler tasks to be _part_ of the time
190//! spent in the listener task, so we would not consider those spans children of
191//! the listener span. Instead, we would record that the handler tasks follow
192//! from the listener, recording the causal relationship but treating the spans
193//! as separate durations.
194//!
195//! ## Closing Spans
196//!
197//! Execution may enter and exit a span multiple times before that span is
198//! _closed_. Consider, for example, a future which has an associated
199//! span and enters that span every time it is polled:
200//! ```rust
201//! # use std::future::Future;
202//! # use std::task::{Context, Poll};
203//! # use std::pin::Pin;
204//! struct MyFuture {
205//! // data
206//! span: tracing::Span,
207//! }
208//!
209//! impl Future for MyFuture {
210//! type Output = ();
211//!
212//! fn poll(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Self::Output> {
213//! let _enter = self.span.enter();
214//! // Do actual future work...
215//! # Poll::Ready(())
216//! }
217//! }
218//! ```
219//!
220//! If this future was spawned on an executor, it might yield one or more times
221//! before `poll` returns [`Poll::Ready`]. If the future were to yield, then
222//! the executor would move on to poll the next future, which may _also_ enter
223//! an associated span or series of spans. Therefore, it is valid for a span to
224//! be entered repeatedly before it completes. Only the time when that span or
225//! one of its children was the current span is considered to be time spent in
226//! that span. A span which is not executing and has not yet been closed is said
227//! to be _idle_.
228//!
229//! Because spans may be entered and exited multiple times before they close,
230//! [`Subscriber`]s have separate trait methods which are called to notify them
231//! of span exits and when span handles are dropped. When execution exits a
232//! span, [`exit`] will always be called with that span's ID to notify the
233//! subscriber that the span has been exited. When span handles are dropped, the
234//! [`drop_span`] method is called with that span's ID. The subscriber may use
235//! this to determine whether or not the span will be entered again.
236//!
237//! If there is only a single handle with the capacity to exit a span, dropping
238//! that handle "closes" the span, since the capacity to enter it no longer
239//! exists. For example:
240//! ```
241//! # use tracing::{Level, span};
242//! {
243//! span!(Level::TRACE, "my_span").in_scope(|| {
244//! // perform some work in the context of `my_span`...
245//! }); // --> Subscriber::exit(my_span)
246//!
247//! // The handle to `my_span` only lives inside of this block; when it is
248//! // dropped, the subscriber will be informed via `drop_span`.
249//!
250//! } // --> Subscriber::drop_span(my_span)
251//! ```
252//!
253//! However, if multiple handles exist, the span can still be re-entered even if
254//! one or more is dropped. For determining when _all_ handles to a span have
255//! been dropped, `Subscriber`s have a [`clone_span`] method, which is called
256//! every time a span handle is cloned. Combined with `drop_span`, this may be
257//! used to track the number of handles to a given span — if `drop_span` has
258//! been called one more time than the number of calls to `clone_span` for a
259//! given ID, then no more handles to the span with that ID exist. The
260//! subscriber may then treat it as closed.
261//!
262//! # When to use spans
263//!
264//! As a rule of thumb, spans should be used to represent discrete units of work
265//! (e.g., a given request's lifetime in a server) or periods of time spent in a
266//! given context (e.g., time spent interacting with an instance of an external
267//! system, such as a database).
268//!
269//! Which scopes in a program correspond to new spans depend somewhat on user
270//! intent. For example, consider the case of a loop in a program. Should we
271//! construct one span and perform the entire loop inside of that span, like:
272//!
273//! ```rust
274//! # use tracing::{Level, span};
275//! # let n = 1;
276//! let span = span!(Level::TRACE, "my_loop");
277//! let _enter = span.enter();
278//! for i in 0..n {
279//! # let _ = i;
280//! // ...
281//! }
282//! ```
283//! Or, should we create a new span for each iteration of the loop, as in:
284//! ```rust
285//! # use tracing::{Level, span};
286//! # let n = 1u64;
287//! for i in 0..n {
288//! let span = span!(Level::TRACE, "my_loop", iteration = i);
289//! let _enter = span.enter();
290//! // ...
291//! }
292//! ```
293//!
294//! Depending on the circumstances, we might want to do either, or both. For
295//! example, if we want to know how long was spent in the loop overall, we would
296//! create a single span around the entire loop; whereas if we wanted to know how
297//! much time was spent in each individual iteration, we would enter a new span
298//! on every iteration.
299//!
300//! [fields]: super::field
301//! [Metadata]: super::Metadata
302//! [verbosity level]: super::Level
303//! [`Poll::Ready`]: std::task::Poll::Ready
304//! [`span!`]: super::span!
305//! [`trace_span!`]: super::trace_span!
306//! [`debug_span!`]: super::debug_span!
307//! [`info_span!`]: super::info_span!
308//! [`warn_span!`]: super::warn_span!
309//! [`error_span!`]: super::error_span!
310//! [`clone_span`]: super::subscriber::Subscriber::clone_span()
311//! [`drop_span`]: super::subscriber::Subscriber::drop_span()
312//! [`exit`]: super::subscriber::Subscriber::exit
313//! [`Subscriber`]: super::subscriber::Subscriber
314//! [`enter`]: Span::enter()
315//! [`entered`]: Span::entered()
316//! [`in_scope`]: Span::in_scope()
317//! [`follows_from`]: Span::follows_from()
318//! [guard]: Entered
319//! [parent]: #span-relationships
320pub use tracing_core::span::{Attributes, Id, Record};
321
322use crate::stdlib::{
323 cmp, fmt,
324 hash::{Hash, Hasher},
325 marker::PhantomData,
326 mem,
327 ops::Deref,
328};
329use crate::{
330 dispatcher::{self, Dispatch},
331 field, Metadata,
332};
333
334/// Trait implemented by types which have a span `Id`.
335pub trait AsId: crate::sealed::Sealed {
336 /// Returns the `Id` of the span that `self` corresponds to, or `None` if
337 /// this corresponds to a disabled span.
338 fn as_id(&self) -> Option<&Id>;
339}
340
341/// A handle representing a span, with the capability to enter the span if it
342/// exists.
343///
344/// If the span was rejected by the current `Subscriber`'s filter, entering the
345/// span will silently do nothing. Thus, the handle can be used in the same
346/// manner regardless of whether or not the trace is currently being collected.
347#[derive(Clone)]
348pub struct Span {
349 /// A handle used to enter the span when it is not executing.
350 ///
351 /// If this is `None`, then the span has either closed or was never enabled.
352 inner: Option<Inner>,
353 /// Metadata describing the span.
354 ///
355 /// This might be `Some` even if `inner` is `None`, in the case that the
356 /// span is disabled but the metadata is needed for `log` support.
357 meta: Option<&'static Metadata<'static>>,
358}
359
360/// A handle representing the capacity to enter a span which is known to exist.
361///
362/// Unlike `Span`, this type is only constructed for spans which _have_ been
363/// enabled by the current filter. This type is primarily used for implementing
364/// span handles; users should typically not need to interact with it directly.
365#[derive(Debug)]
366pub(crate) struct Inner {
367 /// The span's ID, as provided by `subscriber`.
368 id: Id,
369
370 /// The subscriber that will receive events relating to this span.
371 ///
372 /// This should be the same subscriber that provided this span with its
373 /// `id`.
374 subscriber: Dispatch,
375}
376
377/// A guard representing a span which has been entered and is currently
378/// executing.
379///
380/// When the guard is dropped, the span will be exited.
381///
382/// This is returned by the [`Span::enter`] function.
383///
384/// [`Span::enter`]: super::Span::enter
385#[derive(Debug)]
386#[must_use = "once a span has been entered, it should be exited"]
387pub struct Entered<'a> {
388 span: &'a Span,
389}
390
391/// An owned version of [`Entered`], a guard representing a span which has been
392/// entered and is currently executing.
393///
394/// When the guard is dropped, the span will be exited.
395///
396/// This is returned by the [`Span::entered`] function.
397///
398/// [`Span::entered`]: super::Span::entered()
399#[derive(Debug)]
400#[must_use = "once a span has been entered, it should be exited"]
401pub struct EnteredSpan {
402 span: Span,
403
404 /// ```compile_fail
405 /// use tracing::span::*;
406 /// trait AssertSend: Send {}
407 ///
408 /// impl AssertSend for EnteredSpan {}
409 /// ```
410 _not_send: PhantomNotSend,
411}
412
413/// `log` target for all span lifecycle (creation/enter/exit/close) records.
414#[cfg(feature = "log")]
415const LIFECYCLE_LOG_TARGET: &str = "tracing::span";
416/// `log` target for span activity (enter/exit) records.
417#[cfg(feature = "log")]
418const ACTIVITY_LOG_TARGET: &str = "tracing::span::active";
419
420// ===== impl Span =====
421
422impl Span {
423 /// Constructs a new `Span` with the given [metadata] and set of
424 /// [field values].
425 ///
426 /// The new span will be constructed by the currently-active [`Subscriber`],
427 /// with the current span as its parent (if one exists).
428 ///
429 /// After the span is constructed, [field values] and/or [`follows_from`]
430 /// annotations may be added to it.
431 ///
432 /// [metadata]: super::Metadata
433 /// [`Subscriber`]: super::subscriber::Subscriber
434 /// [field values]: super::field::ValueSet
435 /// [`follows_from`]: super::Span::follows_from
436 pub fn new(meta: &'static Metadata<'static>, values: &field::ValueSet<'_>) -> Span {
437 dispatcher::get_default(|dispatch| Self::new_with(meta, values, dispatch))
438 }
439
440 #[inline]
441 #[doc(hidden)]
442 pub fn new_with(
443 meta: &'static Metadata<'static>,
444 values: &field::ValueSet<'_>,
445 dispatch: &Dispatch,
446 ) -> Span {
447 let new_span = Attributes::new(meta, values);
448 Self::make_with(meta, new_span, dispatch)
449 }
450
451 /// Constructs a new `Span` as the root of its own trace tree, with the
452 /// given [metadata] and set of [field values].
453 ///
454 /// After the span is constructed, [field values] and/or [`follows_from`]
455 /// annotations may be added to it.
456 ///
457 /// [metadata]: super::Metadata
458 /// [field values]: super::field::ValueSet
459 /// [`follows_from`]: super::Span::follows_from
460 pub fn new_root(meta: &'static Metadata<'static>, values: &field::ValueSet<'_>) -> Span {
461 dispatcher::get_default(|dispatch| Self::new_root_with(meta, values, dispatch))
462 }
463
464 #[inline]
465 #[doc(hidden)]
466 pub fn new_root_with(
467 meta: &'static Metadata<'static>,
468 values: &field::ValueSet<'_>,
469 dispatch: &Dispatch,
470 ) -> Span {
471 let new_span = Attributes::new_root(meta, values);
472 Self::make_with(meta, new_span, dispatch)
473 }
474
475 /// Constructs a new `Span` as child of the given parent span, with the
476 /// given [metadata] and set of [field values].
477 ///
478 /// After the span is constructed, [field values] and/or [`follows_from`]
479 /// annotations may be added to it.
480 ///
481 /// [metadata]: super::Metadata
482 /// [field values]: super::field::ValueSet
483 /// [`follows_from`]: super::Span::follows_from
484 pub fn child_of(
485 parent: impl Into<Option<Id>>,
486 meta: &'static Metadata<'static>,
487 values: &field::ValueSet<'_>,
488 ) -> Span {
489 let mut parent = parent.into();
490 dispatcher::get_default(move |dispatch| {
491 Self::child_of_with(Option::take(&mut parent), meta, values, dispatch)
492 })
493 }
494
495 #[inline]
496 #[doc(hidden)]
497 pub fn child_of_with(
498 parent: impl Into<Option<Id>>,
499 meta: &'static Metadata<'static>,
500 values: &field::ValueSet<'_>,
501 dispatch: &Dispatch,
502 ) -> Span {
503 let new_span = match parent.into() {
504 Some(parent) => Attributes::child_of(parent, meta, values),
505 None => Attributes::new_root(meta, values),
506 };
507 Self::make_with(meta, new_span, dispatch)
508 }
509
510 /// Constructs a new disabled span with the given `Metadata`.
511 ///
512 /// This should be used when a span is constructed from a known callsite,
513 /// but the subscriber indicates that it is disabled.
514 ///
515 /// Entering, exiting, and recording values on this span will not notify the
516 /// `Subscriber` but _may_ record log messages if the `log` feature flag is
517 /// enabled.
518 #[inline(always)]
519 pub fn new_disabled(meta: &'static Metadata<'static>) -> Span {
520 Self {
521 inner: None,
522 meta: Some(meta),
523 }
524 }
525
526 /// Constructs a new span that is *completely disabled*.
527 ///
528 /// This can be used rather than `Option<Span>` to represent cases where a
529 /// span is not present.
530 ///
531 /// Entering, exiting, and recording values on this span will do nothing.
532 #[inline(always)]
533 pub const fn none() -> Span {
534 Self {
535 inner: None,
536 meta: None,
537 }
538 }
539
540 /// Returns a handle to the span [considered by the `Subscriber`] to be the
541 /// current span.
542 ///
543 /// If the subscriber indicates that it does not track the current span, or
544 /// that the thread from which this function is called is not currently
545 /// inside a span, the returned span will be disabled.
546 ///
547 /// [considered by the `Subscriber`]:
548 /// super::subscriber::Subscriber::current_span
549 pub fn current() -> Span {
550 dispatcher::get_default(|dispatch| {
551 if let Some((id, meta)) = dispatch.current_span().into_inner() {
552 let id = dispatch.clone_span(&id);
553 Self {
554 inner: Some(Inner::new(id, dispatch)),
555 meta: Some(meta),
556 }
557 } else {
558 Self::none()
559 }
560 })
561 }
562
563 fn make_with(
564 meta: &'static Metadata<'static>,
565 new_span: Attributes<'_>,
566 dispatch: &Dispatch,
567 ) -> Span {
568 let attrs = &new_span;
569 let id = dispatch.new_span(attrs);
570 let inner = Some(Inner::new(id, dispatch));
571
572 let span = Self {
573 inner,
574 meta: Some(meta),
575 };
576
577 if_log_enabled! { *meta.level(), {
578 let target = if attrs.is_empty() {
579 LIFECYCLE_LOG_TARGET
580 } else {
581 meta.target()
582 };
583 let values = attrs.values();
584 span.log(
585 target,
586 level_to_log!(*meta.level()),
587 format_args!("++ {};{}", meta.name(), crate::log::LogValueSet { values, is_first: false }),
588 );
589 }}
590
591 span
592 }
593
594 /// Enters this span, returning a guard that will exit the span when dropped.
595 ///
596 /// If this span is enabled by the current subscriber, then this function will
597 /// call [`Subscriber::enter`] with the span's [`Id`], and dropping the guard
598 /// will call [`Subscriber::exit`]. If the span is disabled, this does
599 /// nothing.
600 ///
601 /// # In Asynchronous Code
602 ///
603 /// **Warning**: in asynchronous code that uses [async/await syntax][syntax],
604 /// `Span::enter` should be used very carefully or avoided entirely. Holding
605 /// the drop guard returned by `Span::enter` across `.await` points will
606 /// result in incorrect traces. For example,
607 ///
608 /// ```
609 /// # use tracing::info_span;
610 /// # async fn some_other_async_function() {}
611 /// async fn my_async_function() {
612 /// let span = info_span!("my_async_function");
613 ///
614 /// // WARNING: This span will remain entered until this
615 /// // guard is dropped...
616 /// let _enter = span.enter();
617 /// // ...but the `await` keyword may yield, causing the
618 /// // runtime to switch to another task, while remaining in
619 /// // this span!
620 /// some_other_async_function().await
621 ///
622 /// // ...
623 /// }
624 /// ```
625 ///
626 /// The drop guard returned by `Span::enter` exits the span when it is
627 /// dropped. When an async function or async block yields at an `.await`
628 /// point, the current scope is _exited_, but values in that scope are
629 /// **not** dropped (because the async block will eventually resume
630 /// execution from that await point). This means that _another_ task will
631 /// begin executing while _remaining_ in the entered span. This results in
632 /// an incorrect trace.
633 ///
634 /// Instead of using `Span::enter` in asynchronous code, prefer the
635 /// following:
636 ///
637 /// * To enter a span for a synchronous section of code within an async
638 /// block or function, prefer [`Span::in_scope`]. Since `in_scope` takes a
639 /// synchronous closure and exits the span when the closure returns, the
640 /// span will always be exited before the next await point. For example:
641 /// ```
642 /// # use tracing::info_span;
643 /// # async fn some_other_async_function(_: ()) {}
644 /// async fn my_async_function() {
645 /// let span = info_span!("my_async_function");
646 ///
647 /// let some_value = span.in_scope(|| {
648 /// // run some synchronous code inside the span...
649 /// });
650 ///
651 /// // This is okay! The span has already been exited before we reach
652 /// // the await point.
653 /// some_other_async_function(some_value).await;
654 ///
655 /// // ...
656 /// }
657 /// ```
658 /// * For instrumenting asynchronous code, `tracing` provides the
659 /// [`Future::instrument` combinator][instrument] for
660 /// attaching a span to a future (async function or block). This will
661 /// enter the span _every_ time the future is polled, and exit it whenever
662 /// the future yields.
663 ///
664 /// `Instrument` can be used with an async block inside an async function:
665 /// ```ignore
666 /// # use tracing::info_span;
667 /// use tracing::Instrument;
668 ///
669 /// # async fn some_other_async_function() {}
670 /// async fn my_async_function() {
671 /// let span = info_span!("my_async_function");
672 /// async move {
673 /// // This is correct! If we yield here, the span will be exited,
674 /// // and re-entered when we resume.
675 /// some_other_async_function().await;
676 ///
677 /// //more asynchronous code inside the span...
678 ///
679 /// }
680 /// // instrument the async block with the span...
681 /// .instrument(span)
682 /// // ...and await it.
683 /// .await
684 /// }
685 /// ```
686 ///
687 /// It can also be used to instrument calls to async functions at the
688 /// callsite:
689 /// ```ignore
690 /// # use tracing::debug_span;
691 /// use tracing::Instrument;
692 ///
693 /// # async fn some_other_async_function() {}
694 /// async fn my_async_function() {
695 /// let some_value = some_other_async_function()
696 /// .instrument(debug_span!("some_other_async_function"))
697 /// .await;
698 ///
699 /// // ...
700 /// }
701 /// ```
702 ///
703 /// * The [`#[instrument]` attribute macro][attr] can automatically generate
704 /// correct code when used on an async function:
705 ///
706 /// ```ignore
707 /// # async fn some_other_async_function() {}
708 /// #[tracing::instrument(level = "info")]
709 /// async fn my_async_function() {
710 ///
711 /// // This is correct! If we yield here, the span will be exited,
712 /// // and re-entered when we resume.
713 /// some_other_async_function().await;
714 ///
715 /// // ...
716 ///
717 /// }
718 /// ```
719 ///
720 /// [syntax]: https://rust-lang.github.io/async-book/01_getting_started/04_async_await_primer.html
721 /// [`Span::in_scope`]: Span::in_scope()
722 /// [instrument]: crate::Instrument
723 /// [attr]: macro@crate::instrument
724 ///
725 /// # Examples
726 ///
727 /// ```
728 /// # use tracing::{span, Level};
729 /// let span = span!(Level::INFO, "my_span");
730 /// let guard = span.enter();
731 ///
732 /// // code here is within the span
733 ///
734 /// drop(guard);
735 ///
736 /// // code here is no longer within the span
737 ///
738 /// ```
739 ///
740 /// Guards need not be explicitly dropped:
741 ///
742 /// ```
743 /// # use tracing::trace_span;
744 /// fn my_function() -> String {
745 /// // enter a span for the duration of this function.
746 /// let span = trace_span!("my_function");
747 /// let _enter = span.enter();
748 ///
749 /// // anything happening in functions we call is still inside the span...
750 /// my_other_function();
751 ///
752 /// // returning from the function drops the guard, exiting the span.
753 /// return "Hello world".to_owned();
754 /// }
755 ///
756 /// fn my_other_function() {
757 /// // ...
758 /// }
759 /// ```
760 ///
761 /// Sub-scopes may be created to limit the duration for which the span is
762 /// entered:
763 ///
764 /// ```
765 /// # use tracing::{info, info_span};
766 /// let span = info_span!("my_great_span");
767 ///
768 /// {
769 /// let _enter = span.enter();
770 ///
771 /// // this event occurs inside the span.
772 /// info!("i'm in the span!");
773 ///
774 /// // exiting the scope drops the guard, exiting the span.
775 /// }
776 ///
777 /// // this event is not inside the span.
778 /// info!("i'm outside the span!")
779 /// ```
780 ///
781 /// [`Subscriber::enter`]: super::subscriber::Subscriber::enter()
782 /// [`Subscriber::exit`]: super::subscriber::Subscriber::exit()
783 /// [`Id`]: super::Id
784 #[inline(always)]
785 pub fn enter(&self) -> Entered<'_> {
786 self.do_enter();
787 Entered { span: self }
788 }
789
790 /// Enters this span, consuming it and returning a [guard][`EnteredSpan`]
791 /// that will exit the span when dropped.
792 ///
793 /// <pre class="compile_fail" style="white-space:normal;font:inherit;">
794 /// <strong>Warning</strong>: In asynchronous code that uses async/await syntax,
795 /// <code>Span::entered</code> may produce incorrect traces if the returned drop
796 /// guard is held across an await point. See <a href="#in-asynchronous-code">the
797 /// <code>Span::enter</code> documentation</a> for details.
798 /// </pre>
799 ///
800 ///
801 /// If this span is enabled by the current subscriber, then this function will
802 /// call [`Subscriber::enter`] with the span's [`Id`], and dropping the guard
803 /// will call [`Subscriber::exit`]. If the span is disabled, this does
804 /// nothing.
805 ///
806 /// This is similar to the [`Span::enter`] method, except that it moves the
807 /// span by value into the returned guard, rather than borrowing it.
808 /// Therefore, this method can be used to create and enter a span in a
809 /// single expression, without requiring a `let`-binding. For example:
810 ///
811 /// ```
812 /// # use tracing::info_span;
813 /// let _span = info_span!("something_interesting").entered();
814 /// ```
815 /// rather than:
816 /// ```
817 /// # use tracing::info_span;
818 /// let span = info_span!("something_interesting");
819 /// let _e = span.enter();
820 /// ```
821 ///
822 /// Furthermore, `entered` may be used when the span must be stored in some
823 /// other struct or be passed to a function while remaining entered.
824 ///
825 /// <pre class="ignore" style="white-space:normal;font:inherit;">
826 /// <strong>Note</strong>: The returned <a href="../struct.EnteredSpan.html">
827 /// <code>EnteredSpan</code></a> guard does not implement <code>Send</code>.
828 /// Dropping the guard will exit <em>this</em> span, and if the guard is sent
829 /// to another thread and dropped there, that thread may never have entered
830 /// this span. Thus, <code>EnteredSpan</code>s should not be sent between threads.
831 /// </pre>
832 ///
833 /// [syntax]: https://rust-lang.github.io/async-book/01_getting_started/04_async_await_primer.html
834 ///
835 /// # Examples
836 ///
837 /// The returned guard can be [explicitly exited][EnteredSpan::exit],
838 /// returning the un-entered span:
839 ///
840 /// ```
841 /// # use tracing::{Level, span};
842 /// let span = span!(Level::INFO, "doing_something").entered();
843 ///
844 /// // code here is within the span
845 ///
846 /// // explicitly exit the span, returning it
847 /// let span = span.exit();
848 ///
849 /// // code here is no longer within the span
850 ///
851 /// // enter the span again
852 /// let span = span.entered();
853 ///
854 /// // now we are inside the span once again
855 /// ```
856 ///
857 /// Guards need not be explicitly dropped:
858 ///
859 /// ```
860 /// # use tracing::trace_span;
861 /// fn my_function() -> String {
862 /// // enter a span for the duration of this function.
863 /// let span = trace_span!("my_function").entered();
864 ///
865 /// // anything happening in functions we call is still inside the span...
866 /// my_other_function();
867 ///
868 /// // returning from the function drops the guard, exiting the span.
869 /// return "Hello world".to_owned();
870 /// }
871 ///
872 /// fn my_other_function() {
873 /// // ...
874 /// }
875 /// ```
876 ///
877 /// Since the [`EnteredSpan`] guard can dereference to the [`Span`] itself,
878 /// the span may still be accessed while entered. For example:
879 ///
880 /// ```rust
881 /// # use tracing::info_span;
882 /// use tracing::field;
883 ///
884 /// // create the span with an empty field, and enter it.
885 /// let span = info_span!("my_span", some_field = field::Empty).entered();
886 ///
887 /// // we can still record a value for the field while the span is entered.
888 /// span.record("some_field", &"hello world!");
889 /// ```
890 ///
891
892 /// [`Subscriber::enter`]: super::subscriber::Subscriber::enter()
893 /// [`Subscriber::exit`]: super::subscriber::Subscriber::exit()
894 /// [`Id`]: super::Id
895 #[inline(always)]
896 pub fn entered(self) -> EnteredSpan {
897 self.do_enter();
898 EnteredSpan {
899 span: self,
900 _not_send: PhantomNotSend,
901 }
902 }
903
904 /// Returns this span, if it was [enabled] by the current [`Subscriber`], or
905 /// the [current span] (whose lexical distance may be further than expected),
906 /// if this span [is disabled].
907 ///
908 /// This method can be useful when propagating spans to spawned threads or
909 /// [async tasks]. Consider the following:
910 ///
911 /// ```
912 /// let _parent_span = tracing::info_span!("parent").entered();
913 ///
914 /// // ...
915 ///
916 /// let child_span = tracing::debug_span!("child");
917 ///
918 /// std::thread::spawn(move || {
919 /// let _entered = child_span.entered();
920 ///
921 /// tracing::info!("spawned a thread!");
922 ///
923 /// // ...
924 /// });
925 /// ```
926 ///
927 /// If the current [`Subscriber`] enables the [`DEBUG`] level, then both
928 /// the "parent" and "child" spans will be enabled. Thus, when the "spawaned
929 /// a thread!" event occurs, it will be inside of the "child" span. Because
930 /// "parent" is the parent of "child", the event will _also_ be inside of
931 /// "parent".
932 ///
933 /// However, if the [`Subscriber`] only enables the [`INFO`] level, the "child"
934 /// span will be disabled. When the thread is spawned, the
935 /// `child_span.entered()` call will do nothing, since "child" is not
936 /// enabled. In this case, the "spawned a thread!" event occurs outside of
937 /// *any* span, since the "child" span was responsible for propagating its
938 /// parent to the spawned thread.
939 ///
940 /// If this is not the desired behavior, `Span::or_current` can be used to
941 /// ensure that the "parent" span is propagated in both cases, either as a
942 /// parent of "child" _or_ directly. For example:
943 ///
944 /// ```
945 /// let _parent_span = tracing::info_span!("parent").entered();
946 ///
947 /// // ...
948 ///
949 /// // If DEBUG is enabled, then "child" will be enabled, and `or_current`
950 /// // returns "child". Otherwise, if DEBUG is not enabled, "child" will be
951 /// // disabled, and `or_current` returns "parent".
952 /// let child_span = tracing::debug_span!("child").or_current();
953 ///
954 /// std::thread::spawn(move || {
955 /// let _entered = child_span.entered();
956 ///
957 /// tracing::info!("spawned a thread!");
958 ///
959 /// // ...
960 /// });
961 /// ```
962 ///
963 /// When spawning [asynchronous tasks][async tasks], `Span::or_current` can
964 /// be used similarly, in combination with [`instrument`]:
965 ///
966 /// ```
967 /// use tracing::Instrument;
968 /// # // lol
969 /// # mod tokio {
970 /// # pub(super) fn spawn(_: impl std::future::Future) {}
971 /// # }
972 ///
973 /// let _parent_span = tracing::info_span!("parent").entered();
974 ///
975 /// // ...
976 ///
977 /// let child_span = tracing::debug_span!("child");
978 ///
979 /// tokio::spawn(
980 /// async {
981 /// tracing::info!("spawned a task!");
982 ///
983 /// // ...
984 ///
985 /// }.instrument(child_span.or_current())
986 /// );
987 /// ```
988 ///
989 /// In general, `or_current` should be preferred over nesting an
990 /// [`instrument`] call inside of an [`in_current_span`] call, as using
991 /// `or_current` will be more efficient.
992 ///
993 /// ```
994 /// use tracing::Instrument;
995 /// # // lol
996 /// # mod tokio {
997 /// # pub(super) fn spawn(_: impl std::future::Future) {}
998 /// # }
999 /// async fn my_async_fn() {
1000 /// // ...
1001 /// }
1002 ///
1003 /// let _parent_span = tracing::info_span!("parent").entered();
1004 ///
1005 /// // Do this:
1006 /// tokio::spawn(
1007 /// my_async_fn().instrument(tracing::debug_span!("child").or_current())
1008 /// );
1009 ///
1010 /// // ...rather than this:
1011 /// tokio::spawn(
1012 /// my_async_fn()
1013 /// .instrument(tracing::debug_span!("child"))
1014 /// .in_current_span()
1015 /// );
1016 /// ```
1017 ///
1018 /// [enabled]: crate::Subscriber::enabled
1019 /// [`Subscriber`]: crate::Subscriber
1020 /// [current span]: Span::current
1021 /// [is disabled]: Span::is_disabled
1022 /// [`INFO`]: crate::Level::INFO
1023 /// [`DEBUG`]: crate::Level::DEBUG
1024 /// [async tasks]: std::task
1025 /// [`instrument`]: crate::instrument::Instrument::instrument
1026 /// [`in_current_span`]: crate::instrument::Instrument::in_current_span
1027 pub fn or_current(self) -> Self {
1028 if self.is_disabled() {
1029 return Self::current();
1030 }
1031 self
1032 }
1033
1034 #[inline(always)]
1035 fn do_enter(&self) {
1036 if let Some(inner) = self.inner.as_ref() {
1037 inner.subscriber.enter(&inner.id);
1038 }
1039
1040 if_log_enabled! { crate::Level::TRACE, {
1041 if let Some(_meta) = self.meta {
1042 self.log(ACTIVITY_LOG_TARGET, log::Level::Trace, format_args!("-> {};", _meta.name()));
1043 }
1044 }}
1045 }
1046
1047 // Called from [`Entered`] and [`EnteredSpan`] drops.
1048 //
1049 // Running this behaviour on drop rather than with an explicit function
1050 // call means that spans may still be exited when unwinding.
1051 #[inline(always)]
1052 fn do_exit(&self) {
1053 if let Some(inner) = self.inner.as_ref() {
1054 inner.subscriber.exit(&inner.id);
1055 }
1056
1057 if_log_enabled! { crate::Level::TRACE, {
1058 if let Some(_meta) = self.meta {
1059 self.log(ACTIVITY_LOG_TARGET, log::Level::Trace, format_args!("<- {};", _meta.name()));
1060 }
1061 }}
1062 }
1063
1064 /// Executes the given function in the context of this span.
1065 ///
1066 /// If this span is enabled, then this function enters the span, invokes `f`
1067 /// and then exits the span. If the span is disabled, `f` will still be
1068 /// invoked, but in the context of the currently-executing span (if there is
1069 /// one).
1070 ///
1071 /// Returns the result of evaluating `f`.
1072 ///
1073 /// # Examples
1074 ///
1075 /// ```
1076 /// # use tracing::{trace, span, Level};
1077 /// let my_span = span!(Level::TRACE, "my_span");
1078 ///
1079 /// my_span.in_scope(|| {
1080 /// // this event occurs within the span.
1081 /// trace!("i'm in the span!");
1082 /// });
1083 ///
1084 /// // this event occurs outside the span.
1085 /// trace!("i'm not in the span!");
1086 /// ```
1087 ///
1088 /// Calling a function and returning the result:
1089 /// ```
1090 /// # use tracing::{info_span, Level};
1091 /// fn hello_world() -> String {
1092 /// "Hello world!".to_owned()
1093 /// }
1094 ///
1095 /// let span = info_span!("hello_world");
1096 /// // the span will be entered for the duration of the call to
1097 /// // `hello_world`.
1098 /// let a_string = span.in_scope(hello_world);
1099 ///
1100 pub fn in_scope<F: FnOnce() -> T, T>(&self, f: F) -> T {
1101 let _enter = self.enter();
1102 f()
1103 }
1104
1105 /// Returns a [`Field`][super::field::Field] for the field with the
1106 /// given `name`, if one exists,
1107 pub fn field<Q: ?Sized>(&self, field: &Q) -> Option<field::Field>
1108 where
1109 Q: field::AsField,
1110 {
1111 self.metadata().and_then(|meta| field.as_field(meta))
1112 }
1113
1114 /// Returns true if this `Span` has a field for the given
1115 /// [`Field`][super::field::Field] or field name.
1116 #[inline]
1117 pub fn has_field<Q: ?Sized>(&self, field: &Q) -> bool
1118 where
1119 Q: field::AsField,
1120 {
1121 self.field(field).is_some()
1122 }
1123
1124 /// Records that the field described by `field` has the value `value`.
1125 ///
1126 /// This may be used with [`field::Empty`] to declare fields whose values
1127 /// are not known when the span is created, and record them later:
1128 /// ```
1129 /// use tracing::{trace_span, field};
1130 ///
1131 /// // Create a span with two fields: `greeting`, with the value "hello world", and
1132 /// // `parting`, without a value.
1133 /// let span = trace_span!("my_span", greeting = "hello world", parting = field::Empty);
1134 ///
1135 /// // ...
1136 ///
1137 /// // Now, record a value for parting as well.
1138 /// // (note that the field name is passed as a string slice)
1139 /// span.record("parting", "goodbye world!");
1140 /// ```
1141 /// However, it may also be used to record a _new_ value for a field whose
1142 /// value was already recorded:
1143 /// ```
1144 /// use tracing::info_span;
1145 /// # fn do_something() -> Result<(), ()> { Err(()) }
1146 ///
1147 /// // Initially, let's assume that our attempt to do something is going okay...
1148 /// let span = info_span!("doing_something", is_okay = true);
1149 /// let _e = span.enter();
1150 ///
1151 /// match do_something() {
1152 /// Ok(something) => {
1153 /// // ...
1154 /// }
1155 /// Err(_) => {
1156 /// // Things are no longer okay!
1157 /// span.record("is_okay", false);
1158 /// }
1159 /// }
1160 /// ```
1161 ///
1162 /// <pre class="ignore" style="white-space:normal;font:inherit;">
1163 /// <strong>Note</strong>: The fields associated with a span are part
1164 /// of its <a href="../struct.Metadata.html"><code>Metadata</code></a>.
1165 /// The <a href="../struct.Metadata.html"><code>Metadata</code></a>
1166 /// describing a particular span is constructed statically when the span
1167 /// is created and cannot be extended later to add new fields. Therefore,
1168 /// you cannot record a value for a field that was not specified when the
1169 /// span was created:
1170 /// </pre>
1171 ///
1172 /// ```
1173 /// use tracing::{trace_span, field};
1174 ///
1175 /// // Create a span with two fields: `greeting`, with the value "hello world", and
1176 /// // `parting`, without a value.
1177 /// let span = trace_span!("my_span", greeting = "hello world", parting = field::Empty);
1178 ///
1179 /// // ...
1180 ///
1181 /// // Now, you try to record a value for a new field, `new_field`, which was not
1182 /// // declared as `Empty` or populated when you created `span`.
1183 /// // You won't get any error, but the assignment will have no effect!
1184 /// span.record("new_field", "interesting_value_you_really_need");
1185 ///
1186 /// // Instead, all fields that may be recorded after span creation should be declared up front,
1187 /// // using field::Empty when a value is not known, as we did for `parting`.
1188 /// // This `record` call will indeed replace field::Empty with "you will be remembered".
1189 /// span.record("parting", "you will be remembered");
1190 /// ```
1191 ///
1192 /// [`field::Empty`]: super::field::Empty
1193 /// [`Metadata`]: super::Metadata
1194 pub fn record<Q: ?Sized, V>(&self, field: &Q, value: V) -> &Self
1195 where
1196 Q: field::AsField,
1197 V: field::Value,
1198 {
1199 if let Some(meta) = self.meta {
1200 if let Some(field) = field.as_field(meta) {
1201 self.record_all(
1202 &meta
1203 .fields()
1204 .value_set(&[(&field, Some(&value as &dyn field::Value))]),
1205 );
1206 }
1207 }
1208
1209 self
1210 }
1211
1212 /// Records all the fields in the provided `ValueSet`.
1213 pub fn record_all(&self, values: &field::ValueSet<'_>) -> &Self {
1214 let record = Record::new(values);
1215 if let Some(ref inner) = self.inner {
1216 inner.record(&record);
1217 }
1218
1219 if let Some(_meta) = self.meta {
1220 if_log_enabled! { *_meta.level(), {
1221 let target = if record.is_empty() {
1222 LIFECYCLE_LOG_TARGET
1223 } else {
1224 _meta.target()
1225 };
1226 self.log(
1227 target,
1228 level_to_log!(*_meta.level()),
1229 format_args!("{};{}", _meta.name(), crate::log::LogValueSet { values, is_first: false }),
1230 );
1231 }}
1232 }
1233
1234 self
1235 }
1236
1237 /// Returns `true` if this span was disabled by the subscriber and does not
1238 /// exist.
1239 ///
1240 /// See also [`is_none`].
1241 ///
1242 /// [`is_none`]: Span::is_none()
1243 #[inline]
1244 pub fn is_disabled(&self) -> bool {
1245 self.inner.is_none()
1246 }
1247
1248 /// Returns `true` if this span was constructed by [`Span::none`] and is
1249 /// empty.
1250 ///
1251 /// If `is_none` returns `true` for a given span, then [`is_disabled`] will
1252 /// also return `true`. However, when a span is disabled by the subscriber
1253 /// rather than constructed by `Span::none`, this method will return
1254 /// `false`, while `is_disabled` will return `true`.
1255 ///
1256 /// [`Span::none`]: Span::none()
1257 /// [`is_disabled`]: Span::is_disabled()
1258 #[inline]
1259 pub fn is_none(&self) -> bool {
1260 self.is_disabled() && self.meta.is_none()
1261 }
1262
1263 /// Indicates that the span with the given ID has an indirect causal
1264 /// relationship with this span.
1265 ///
1266 /// This relationship differs somewhat from the parent-child relationship: a
1267 /// span may have any number of prior spans, rather than a single one; and
1268 /// spans are not considered to be executing _inside_ of the spans they
1269 /// follow from. This means that a span may close even if subsequent spans
1270 /// that follow from it are still open, and time spent inside of a
1271 /// subsequent span should not be included in the time its precedents were
1272 /// executing. This is used to model causal relationships such as when a
1273 /// single future spawns several related background tasks, et cetera.
1274 ///
1275 /// If this span is disabled, or the resulting follows-from relationship
1276 /// would be invalid, this function will do nothing.
1277 ///
1278 /// # Examples
1279 ///
1280 /// Setting a `follows_from` relationship with a `Span`:
1281 /// ```
1282 /// # use tracing::{span, Id, Level, Span};
1283 /// let span1 = span!(Level::INFO, "span_1");
1284 /// let span2 = span!(Level::DEBUG, "span_2");
1285 /// span2.follows_from(span1);
1286 /// ```
1287 ///
1288 /// Setting a `follows_from` relationship with the current span:
1289 /// ```
1290 /// # use tracing::{span, Id, Level, Span};
1291 /// let span = span!(Level::INFO, "hello!");
1292 /// span.follows_from(Span::current());
1293 /// ```
1294 ///
1295 /// Setting a `follows_from` relationship with a `Span` reference:
1296 /// ```
1297 /// # use tracing::{span, Id, Level, Span};
1298 /// let span = span!(Level::INFO, "hello!");
1299 /// let curr = Span::current();
1300 /// span.follows_from(&curr);
1301 /// ```
1302 ///
1303 /// Setting a `follows_from` relationship with an `Id`:
1304 /// ```
1305 /// # use tracing::{span, Id, Level, Span};
1306 /// let span = span!(Level::INFO, "hello!");
1307 /// let id = span.id();
1308 /// span.follows_from(id);
1309 /// ```
1310 pub fn follows_from(&self, from: impl Into<Option<Id>>) -> &Self {
1311 if let Some(ref inner) = self.inner {
1312 if let Some(from) = from.into() {
1313 inner.follows_from(&from);
1314 }
1315 }
1316 self
1317 }
1318
1319 /// Returns this span's `Id`, if it is enabled.
1320 pub fn id(&self) -> Option<Id> {
1321 self.inner.as_ref().map(Inner::id)
1322 }
1323
1324 /// Returns this span's `Metadata`, if it is enabled.
1325 pub fn metadata(&self) -> Option<&'static Metadata<'static>> {
1326 self.meta
1327 }
1328
1329 #[cfg(feature = "log")]
1330 #[inline]
1331 fn log(&self, target: &str, level: log::Level, message: fmt::Arguments<'_>) {
1332 if let Some(meta) = self.meta {
1333 if level_to_log!(*meta.level()) <= log::max_level() {
1334 let logger = log::logger();
1335 let log_meta = log::Metadata::builder().level(level).target(target).build();
1336 if logger.enabled(&log_meta) {
1337 if let Some(ref inner) = self.inner {
1338 logger.log(
1339 &log::Record::builder()
1340 .metadata(log_meta)
1341 .module_path(meta.module_path())
1342 .file(meta.file())
1343 .line(meta.line())
1344 .args(format_args!("{} span={}", message, inner.id.into_u64()))
1345 .build(),
1346 );
1347 } else {
1348 logger.log(
1349 &log::Record::builder()
1350 .metadata(log_meta)
1351 .module_path(meta.module_path())
1352 .file(meta.file())
1353 .line(meta.line())
1354 .args(message)
1355 .build(),
1356 );
1357 }
1358 }
1359 }
1360 }
1361 }
1362
1363 /// Invokes a function with a reference to this span's ID and subscriber.
1364 ///
1365 /// if this span is enabled, the provided function is called, and the result is returned.
1366 /// If the span is disabled, the function is not called, and this method returns `None`
1367 /// instead.
1368 pub fn with_subscriber<T>(&self, f: impl FnOnce((&Id, &Dispatch)) -> T) -> Option<T> {
1369 self.inner
1370 .as_ref()
1371 .map(|inner| f((&inner.id, &inner.subscriber)))
1372 }
1373}
1374
1375impl cmp::PartialEq for Span {
1376 fn eq(&self, other: &Self) -> bool {
1377 match (&self.meta, &other.meta) {
1378 (Some(this), Some(that)) => {
1379 this.callsite() == that.callsite() && self.inner == other.inner
1380 }
1381 _ => false,
1382 }
1383 }
1384}
1385
1386impl Hash for Span {
1387 fn hash<H: Hasher>(&self, hasher: &mut H) {
1388 self.inner.hash(hasher);
1389 }
1390}
1391
1392impl fmt::Debug for Span {
1393 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1394 let mut span = f.debug_struct("Span");
1395 if let Some(meta) = self.meta {
1396 span.field("name", &meta.name())
1397 .field("level", &meta.level())
1398 .field("target", &meta.target());
1399
1400 if let Some(ref inner) = self.inner {
1401 span.field("id", &inner.id());
1402 } else {
1403 span.field("disabled", &true);
1404 }
1405
1406 if let Some(ref path) = meta.module_path() {
1407 span.field("module_path", &path);
1408 }
1409
1410 if let Some(ref line) = meta.line() {
1411 span.field("line", &line);
1412 }
1413
1414 if let Some(ref file) = meta.file() {
1415 span.field("file", &file);
1416 }
1417 } else {
1418 span.field("none", &true);
1419 }
1420
1421 span.finish()
1422 }
1423}
1424
1425impl<'a> From<&'a Span> for Option<&'a Id> {
1426 fn from(span: &'a Span) -> Self {
1427 span.inner.as_ref().map(|inner| &inner.id)
1428 }
1429}
1430
1431impl<'a> From<&'a Span> for Option<Id> {
1432 fn from(span: &'a Span) -> Self {
1433 span.inner.as_ref().map(Inner::id)
1434 }
1435}
1436
1437impl From<Span> for Option<Id> {
1438 fn from(span: Span) -> Self {
1439 span.inner.as_ref().map(Inner::id)
1440 }
1441}
1442
1443impl<'a> From<&'a EnteredSpan> for Option<&'a Id> {
1444 fn from(span: &'a EnteredSpan) -> Self {
1445 span.inner.as_ref().map(|inner| &inner.id)
1446 }
1447}
1448
1449impl<'a> From<&'a EnteredSpan> for Option<Id> {
1450 fn from(span: &'a EnteredSpan) -> Self {
1451 span.inner.as_ref().map(Inner::id)
1452 }
1453}
1454
1455impl Drop for Span {
1456 #[inline(always)]
1457 fn drop(&mut self) {
1458 if let Some(Inner {
1459 ref id,
1460 ref subscriber,
1461 }) = self.inner
1462 {
1463 subscriber.try_close(id.clone());
1464 }
1465
1466 if_log_enabled! { crate::Level::TRACE, {
1467 if let Some(meta) = self.meta {
1468 self.log(
1469 LIFECYCLE_LOG_TARGET,
1470 log::Level::Trace,
1471 format_args!("-- {};", meta.name()),
1472 );
1473 }
1474 }}
1475 }
1476}
1477
1478// ===== impl Inner =====
1479
1480impl Inner {
1481 /// Indicates that the span with the given ID has an indirect causal
1482 /// relationship with this span.
1483 ///
1484 /// This relationship differs somewhat from the parent-child relationship: a
1485 /// span may have any number of prior spans, rather than a single one; and
1486 /// spans are not considered to be executing _inside_ of the spans they
1487 /// follow from. This means that a span may close even if subsequent spans
1488 /// that follow from it are still open, and time spent inside of a
1489 /// subsequent span should not be included in the time its precedents were
1490 /// executing. This is used to model causal relationships such as when a
1491 /// single future spawns several related background tasks, et cetera.
1492 ///
1493 /// If this span is disabled, this function will do nothing. Otherwise, it
1494 /// returns `Ok(())` if the other span was added as a precedent of this
1495 /// span, or an error if this was not possible.
1496 fn follows_from(&self, from: &Id) {
1497 self.subscriber.record_follows_from(&self.id, from)
1498 }
1499
1500 /// Returns the span's ID.
1501 fn id(&self) -> Id {
1502 self.id.clone()
1503 }
1504
1505 fn record(&self, values: &Record<'_>) {
1506 self.subscriber.record(&self.id, values)
1507 }
1508
1509 fn new(id: Id, subscriber: &Dispatch) -> Self {
1510 Inner {
1511 id,
1512 subscriber: subscriber.clone(),
1513 }
1514 }
1515}
1516
1517impl cmp::PartialEq for Inner {
1518 fn eq(&self, other: &Self) -> bool {
1519 self.id == other.id
1520 }
1521}
1522
1523impl Hash for Inner {
1524 fn hash<H: Hasher>(&self, state: &mut H) {
1525 self.id.hash(state);
1526 }
1527}
1528
1529impl Clone for Inner {
1530 fn clone(&self) -> Self {
1531 Inner {
1532 id: self.subscriber.clone_span(&self.id),
1533 subscriber: self.subscriber.clone(),
1534 }
1535 }
1536}
1537
1538// ===== impl Entered =====
1539
1540impl EnteredSpan {
1541 /// Returns this span's `Id`, if it is enabled.
1542 pub fn id(&self) -> Option<Id> {
1543 self.inner.as_ref().map(Inner::id)
1544 }
1545
1546 /// Exits this span, returning the underlying [`Span`].
1547 #[inline]
1548 pub fn exit(mut self) -> Span {
1549 // One does not simply move out of a struct with `Drop`.
1550 let span = mem::replace(&mut self.span, Span::none());
1551 span.do_exit();
1552 span
1553 }
1554}
1555
1556impl Deref for EnteredSpan {
1557 type Target = Span;
1558
1559 #[inline]
1560 fn deref(&self) -> &Span {
1561 &self.span
1562 }
1563}
1564
1565impl<'a> Drop for Entered<'a> {
1566 #[inline(always)]
1567 fn drop(&mut self) {
1568 self.span.do_exit()
1569 }
1570}
1571
1572impl Drop for EnteredSpan {
1573 #[inline(always)]
1574 fn drop(&mut self) {
1575 self.span.do_exit()
1576 }
1577}
1578
1579/// Technically, `EnteredSpan` _can_ implement both `Send` *and*
1580/// `Sync` safely. It doesn't, because it has a `PhantomNotSend` field,
1581/// specifically added in order to make it `!Send`.
1582///
1583/// Sending an `EnteredSpan` guard between threads cannot cause memory unsafety.
1584/// However, it *would* result in incorrect behavior, so we add a
1585/// `PhantomNotSend` to prevent it from being sent between threads. This is
1586/// because it must be *dropped* on the same thread that it was created;
1587/// otherwise, the span will never be exited on the thread where it was entered,
1588/// and it will attempt to exit the span on a thread that may never have entered
1589/// it. However, we still want them to be `Sync` so that a struct holding an
1590/// `Entered` guard can be `Sync`.
1591///
1592/// Thus, this is totally safe.
1593#[derive(Debug)]
1594struct PhantomNotSend {
1595 ghost: PhantomData<*mut ()>,
1596}
1597
1598#[allow(non_upper_case_globals)]
1599const PhantomNotSend: PhantomNotSend = PhantomNotSend { ghost: PhantomData };
1600
1601/// # Safety
1602///
1603/// Trivially safe, as `PhantomNotSend` doesn't have any API.
1604unsafe impl Sync for PhantomNotSend {}
1605
1606#[cfg(test)]
1607mod test {
1608 use super::*;
1609
1610 trait AssertSend: Send {}
1611 impl AssertSend for Span {}
1612
1613 trait AssertSync: Sync {}
1614 impl AssertSync for Span {}
1615 impl AssertSync for Entered<'_> {}
1616 impl AssertSync for EnteredSpan {}
1617
1618 #[test]
1619 fn test_record_backwards_compat() {
1620 Span::current().record("some-key", "some text");
1621 Span::current().record("some-key", false);
1622 }
1623}
1624