1 | use tracing_core::{metadata::Metadata, span, Dispatch, Event, Interest, LevelFilter, Subscriber}; |
2 | |
3 | use crate::{ |
4 | filter, |
5 | layer::{Context, Layer}, |
6 | registry::LookupSpan, |
7 | }; |
8 | #[cfg (all(feature = "registry" , feature = "std" ))] |
9 | use crate::{filter::FilterId, registry::Registry}; |
10 | use core::{ |
11 | any::{Any, TypeId}, |
12 | cmp, fmt, |
13 | marker::PhantomData, |
14 | }; |
15 | |
16 | /// A [`Subscriber`] composed of a `Subscriber` wrapped by one or more |
17 | /// [`Layer`]s. |
18 | /// |
19 | /// [`Layer`]: crate::Layer |
20 | /// [`Subscriber`]: tracing_core::Subscriber |
21 | #[derive(Clone)] |
22 | pub struct Layered<L, I, S = I> { |
23 | /// The layer. |
24 | layer: L, |
25 | |
26 | /// The inner value that `self.layer` was layered onto. |
27 | /// |
28 | /// If this is also a `Layer`, then this `Layered` will implement `Layer`. |
29 | /// If this is a `Subscriber`, then this `Layered` will implement |
30 | /// `Subscriber` instead. |
31 | inner: I, |
32 | |
33 | // These booleans are used to determine how to combine `Interest`s and max |
34 | // level hints when per-layer filters are in use. |
35 | /// Is `self.inner` a `Registry`? |
36 | /// |
37 | /// If so, when combining `Interest`s, we want to "bubble up" its |
38 | /// `Interest`. |
39 | inner_is_registry: bool, |
40 | |
41 | /// Does `self.layer` have per-layer filters? |
42 | /// |
43 | /// This will be true if: |
44 | /// - `self.inner` is a `Filtered`. |
45 | /// - `self.inner` is a tree of `Layered`s where _all_ arms of those |
46 | /// `Layered`s have per-layer filters. |
47 | /// |
48 | /// Otherwise, if it's a `Layered` with one per-layer filter in one branch, |
49 | /// but a non-per-layer-filtered layer in the other branch, this will be |
50 | /// _false_, because the `Layered` is already handling the combining of |
51 | /// per-layer filter `Interest`s and max level hints with its non-filtered |
52 | /// `Layer`. |
53 | has_layer_filter: bool, |
54 | |
55 | /// Does `self.inner` have per-layer filters? |
56 | /// |
57 | /// This is determined according to the same rules as |
58 | /// `has_layer_filter` above. |
59 | inner_has_layer_filter: bool, |
60 | _s: PhantomData<fn(S)>, |
61 | } |
62 | |
63 | // === impl Layered === |
64 | |
65 | impl<L, S> Layered<L, S> |
66 | where |
67 | L: Layer<S>, |
68 | S: Subscriber, |
69 | { |
70 | /// Returns `true` if this [`Subscriber`] is the same type as `T`. |
71 | pub fn is<T: Any>(&self) -> bool { |
72 | self.downcast_ref::<T>().is_some() |
73 | } |
74 | |
75 | /// Returns some reference to this [`Subscriber`] value if it is of type `T`, |
76 | /// or `None` if it isn't. |
77 | pub fn downcast_ref<T: Any>(&self) -> Option<&T> { |
78 | unsafe { |
79 | let raw = self.downcast_raw(TypeId::of::<T>())?; |
80 | if raw.is_null() { |
81 | None |
82 | } else { |
83 | Some(&*(raw as *const T)) |
84 | } |
85 | } |
86 | } |
87 | } |
88 | |
89 | impl<L, S> Subscriber for Layered<L, S> |
90 | where |
91 | L: Layer<S>, |
92 | S: Subscriber, |
93 | { |
94 | fn register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest { |
95 | self.pick_interest(self.layer.register_callsite(metadata), || { |
96 | self.inner.register_callsite(metadata) |
97 | }) |
98 | } |
99 | |
100 | fn enabled(&self, metadata: &Metadata<'_>) -> bool { |
101 | if self.layer.enabled(metadata, self.ctx()) { |
102 | // if the outer layer enables the callsite metadata, ask the subscriber. |
103 | self.inner.enabled(metadata) |
104 | } else { |
105 | // otherwise, the callsite is disabled by the layer |
106 | |
107 | // If per-layer filters are in use, and we are short-circuiting |
108 | // (rather than calling into the inner type), clear the current |
109 | // per-layer filter `enabled` state. |
110 | #[cfg (feature = "registry" )] |
111 | filter::FilterState::clear_enabled(); |
112 | |
113 | false |
114 | } |
115 | } |
116 | |
117 | fn max_level_hint(&self) -> Option<LevelFilter> { |
118 | self.pick_level_hint( |
119 | self.layer.max_level_hint(), |
120 | self.inner.max_level_hint(), |
121 | super::subscriber_is_none(&self.inner), |
122 | ) |
123 | } |
124 | |
125 | fn new_span(&self, span: &span::Attributes<'_>) -> span::Id { |
126 | let id = self.inner.new_span(span); |
127 | self.layer.on_new_span(span, &id, self.ctx()); |
128 | id |
129 | } |
130 | |
131 | fn record(&self, span: &span::Id, values: &span::Record<'_>) { |
132 | self.inner.record(span, values); |
133 | self.layer.on_record(span, values, self.ctx()); |
134 | } |
135 | |
136 | fn record_follows_from(&self, span: &span::Id, follows: &span::Id) { |
137 | self.inner.record_follows_from(span, follows); |
138 | self.layer.on_follows_from(span, follows, self.ctx()); |
139 | } |
140 | |
141 | fn event_enabled(&self, event: &Event<'_>) -> bool { |
142 | if self.layer.event_enabled(event, self.ctx()) { |
143 | // if the outer layer enables the event, ask the inner subscriber. |
144 | self.inner.event_enabled(event) |
145 | } else { |
146 | // otherwise, the event is disabled by this layer |
147 | false |
148 | } |
149 | } |
150 | |
151 | fn event(&self, event: &Event<'_>) { |
152 | self.inner.event(event); |
153 | self.layer.on_event(event, self.ctx()); |
154 | } |
155 | |
156 | fn enter(&self, span: &span::Id) { |
157 | self.inner.enter(span); |
158 | self.layer.on_enter(span, self.ctx()); |
159 | } |
160 | |
161 | fn exit(&self, span: &span::Id) { |
162 | self.inner.exit(span); |
163 | self.layer.on_exit(span, self.ctx()); |
164 | } |
165 | |
166 | fn clone_span(&self, old: &span::Id) -> span::Id { |
167 | let new = self.inner.clone_span(old); |
168 | if &new != old { |
169 | self.layer.on_id_change(old, &new, self.ctx()) |
170 | }; |
171 | new |
172 | } |
173 | |
174 | #[inline ] |
175 | fn drop_span(&self, id: span::Id) { |
176 | self.try_close(id); |
177 | } |
178 | |
179 | fn try_close(&self, id: span::Id) -> bool { |
180 | #[cfg (all(feature = "registry" , feature = "std" ))] |
181 | let subscriber = &self.inner as &dyn Subscriber; |
182 | #[cfg (all(feature = "registry" , feature = "std" ))] |
183 | let mut guard = subscriber |
184 | .downcast_ref::<Registry>() |
185 | .map(|registry| registry.start_close(id.clone())); |
186 | if self.inner.try_close(id.clone()) { |
187 | // If we have a registry's close guard, indicate that the span is |
188 | // closing. |
189 | #[cfg (all(feature = "registry" , feature = "std" ))] |
190 | { |
191 | if let Some(g) = guard.as_mut() { |
192 | g.set_closing() |
193 | }; |
194 | } |
195 | |
196 | self.layer.on_close(id, self.ctx()); |
197 | true |
198 | } else { |
199 | false |
200 | } |
201 | } |
202 | |
203 | #[inline ] |
204 | fn current_span(&self) -> span::Current { |
205 | self.inner.current_span() |
206 | } |
207 | |
208 | #[doc (hidden)] |
209 | unsafe fn downcast_raw(&self, id: TypeId) -> Option<*const ()> { |
210 | // Unlike the implementation of `Layer` for `Layered`, we don't have to |
211 | // handle the "magic PLF downcast marker" here. If a `Layered` |
212 | // implements `Subscriber`, we already know that the `inner` branch is |
213 | // going to contain something that doesn't have per-layer filters (the |
214 | // actual root `Subscriber`). Thus, a `Layered` that implements |
215 | // `Subscriber` will always be propagating the root subscriber's |
216 | // `Interest`/level hint, even if it includes a `Layer` that has |
217 | // per-layer filters, because it will only ever contain layers where |
218 | // _one_ child has per-layer filters. |
219 | // |
220 | // The complex per-layer filter detection logic is only relevant to |
221 | // *trees* of layers, which involve the `Layer` implementation for |
222 | // `Layered`, not *lists* of layers, where every `Layered` implements |
223 | // `Subscriber`. Of course, a linked list can be thought of as a |
224 | // degenerate tree...but luckily, we are able to make a type-level |
225 | // distinction between individual `Layered`s that are definitely |
226 | // list-shaped (their inner child implements `Subscriber`), and |
227 | // `Layered`s that might be tree-shaped (the inner child is also a |
228 | // `Layer`). |
229 | |
230 | // If downcasting to `Self`, return a pointer to `self`. |
231 | if id == TypeId::of::<Self>() { |
232 | return Some(self as *const _ as *const ()); |
233 | } |
234 | |
235 | self.layer |
236 | .downcast_raw(id) |
237 | .or_else(|| self.inner.downcast_raw(id)) |
238 | } |
239 | } |
240 | |
241 | impl<S, A, B> Layer<S> for Layered<A, B, S> |
242 | where |
243 | A: Layer<S>, |
244 | B: Layer<S>, |
245 | S: Subscriber, |
246 | { |
247 | fn on_register_dispatch(&self, subscriber: &Dispatch) { |
248 | self.layer.on_register_dispatch(subscriber); |
249 | self.inner.on_register_dispatch(subscriber); |
250 | } |
251 | |
252 | fn on_layer(&mut self, subscriber: &mut S) { |
253 | self.layer.on_layer(subscriber); |
254 | self.inner.on_layer(subscriber); |
255 | } |
256 | |
257 | fn register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest { |
258 | self.pick_interest(self.layer.register_callsite(metadata), || { |
259 | self.inner.register_callsite(metadata) |
260 | }) |
261 | } |
262 | |
263 | fn enabled(&self, metadata: &Metadata<'_>, ctx: Context<'_, S>) -> bool { |
264 | if self.layer.enabled(metadata, ctx.clone()) { |
265 | // if the outer subscriber enables the callsite metadata, ask the inner layer. |
266 | self.inner.enabled(metadata, ctx) |
267 | } else { |
268 | // otherwise, the callsite is disabled by this layer |
269 | false |
270 | } |
271 | } |
272 | |
273 | fn max_level_hint(&self) -> Option<LevelFilter> { |
274 | self.pick_level_hint( |
275 | self.layer.max_level_hint(), |
276 | self.inner.max_level_hint(), |
277 | super::layer_is_none(&self.inner), |
278 | ) |
279 | } |
280 | |
281 | #[inline ] |
282 | fn on_new_span(&self, attrs: &span::Attributes<'_>, id: &span::Id, ctx: Context<'_, S>) { |
283 | self.inner.on_new_span(attrs, id, ctx.clone()); |
284 | self.layer.on_new_span(attrs, id, ctx); |
285 | } |
286 | |
287 | #[inline ] |
288 | fn on_record(&self, span: &span::Id, values: &span::Record<'_>, ctx: Context<'_, S>) { |
289 | self.inner.on_record(span, values, ctx.clone()); |
290 | self.layer.on_record(span, values, ctx); |
291 | } |
292 | |
293 | #[inline ] |
294 | fn on_follows_from(&self, span: &span::Id, follows: &span::Id, ctx: Context<'_, S>) { |
295 | self.inner.on_follows_from(span, follows, ctx.clone()); |
296 | self.layer.on_follows_from(span, follows, ctx); |
297 | } |
298 | |
299 | #[inline ] |
300 | fn event_enabled(&self, event: &Event<'_>, ctx: Context<'_, S>) -> bool { |
301 | if self.layer.event_enabled(event, ctx.clone()) { |
302 | // if the outer layer enables the event, ask the inner subscriber. |
303 | self.inner.event_enabled(event, ctx) |
304 | } else { |
305 | // otherwise, the event is disabled by this layer |
306 | false |
307 | } |
308 | } |
309 | |
310 | #[inline ] |
311 | fn on_event(&self, event: &Event<'_>, ctx: Context<'_, S>) { |
312 | self.inner.on_event(event, ctx.clone()); |
313 | self.layer.on_event(event, ctx); |
314 | } |
315 | |
316 | #[inline ] |
317 | fn on_enter(&self, id: &span::Id, ctx: Context<'_, S>) { |
318 | self.inner.on_enter(id, ctx.clone()); |
319 | self.layer.on_enter(id, ctx); |
320 | } |
321 | |
322 | #[inline ] |
323 | fn on_exit(&self, id: &span::Id, ctx: Context<'_, S>) { |
324 | self.inner.on_exit(id, ctx.clone()); |
325 | self.layer.on_exit(id, ctx); |
326 | } |
327 | |
328 | #[inline ] |
329 | fn on_close(&self, id: span::Id, ctx: Context<'_, S>) { |
330 | self.inner.on_close(id.clone(), ctx.clone()); |
331 | self.layer.on_close(id, ctx); |
332 | } |
333 | |
334 | #[inline ] |
335 | fn on_id_change(&self, old: &span::Id, new: &span::Id, ctx: Context<'_, S>) { |
336 | self.inner.on_id_change(old, new, ctx.clone()); |
337 | self.layer.on_id_change(old, new, ctx); |
338 | } |
339 | |
340 | #[doc (hidden)] |
341 | unsafe fn downcast_raw(&self, id: TypeId) -> Option<*const ()> { |
342 | match id { |
343 | // If downcasting to `Self`, return a pointer to `self`. |
344 | id if id == TypeId::of::<Self>() => Some(self as *const _ as *const ()), |
345 | |
346 | // Oh, we're looking for per-layer filters! |
347 | // |
348 | // This should only happen if we are inside of another `Layered`, |
349 | // and it's trying to determine how it should combine `Interest`s |
350 | // and max level hints. |
351 | // |
352 | // In that case, this `Layered` should be considered to be |
353 | // "per-layer filtered" if *both* the outer layer and the inner |
354 | // layer/subscriber have per-layer filters. Otherwise, this `Layered |
355 | // should *not* be considered per-layer filtered (even if one or the |
356 | // other has per layer filters). If only one `Layer` is per-layer |
357 | // filtered, *this* `Layered` will handle aggregating the `Interest` |
358 | // and level hints on behalf of its children, returning the |
359 | // aggregate (which is the value from the &non-per-layer-filtered* |
360 | // child). |
361 | // |
362 | // Yes, this rule *is* slightly counter-intuitive, but it's |
363 | // necessary due to a weird edge case that can occur when two |
364 | // `Layered`s where one side is per-layer filtered and the other |
365 | // isn't are `Layered` together to form a tree. If we didn't have |
366 | // this rule, we would actually end up *ignoring* `Interest`s from |
367 | // the non-per-layer-filtered layers, since both branches would |
368 | // claim to have PLF. |
369 | // |
370 | // If you don't understand this...that's fine, just don't mess with |
371 | // it. :) |
372 | id if filter::is_plf_downcast_marker(id) => { |
373 | self.layer.downcast_raw(id).and(self.inner.downcast_raw(id)) |
374 | } |
375 | |
376 | // Otherwise, try to downcast both branches normally... |
377 | _ => self |
378 | .layer |
379 | .downcast_raw(id) |
380 | .or_else(|| self.inner.downcast_raw(id)), |
381 | } |
382 | } |
383 | } |
384 | |
385 | impl<'a, L, S> LookupSpan<'a> for Layered<L, S> |
386 | where |
387 | S: Subscriber + LookupSpan<'a>, |
388 | { |
389 | type Data = S::Data; |
390 | |
391 | fn span_data(&'a self, id: &span::Id) -> Option<Self::Data> { |
392 | self.inner.span_data(id) |
393 | } |
394 | |
395 | #[cfg (all(feature = "registry" , feature = "std" ))] |
396 | fn register_filter(&mut self) -> FilterId { |
397 | self.inner.register_filter() |
398 | } |
399 | } |
400 | |
401 | impl<L, S> Layered<L, S> |
402 | where |
403 | S: Subscriber, |
404 | { |
405 | fn ctx(&self) -> Context<'_, S> { |
406 | Context::new(&self.inner) |
407 | } |
408 | } |
409 | |
410 | impl<A, B, S> Layered<A, B, S> |
411 | where |
412 | A: Layer<S>, |
413 | S: Subscriber, |
414 | { |
415 | pub(super) fn new(layer: A, inner: B, inner_has_layer_filter: bool) -> Self { |
416 | #[cfg (all(feature = "registry" , feature = "std" ))] |
417 | let inner_is_registry = TypeId::of::<S>() == TypeId::of::<crate::registry::Registry>(); |
418 | |
419 | #[cfg (not(all(feature = "registry" , feature = "std" )))] |
420 | let inner_is_registry = false; |
421 | |
422 | let inner_has_layer_filter = inner_has_layer_filter || inner_is_registry; |
423 | let has_layer_filter = filter::layer_has_plf(&layer); |
424 | Self { |
425 | layer, |
426 | inner, |
427 | has_layer_filter, |
428 | inner_has_layer_filter, |
429 | inner_is_registry, |
430 | _s: PhantomData, |
431 | } |
432 | } |
433 | |
434 | fn pick_interest(&self, outer: Interest, inner: impl FnOnce() -> Interest) -> Interest { |
435 | if self.has_layer_filter { |
436 | return inner(); |
437 | } |
438 | |
439 | // If the outer layer has disabled the callsite, return now so that |
440 | // the inner layer/subscriber doesn't get its hopes up. |
441 | if outer.is_never() { |
442 | // If per-layer filters are in use, and we are short-circuiting |
443 | // (rather than calling into the inner type), clear the current |
444 | // per-layer filter interest state. |
445 | #[cfg (feature = "registry" )] |
446 | filter::FilterState::take_interest(); |
447 | |
448 | return outer; |
449 | } |
450 | |
451 | // The `inner` closure will call `inner.register_callsite()`. We do this |
452 | // before the `if` statement to ensure that the inner subscriber is |
453 | // informed that the callsite exists regardless of the outer layer's |
454 | // filtering decision. |
455 | let inner = inner(); |
456 | if outer.is_sometimes() { |
457 | // if this interest is "sometimes", return "sometimes" to ensure that |
458 | // filters are reevaluated. |
459 | return outer; |
460 | } |
461 | |
462 | // If there is a per-layer filter in the `inner` stack, and it returns |
463 | // `never`, change the interest to `sometimes`, because the `outer` |
464 | // layer didn't return `never`. This means that _some_ layer still wants |
465 | // to see that callsite, even though the inner stack's per-layer filter |
466 | // didn't want it. Therefore, returning `sometimes` will ensure |
467 | // `enabled` is called so that the per-layer filter can skip that |
468 | // span/event, while the `outer` layer still gets to see it. |
469 | if inner.is_never() && self.inner_has_layer_filter { |
470 | return Interest::sometimes(); |
471 | } |
472 | |
473 | // otherwise, allow the inner subscriber or subscriber to weigh in. |
474 | inner |
475 | } |
476 | |
477 | fn pick_level_hint( |
478 | &self, |
479 | outer_hint: Option<LevelFilter>, |
480 | inner_hint: Option<LevelFilter>, |
481 | inner_is_none: bool, |
482 | ) -> Option<LevelFilter> { |
483 | if self.inner_is_registry { |
484 | return outer_hint; |
485 | } |
486 | |
487 | if self.has_layer_filter && self.inner_has_layer_filter { |
488 | return Some(cmp::max(outer_hint?, inner_hint?)); |
489 | } |
490 | |
491 | if self.has_layer_filter && inner_hint.is_none() { |
492 | return None; |
493 | } |
494 | |
495 | if self.inner_has_layer_filter && outer_hint.is_none() { |
496 | return None; |
497 | } |
498 | |
499 | // If the layer is `Option::None`, then we |
500 | // want to short-circuit the layer underneath, if it |
501 | // returns `None`, to override the `None` layer returning |
502 | // `Some(OFF)`, which should ONLY apply when there are |
503 | // no other layers that return `None`. Note this |
504 | // `None` does not == `Some(TRACE)`, it means |
505 | // something more like: "whatever all the other |
506 | // layers agree on, default to `TRACE` if none |
507 | // have an opinion". We also choose do this AFTER |
508 | // we check for per-layer filters, which |
509 | // have their own logic. |
510 | // |
511 | // Also note that this does come at some perf cost, but |
512 | // this function is only called on initialization and |
513 | // subscriber reloading. |
514 | if super::layer_is_none(&self.layer) { |
515 | return cmp::max(outer_hint, Some(inner_hint?)); |
516 | } |
517 | |
518 | // Similarly, if the layer on the inside is `None` and it returned an |
519 | // `Off` hint, we want to override that with the outer hint. |
520 | if inner_is_none && inner_hint == Some(LevelFilter::OFF) { |
521 | return outer_hint; |
522 | } |
523 | |
524 | cmp::max(outer_hint, inner_hint) |
525 | } |
526 | } |
527 | |
528 | impl<A, B, S> fmt::Debug for Layered<A, B, S> |
529 | where |
530 | A: fmt::Debug, |
531 | B: fmt::Debug, |
532 | { |
533 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
534 | #[cfg (all(feature = "registry" , feature = "std" ))] |
535 | let alt = f.alternate(); |
536 | let mut s = f.debug_struct("Layered" ); |
537 | // These additional fields are more verbose and usually only necessary |
538 | // for internal debugging purposes, so only print them if alternate mode |
539 | // is enabled. |
540 | |
541 | #[cfg (all(feature = "registry" , feature = "std" ))] |
542 | { |
543 | if alt { |
544 | s.field("inner_is_registry" , &self.inner_is_registry) |
545 | .field("has_layer_filter" , &self.has_layer_filter) |
546 | .field("inner_has_layer_filter" , &self.inner_has_layer_filter); |
547 | } |
548 | } |
549 | |
550 | s.field("layer" , &self.layer) |
551 | .field("inner" , &self.inner) |
552 | .finish() |
553 | } |
554 | } |
555 | |