1 | mod level; |
2 | pub(crate) use self::level::Expiration; |
3 | use self::level::Level; |
4 | |
5 | mod stack; |
6 | pub(crate) use self::stack::Stack; |
7 | |
8 | use std::borrow::Borrow; |
9 | use std::fmt::Debug; |
10 | use std::usize; |
11 | |
12 | /// Timing wheel implementation. |
13 | /// |
14 | /// This type provides the hashed timing wheel implementation that backs `Timer` |
15 | /// and `DelayQueue`. |
16 | /// |
17 | /// The structure is generic over `T: Stack`. This allows handling timeout data |
18 | /// being stored on the heap or in a slab. In order to support the latter case, |
19 | /// the slab must be passed into each function allowing the implementation to |
20 | /// lookup timer entries. |
21 | /// |
22 | /// See `Timer` documentation for some implementation notes. |
23 | #[derive(Debug)] |
24 | pub(crate) struct Wheel<T> { |
25 | /// The number of milliseconds elapsed since the wheel started. |
26 | elapsed: u64, |
27 | |
28 | /// Timer wheel. |
29 | /// |
30 | /// Levels: |
31 | /// |
32 | /// * 1 ms slots / 64 ms range |
33 | /// * 64 ms slots / ~ 4 sec range |
34 | /// * ~ 4 sec slots / ~ 4 min range |
35 | /// * ~ 4 min slots / ~ 4 hr range |
36 | /// * ~ 4 hr slots / ~ 12 day range |
37 | /// * ~ 12 day slots / ~ 2 yr range |
38 | levels: Vec<Level<T>>, |
39 | } |
40 | |
41 | /// Number of levels. Each level has 64 slots. By using 6 levels with 64 slots |
42 | /// each, the timer is able to track time up to 2 years into the future with a |
43 | /// precision of 1 millisecond. |
44 | const NUM_LEVELS: usize = 6; |
45 | |
46 | /// The maximum duration of a delay |
47 | const MAX_DURATION: u64 = (1 << (6 * NUM_LEVELS)) - 1; |
48 | |
49 | #[derive(Debug)] |
50 | pub(crate) enum InsertError { |
51 | Elapsed, |
52 | Invalid, |
53 | } |
54 | |
55 | impl<T> Wheel<T> |
56 | where |
57 | T: Stack, |
58 | { |
59 | /// Create a new timing wheel |
60 | pub(crate) fn new() -> Wheel<T> { |
61 | let levels = (0..NUM_LEVELS).map(Level::new).collect(); |
62 | |
63 | Wheel { elapsed: 0, levels } |
64 | } |
65 | |
66 | /// Return the number of milliseconds that have elapsed since the timing |
67 | /// wheel's creation. |
68 | pub(crate) fn elapsed(&self) -> u64 { |
69 | self.elapsed |
70 | } |
71 | |
72 | /// Insert an entry into the timing wheel. |
73 | /// |
74 | /// # Arguments |
75 | /// |
76 | /// * `when`: is the instant at which the entry should be fired. It is |
77 | /// represented as the number of milliseconds since the creation |
78 | /// of the timing wheel. |
79 | /// |
80 | /// * `item`: The item to insert into the wheel. |
81 | /// |
82 | /// * `store`: The slab or `()` when using heap storage. |
83 | /// |
84 | /// # Return |
85 | /// |
86 | /// Returns `Ok` when the item is successfully inserted, `Err` otherwise. |
87 | /// |
88 | /// `Err(Elapsed)` indicates that `when` represents an instant that has |
89 | /// already passed. In this case, the caller should fire the timeout |
90 | /// immediately. |
91 | /// |
92 | /// `Err(Invalid)` indicates an invalid `when` argument as been supplied. |
93 | pub(crate) fn insert( |
94 | &mut self, |
95 | when: u64, |
96 | item: T::Owned, |
97 | store: &mut T::Store, |
98 | ) -> Result<(), (T::Owned, InsertError)> { |
99 | if when <= self.elapsed { |
100 | return Err((item, InsertError::Elapsed)); |
101 | } else if when - self.elapsed > MAX_DURATION { |
102 | return Err((item, InsertError::Invalid)); |
103 | } |
104 | |
105 | // Get the level at which the entry should be stored |
106 | let level = self.level_for(when); |
107 | |
108 | self.levels[level].add_entry(when, item, store); |
109 | |
110 | debug_assert!({ |
111 | self.levels[level] |
112 | .next_expiration(self.elapsed) |
113 | .map(|e| e.deadline >= self.elapsed) |
114 | .unwrap_or(true) |
115 | }); |
116 | |
117 | Ok(()) |
118 | } |
119 | |
120 | /// Remove `item` from the timing wheel. |
121 | #[track_caller ] |
122 | pub(crate) fn remove(&mut self, item: &T::Borrowed, store: &mut T::Store) { |
123 | let when = T::when(item, store); |
124 | |
125 | assert!( |
126 | self.elapsed <= when, |
127 | "elapsed={}; when={}" , |
128 | self.elapsed, |
129 | when |
130 | ); |
131 | |
132 | let level = self.level_for(when); |
133 | |
134 | self.levels[level].remove_entry(when, item, store); |
135 | } |
136 | |
137 | /// Instant at which to poll |
138 | pub(crate) fn poll_at(&self) -> Option<u64> { |
139 | self.next_expiration().map(|expiration| expiration.deadline) |
140 | } |
141 | |
142 | /// Next key that will expire |
143 | pub(crate) fn peek(&self) -> Option<T::Owned> { |
144 | self.next_expiration() |
145 | .and_then(|expiration| self.peek_entry(&expiration)) |
146 | } |
147 | |
148 | /// Advances the timer up to the instant represented by `now`. |
149 | pub(crate) fn poll(&mut self, now: u64, store: &mut T::Store) -> Option<T::Owned> { |
150 | loop { |
151 | let expiration = self.next_expiration().and_then(|expiration| { |
152 | if expiration.deadline > now { |
153 | None |
154 | } else { |
155 | Some(expiration) |
156 | } |
157 | }); |
158 | |
159 | match expiration { |
160 | Some(ref expiration) => { |
161 | if let Some(item) = self.poll_expiration(expiration, store) { |
162 | return Some(item); |
163 | } |
164 | |
165 | self.set_elapsed(expiration.deadline); |
166 | } |
167 | None => { |
168 | // in this case the poll did not indicate an expiration |
169 | // _and_ we were not able to find a next expiration in |
170 | // the current list of timers. advance to the poll's |
171 | // current time and do nothing else. |
172 | self.set_elapsed(now); |
173 | return None; |
174 | } |
175 | } |
176 | } |
177 | } |
178 | |
179 | /// Returns the instant at which the next timeout expires. |
180 | fn next_expiration(&self) -> Option<Expiration> { |
181 | // Check all levels |
182 | for level in 0..NUM_LEVELS { |
183 | if let Some(expiration) = self.levels[level].next_expiration(self.elapsed) { |
184 | // There cannot be any expirations at a higher level that happen |
185 | // before this one. |
186 | debug_assert!(self.no_expirations_before(level + 1, expiration.deadline)); |
187 | |
188 | return Some(expiration); |
189 | } |
190 | } |
191 | |
192 | None |
193 | } |
194 | |
195 | /// Used for debug assertions |
196 | fn no_expirations_before(&self, start_level: usize, before: u64) -> bool { |
197 | let mut res = true; |
198 | |
199 | for l2 in start_level..NUM_LEVELS { |
200 | if let Some(e2) = self.levels[l2].next_expiration(self.elapsed) { |
201 | if e2.deadline < before { |
202 | res = false; |
203 | } |
204 | } |
205 | } |
206 | |
207 | res |
208 | } |
209 | |
210 | /// iteratively find entries that are between the wheel's current |
211 | /// time and the expiration time. for each in that population either |
212 | /// return it for notification (in the case of the last level) or tier |
213 | /// it down to the next level (in all other cases). |
214 | pub(crate) fn poll_expiration( |
215 | &mut self, |
216 | expiration: &Expiration, |
217 | store: &mut T::Store, |
218 | ) -> Option<T::Owned> { |
219 | while let Some(item) = self.pop_entry(expiration, store) { |
220 | if expiration.level == 0 { |
221 | debug_assert_eq!(T::when(item.borrow(), store), expiration.deadline); |
222 | |
223 | return Some(item); |
224 | } else { |
225 | let when = T::when(item.borrow(), store); |
226 | |
227 | let next_level = expiration.level - 1; |
228 | |
229 | self.levels[next_level].add_entry(when, item, store); |
230 | } |
231 | } |
232 | |
233 | None |
234 | } |
235 | |
236 | fn set_elapsed(&mut self, when: u64) { |
237 | assert!( |
238 | self.elapsed <= when, |
239 | "elapsed={:?}; when={:?}" , |
240 | self.elapsed, |
241 | when |
242 | ); |
243 | |
244 | if when > self.elapsed { |
245 | self.elapsed = when; |
246 | } |
247 | } |
248 | |
249 | fn pop_entry(&mut self, expiration: &Expiration, store: &mut T::Store) -> Option<T::Owned> { |
250 | self.levels[expiration.level].pop_entry_slot(expiration.slot, store) |
251 | } |
252 | |
253 | fn peek_entry(&self, expiration: &Expiration) -> Option<T::Owned> { |
254 | self.levels[expiration.level].peek_entry_slot(expiration.slot) |
255 | } |
256 | |
257 | fn level_for(&self, when: u64) -> usize { |
258 | level_for(self.elapsed, when) |
259 | } |
260 | } |
261 | |
262 | fn level_for(elapsed: u64, when: u64) -> usize { |
263 | const SLOT_MASK: u64 = (1 << 6) - 1; |
264 | |
265 | // Mask in the trailing bits ignored by the level calculation in order to cap |
266 | // the possible leading zeros |
267 | let mut masked = elapsed ^ when | SLOT_MASK; |
268 | if masked >= MAX_DURATION { |
269 | // Fudge the timer into the top level |
270 | masked = MAX_DURATION - 1; |
271 | } |
272 | let leading_zeros = masked.leading_zeros() as usize; |
273 | let significant = 63 - leading_zeros; |
274 | significant / 6 |
275 | } |
276 | |
277 | #[cfg (all(test, not(loom)))] |
278 | mod test { |
279 | use super::*; |
280 | |
281 | #[test] |
282 | fn test_level_for() { |
283 | for pos in 0..64 { |
284 | assert_eq!( |
285 | 0, |
286 | level_for(0, pos), |
287 | "level_for({}) -- binary = {:b}" , |
288 | pos, |
289 | pos |
290 | ); |
291 | } |
292 | |
293 | for level in 1..5 { |
294 | for pos in level..64 { |
295 | let a = pos * 64_usize.pow(level as u32); |
296 | assert_eq!( |
297 | level, |
298 | level_for(0, a as u64), |
299 | "level_for({}) -- binary = {:b}" , |
300 | a, |
301 | a |
302 | ); |
303 | |
304 | if pos > level { |
305 | let a = a - 1; |
306 | assert_eq!( |
307 | level, |
308 | level_for(0, a as u64), |
309 | "level_for({}) -- binary = {:b}" , |
310 | a, |
311 | a |
312 | ); |
313 | } |
314 | |
315 | if pos < 64 { |
316 | let a = a + 1; |
317 | assert_eq!( |
318 | level, |
319 | level_for(0, a as u64), |
320 | "level_for({}) -- binary = {:b}" , |
321 | a, |
322 | a |
323 | ); |
324 | } |
325 | } |
326 | } |
327 | } |
328 | } |
329 | |