1/////////////////////////////////////////////////////////////////////////////
2//
3// (C) Copyright Ion Gaztanaga 2007-2014
4//
5// Distributed under the Boost Software License, Version 1.0.
6// (See accompanying file LICENSE_1_0.txt or copy at
7// http://www.boost.org/LICENSE_1_0.txt)
8//
9// See http://www.boost.org/libs/intrusive for documentation.
10//
11/////////////////////////////////////////////////////////////////////////////
12
13#ifndef BOOST_INTRUSIVE_BSTREE_ALGORITHMS_HPP
14#define BOOST_INTRUSIVE_BSTREE_ALGORITHMS_HPP
15
16#include <cstddef>
17#include <boost/intrusive/detail/config_begin.hpp>
18#include <boost/intrusive/intrusive_fwd.hpp>
19#include <boost/intrusive/detail/bstree_algorithms_base.hpp>
20#include <boost/intrusive/detail/assert.hpp>
21#include <boost/intrusive/detail/uncast.hpp>
22#include <boost/intrusive/detail/math.hpp>
23#include <boost/intrusive/detail/algo_type.hpp>
24
25#include <boost/intrusive/detail/minimal_pair_header.hpp>
26
27#if defined(BOOST_HAS_PRAGMA_ONCE)
28# pragma once
29#endif
30
31namespace boost {
32namespace intrusive {
33
34/// @cond
35
36//! This type is the information that will be filled by insert_unique_check
37template <class NodePtr>
38struct insert_commit_data_t
39{
40 bool link_left;
41 NodePtr node;
42};
43
44template <class NodePtr>
45struct data_for_rebalance_t
46{
47 NodePtr x;
48 NodePtr x_parent;
49 NodePtr y;
50};
51
52namespace detail {
53
54template<class ValueTraits, class NodePtrCompare, class ExtraChecker>
55struct bstree_node_checker
56 : public ExtraChecker
57{
58 typedef ExtraChecker base_checker_t;
59 typedef ValueTraits value_traits;
60 typedef typename value_traits::node_traits node_traits;
61 typedef typename node_traits::const_node_ptr const_node_ptr;
62
63 struct return_type
64 : public base_checker_t::return_type
65 {
66 return_type() : min_key_node_ptr(const_node_ptr()), max_key_node_ptr(const_node_ptr()), node_count(0) {}
67
68 const_node_ptr min_key_node_ptr;
69 const_node_ptr max_key_node_ptr;
70 size_t node_count;
71 };
72
73 bstree_node_checker(const NodePtrCompare& comp, ExtraChecker extra_checker)
74 : base_checker_t(extra_checker), comp_(comp)
75 {}
76
77 void operator () (const const_node_ptr& p,
78 const return_type& check_return_left, const return_type& check_return_right,
79 return_type& check_return)
80 {
81 if (check_return_left.max_key_node_ptr)
82 BOOST_INTRUSIVE_INVARIANT_ASSERT(!comp_(p, check_return_left.max_key_node_ptr));
83 if (check_return_right.min_key_node_ptr)
84 BOOST_INTRUSIVE_INVARIANT_ASSERT(!comp_(check_return_right.min_key_node_ptr, p));
85 check_return.min_key_node_ptr = node_traits::get_left(p)? check_return_left.min_key_node_ptr : p;
86 check_return.max_key_node_ptr = node_traits::get_right(p)? check_return_right.max_key_node_ptr : p;
87 check_return.node_count = check_return_left.node_count + check_return_right.node_count + 1;
88 base_checker_t::operator()(p, check_return_left, check_return_right, check_return);
89 }
90
91 const NodePtrCompare comp_;
92};
93
94} // namespace detail
95
96/// @endcond
97
98
99
100//! This is an implementation of a binary search tree.
101//! A node in the search tree has references to its children and its parent. This
102//! is to allow traversal of the whole tree from a given node making the
103//! implementation of iterator a pointer to a node.
104//! At the top of the tree a node is used specially. This node's parent pointer
105//! is pointing to the root of the tree. Its left pointer points to the
106//! leftmost node in the tree and the right pointer to the rightmost one.
107//! This node is used to represent the end-iterator.
108//!
109//! +---------+
110//! header------------------------------>| |
111//! | |
112//! +----------(left)--------| |--------(right)---------+
113//! | +---------+ |
114//! | | |
115//! | | (parent) |
116//! | | |
117//! | | |
118//! | +---------+ |
119//! root of tree ..|......................> | | |
120//! | | D | |
121//! | | | |
122//! | +-------+---------+-------+ |
123//! | | | |
124//! | | | |
125//! | | | |
126//! | | | |
127//! | | | |
128//! | +---------+ +---------+ |
129//! | | | | | |
130//! | | B | | F | |
131//! | | | | | |
132//! | +--+---------+--+ +--+---------+--+ |
133//! | | | | | |
134//! | | | | | |
135//! | | | | | |
136//! | +---+-----+ +-----+---+ +---+-----+ +-----+---+ |
137//! +-->| | | | | | | |<--+
138//! | A | | C | | E | | G |
139//! | | | | | | | |
140//! +---------+ +---------+ +---------+ +---------+
141//!
142//! bstree_algorithms is configured with a NodeTraits class, which encapsulates the
143//! information about the node to be manipulated. NodeTraits must support the
144//! following interface:
145//!
146//! <b>Typedefs</b>:
147//!
148//! <tt>node</tt>: The type of the node that forms the binary search tree
149//!
150//! <tt>node_ptr</tt>: A pointer to a node
151//!
152//! <tt>const_node_ptr</tt>: A pointer to a const node
153//!
154//! <b>Static functions</b>:
155//!
156//! <tt>static node_ptr get_parent(const_node_ptr n);</tt>
157//!
158//! <tt>static void set_parent(node_ptr n, node_ptr parent);</tt>
159//!
160//! <tt>static node_ptr get_left(const_node_ptr n);</tt>
161//!
162//! <tt>static void set_left(node_ptr n, node_ptr left);</tt>
163//!
164//! <tt>static node_ptr get_right(const_node_ptr n);</tt>
165//!
166//! <tt>static void set_right(node_ptr n, node_ptr right);</tt>
167template<class NodeTraits>
168class bstree_algorithms : public bstree_algorithms_base<NodeTraits>
169{
170 public:
171 typedef typename NodeTraits::node node;
172 typedef NodeTraits node_traits;
173 typedef typename NodeTraits::node_ptr node_ptr;
174 typedef typename NodeTraits::const_node_ptr const_node_ptr;
175 typedef insert_commit_data_t<node_ptr> insert_commit_data;
176 typedef data_for_rebalance_t<node_ptr> data_for_rebalance;
177
178 /// @cond
179 typedef bstree_algorithms<NodeTraits> this_type;
180 typedef bstree_algorithms_base<NodeTraits> base_type;
181 private:
182 template<class Disposer>
183 struct dispose_subtree_disposer
184 {
185 dispose_subtree_disposer(Disposer &disp, const node_ptr & subtree)
186 : disposer_(&disp), subtree_(subtree)
187 {}
188
189 void release()
190 { disposer_ = 0; }
191
192 ~dispose_subtree_disposer()
193 {
194 if(disposer_){
195 dispose_subtree(subtree_, *disposer_);
196 }
197 }
198 Disposer *disposer_;
199 const node_ptr subtree_;
200 };
201
202 /// @endcond
203
204 public:
205 //! <b>Requires</b>: 'header' is the header node of a tree.
206 //!
207 //! <b>Effects</b>: Returns the first node of the tree, the header if the tree is empty.
208 //!
209 //! <b>Complexity</b>: Constant time.
210 //!
211 //! <b>Throws</b>: Nothing.
212 static node_ptr begin_node(const const_node_ptr & header)
213 { return node_traits::get_left(header); }
214
215 //! <b>Requires</b>: 'header' is the header node of a tree.
216 //!
217 //! <b>Effects</b>: Returns the header of the tree.
218 //!
219 //! <b>Complexity</b>: Constant time.
220 //!
221 //! <b>Throws</b>: Nothing.
222 static node_ptr end_node(const const_node_ptr & header)
223 { return detail::uncast(header); }
224
225 //! <b>Requires</b>: 'header' is the header node of a tree.
226 //!
227 //! <b>Effects</b>: Returns the root of the tree if any, header otherwise
228 //!
229 //! <b>Complexity</b>: Constant time.
230 //!
231 //! <b>Throws</b>: Nothing.
232 static node_ptr root_node(const const_node_ptr & header)
233 {
234 node_ptr p = node_traits::get_parent(header);
235 return p ? p : detail::uncast(header);
236 }
237
238 //! <b>Requires</b>: 'node' is a node of the tree or a node initialized
239 //! by init(...) or init_node.
240 //!
241 //! <b>Effects</b>: Returns true if the node is initialized by init() or init_node().
242 //!
243 //! <b>Complexity</b>: Constant time.
244 //!
245 //! <b>Throws</b>: Nothing.
246 static bool unique(const const_node_ptr & node)
247 { return !NodeTraits::get_parent(node); }
248
249 #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
250 //! <b>Requires</b>: 'node' is a node of the tree or a header node.
251 //!
252 //! <b>Effects</b>: Returns the header of the tree.
253 //!
254 //! <b>Complexity</b>: Logarithmic.
255 //!
256 //! <b>Throws</b>: Nothing.
257 static node_ptr get_header(const const_node_ptr & node);
258 #endif
259
260 //! <b>Requires</b>: node1 and node2 can't be header nodes
261 //! of two trees.
262 //!
263 //! <b>Effects</b>: Swaps two nodes. After the function node1 will be inserted
264 //! in the position node2 before the function. node2 will be inserted in the
265 //! position node1 had before the function.
266 //!
267 //! <b>Complexity</b>: Logarithmic.
268 //!
269 //! <b>Throws</b>: Nothing.
270 //!
271 //! <b>Note</b>: This function will break container ordering invariants if
272 //! node1 and node2 are not equivalent according to the ordering rules.
273 //!
274 //!Experimental function
275 static void swap_nodes(const node_ptr & node1, const node_ptr & node2)
276 {
277 if(node1 == node2)
278 return;
279
280 node_ptr header1(base_type::get_header(node1)), header2(base_type::get_header(node2));
281 swap_nodes(node1, header1, node2, header2);
282 }
283
284 //! <b>Requires</b>: node1 and node2 can't be header nodes
285 //! of two trees with header header1 and header2.
286 //!
287 //! <b>Effects</b>: Swaps two nodes. After the function node1 will be inserted
288 //! in the position node2 before the function. node2 will be inserted in the
289 //! position node1 had before the function.
290 //!
291 //! <b>Complexity</b>: Constant.
292 //!
293 //! <b>Throws</b>: Nothing.
294 //!
295 //! <b>Note</b>: This function will break container ordering invariants if
296 //! node1 and node2 are not equivalent according to the ordering rules.
297 //!
298 //!Experimental function
299 static void swap_nodes(const node_ptr & node1, const node_ptr & header1, const node_ptr & node2, const node_ptr & header2)
300 {
301 if(node1 == node2)
302 return;
303
304 //node1 and node2 must not be header nodes
305 //BOOST_INTRUSIVE_INVARIANT_ASSERT((header1 != node1 && header2 != node2));
306 if(header1 != header2){
307 //Update header1 if necessary
308 if(node1 == NodeTraits::get_left(header1)){
309 NodeTraits::set_left(header1, node2);
310 }
311
312 if(node1 == NodeTraits::get_right(header1)){
313 NodeTraits::set_right(header1, node2);
314 }
315
316 if(node1 == NodeTraits::get_parent(header1)){
317 NodeTraits::set_parent(header1, node2);
318 }
319
320 //Update header2 if necessary
321 if(node2 == NodeTraits::get_left(header2)){
322 NodeTraits::set_left(header2, node1);
323 }
324
325 if(node2 == NodeTraits::get_right(header2)){
326 NodeTraits::set_right(header2, node1);
327 }
328
329 if(node2 == NodeTraits::get_parent(header2)){
330 NodeTraits::set_parent(header2, node1);
331 }
332 }
333 else{
334 //If both nodes are from the same tree
335 //Update header if necessary
336 if(node1 == NodeTraits::get_left(header1)){
337 NodeTraits::set_left(header1, node2);
338 }
339 else if(node2 == NodeTraits::get_left(header2)){
340 NodeTraits::set_left(header2, node1);
341 }
342
343 if(node1 == NodeTraits::get_right(header1)){
344 NodeTraits::set_right(header1, node2);
345 }
346 else if(node2 == NodeTraits::get_right(header2)){
347 NodeTraits::set_right(header2, node1);
348 }
349
350 if(node1 == NodeTraits::get_parent(header1)){
351 NodeTraits::set_parent(header1, node2);
352 }
353 else if(node2 == NodeTraits::get_parent(header2)){
354 NodeTraits::set_parent(header2, node1);
355 }
356
357 //Adjust data in nodes to be swapped
358 //so that final link swap works as expected
359 if(node1 == NodeTraits::get_parent(node2)){
360 NodeTraits::set_parent(node2, node2);
361
362 if(node2 == NodeTraits::get_right(node1)){
363 NodeTraits::set_right(node1, node1);
364 }
365 else{
366 NodeTraits::set_left(node1, node1);
367 }
368 }
369 else if(node2 == NodeTraits::get_parent(node1)){
370 NodeTraits::set_parent(node1, node1);
371
372 if(node1 == NodeTraits::get_right(node2)){
373 NodeTraits::set_right(node2, node2);
374 }
375 else{
376 NodeTraits::set_left(node2, node2);
377 }
378 }
379 }
380
381 //Now swap all the links
382 node_ptr temp;
383 //swap left link
384 temp = NodeTraits::get_left(node1);
385 NodeTraits::set_left(node1, NodeTraits::get_left(node2));
386 NodeTraits::set_left(node2, temp);
387 //swap right link
388 temp = NodeTraits::get_right(node1);
389 NodeTraits::set_right(node1, NodeTraits::get_right(node2));
390 NodeTraits::set_right(node2, temp);
391 //swap parent link
392 temp = NodeTraits::get_parent(node1);
393 NodeTraits::set_parent(node1, NodeTraits::get_parent(node2));
394 NodeTraits::set_parent(node2, temp);
395
396 //Now adjust adjacent nodes for newly inserted node 1
397 if((temp = NodeTraits::get_left(node1))){
398 NodeTraits::set_parent(temp, node1);
399 }
400 if((temp = NodeTraits::get_right(node1))){
401 NodeTraits::set_parent(temp, node1);
402 }
403 if((temp = NodeTraits::get_parent(node1)) &&
404 //The header has been already updated so avoid it
405 temp != header2){
406 if(NodeTraits::get_left(temp) == node2){
407 NodeTraits::set_left(temp, node1);
408 }
409 if(NodeTraits::get_right(temp) == node2){
410 NodeTraits::set_right(temp, node1);
411 }
412 }
413 //Now adjust adjacent nodes for newly inserted node 2
414 if((temp = NodeTraits::get_left(node2))){
415 NodeTraits::set_parent(temp, node2);
416 }
417 if((temp = NodeTraits::get_right(node2))){
418 NodeTraits::set_parent(temp, node2);
419 }
420 if((temp = NodeTraits::get_parent(node2)) &&
421 //The header has been already updated so avoid it
422 temp != header1){
423 if(NodeTraits::get_left(temp) == node1){
424 NodeTraits::set_left(temp, node2);
425 }
426 if(NodeTraits::get_right(temp) == node1){
427 NodeTraits::set_right(temp, node2);
428 }
429 }
430 }
431
432 //! <b>Requires</b>: node_to_be_replaced must be inserted in a tree
433 //! and new_node must not be inserted in a tree.
434 //!
435 //! <b>Effects</b>: Replaces node_to_be_replaced in its position in the
436 //! tree with new_node. The tree does not need to be rebalanced
437 //!
438 //! <b>Complexity</b>: Logarithmic.
439 //!
440 //! <b>Throws</b>: Nothing.
441 //!
442 //! <b>Note</b>: This function will break container ordering invariants if
443 //! new_node is not equivalent to node_to_be_replaced according to the
444 //! ordering rules. This function is faster than erasing and inserting
445 //! the node, since no rebalancing and comparison is needed. Experimental function
446 static void replace_node(const node_ptr & node_to_be_replaced, const node_ptr & new_node)
447 {
448 if(node_to_be_replaced == new_node)
449 return;
450 replace_node(node_to_be_replaced, base_type::get_header(node_to_be_replaced), new_node);
451 }
452
453 //! <b>Requires</b>: node_to_be_replaced must be inserted in a tree
454 //! with header "header" and new_node must not be inserted in a tree.
455 //!
456 //! <b>Effects</b>: Replaces node_to_be_replaced in its position in the
457 //! tree with new_node. The tree does not need to be rebalanced
458 //!
459 //! <b>Complexity</b>: Constant.
460 //!
461 //! <b>Throws</b>: Nothing.
462 //!
463 //! <b>Note</b>: This function will break container ordering invariants if
464 //! new_node is not equivalent to node_to_be_replaced according to the
465 //! ordering rules. This function is faster than erasing and inserting
466 //! the node, since no rebalancing or comparison is needed. Experimental function
467 static void replace_node(const node_ptr & node_to_be_replaced, const node_ptr & header, const node_ptr & new_node)
468 {
469 if(node_to_be_replaced == new_node)
470 return;
471
472 //Update header if necessary
473 if(node_to_be_replaced == NodeTraits::get_left(header)){
474 NodeTraits::set_left(header, new_node);
475 }
476
477 if(node_to_be_replaced == NodeTraits::get_right(header)){
478 NodeTraits::set_right(header, new_node);
479 }
480
481 if(node_to_be_replaced == NodeTraits::get_parent(header)){
482 NodeTraits::set_parent(header, new_node);
483 }
484
485 //Now set data from the original node
486 node_ptr temp;
487 NodeTraits::set_left(new_node, NodeTraits::get_left(node_to_be_replaced));
488 NodeTraits::set_right(new_node, NodeTraits::get_right(node_to_be_replaced));
489 NodeTraits::set_parent(new_node, NodeTraits::get_parent(node_to_be_replaced));
490
491 //Now adjust adjacent nodes for newly inserted node
492 if((temp = NodeTraits::get_left(new_node))){
493 NodeTraits::set_parent(temp, new_node);
494 }
495 if((temp = NodeTraits::get_right(new_node))){
496 NodeTraits::set_parent(temp, new_node);
497 }
498 if((temp = NodeTraits::get_parent(new_node)) &&
499 //The header has been already updated so avoid it
500 temp != header){
501 if(NodeTraits::get_left(temp) == node_to_be_replaced){
502 NodeTraits::set_left(temp, new_node);
503 }
504 if(NodeTraits::get_right(temp) == node_to_be_replaced){
505 NodeTraits::set_right(temp, new_node);
506 }
507 }
508 }
509
510 #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
511 //! <b>Requires</b>: 'node' is a node from the tree except the header.
512 //!
513 //! <b>Effects</b>: Returns the next node of the tree.
514 //!
515 //! <b>Complexity</b>: Average constant time.
516 //!
517 //! <b>Throws</b>: Nothing.
518 static node_ptr next_node(const node_ptr & node);
519
520 //! <b>Requires</b>: 'node' is a node from the tree except the leftmost node.
521 //!
522 //! <b>Effects</b>: Returns the previous node of the tree.
523 //!
524 //! <b>Complexity</b>: Average constant time.
525 //!
526 //! <b>Throws</b>: Nothing.
527 static node_ptr prev_node(const node_ptr & node);
528
529 //! <b>Requires</b>: 'node' is a node of a tree but not the header.
530 //!
531 //! <b>Effects</b>: Returns the minimum node of the subtree starting at p.
532 //!
533 //! <b>Complexity</b>: Logarithmic to the size of the subtree.
534 //!
535 //! <b>Throws</b>: Nothing.
536 static node_ptr minimum(node_ptr node);
537
538 //! <b>Requires</b>: 'node' is a node of a tree but not the header.
539 //!
540 //! <b>Effects</b>: Returns the maximum node of the subtree starting at p.
541 //!
542 //! <b>Complexity</b>: Logarithmic to the size of the subtree.
543 //!
544 //! <b>Throws</b>: Nothing.
545 static node_ptr maximum(node_ptr node);
546 #endif
547
548 //! <b>Requires</b>: 'node' must not be part of any tree.
549 //!
550 //! <b>Effects</b>: After the function unique(node) == true.
551 //!
552 //! <b>Complexity</b>: Constant.
553 //!
554 //! <b>Throws</b>: Nothing.
555 //!
556 //! <b>Nodes</b>: If node is inserted in a tree, this function corrupts the tree.
557 static void init(const node_ptr & node)
558 {
559 NodeTraits::set_parent(node, node_ptr());
560 NodeTraits::set_left(node, node_ptr());
561 NodeTraits::set_right(node, node_ptr());
562 };
563
564 //! <b>Effects</b>: Returns true if node is in the same state as if called init(node)
565 //!
566 //! <b>Complexity</b>: Constant.
567 //!
568 //! <b>Throws</b>: Nothing.
569 static bool inited(const const_node_ptr & node)
570 {
571 return !NodeTraits::get_parent(node) &&
572 !NodeTraits::get_left(node) &&
573 !NodeTraits::get_right(node) ;
574 };
575
576 //! <b>Requires</b>: node must not be part of any tree.
577 //!
578 //! <b>Effects</b>: Initializes the header to represent an empty tree.
579 //! unique(header) == true.
580 //!
581 //! <b>Complexity</b>: Constant.
582 //!
583 //! <b>Throws</b>: Nothing.
584 //!
585 //! <b>Nodes</b>: If node is inserted in a tree, this function corrupts the tree.
586 static void init_header(const node_ptr & header)
587 {
588 NodeTraits::set_parent(header, node_ptr());
589 NodeTraits::set_left(header, header);
590 NodeTraits::set_right(header, header);
591 }
592
593 //! <b>Requires</b>: "disposer" must be an object function
594 //! taking a node_ptr parameter and shouldn't throw.
595 //!
596 //! <b>Effects</b>: Empties the target tree calling
597 //! <tt>void disposer::operator()(const node_ptr &)</tt> for every node of the tree
598 //! except the header.
599 //!
600 //! <b>Complexity</b>: Linear to the number of element of the source tree plus the.
601 //! number of elements of tree target tree when calling this function.
602 //!
603 //! <b>Throws</b>: If cloner functor throws. If this happens target nodes are disposed.
604 template<class Disposer>
605 static void clear_and_dispose(const node_ptr & header, Disposer disposer)
606 {
607 node_ptr source_root = NodeTraits::get_parent(header);
608 if(!source_root)
609 return;
610 dispose_subtree(source_root, disposer);
611 init_header(header);
612 }
613
614 //! <b>Requires</b>: header is the header of a tree.
615 //!
616 //! <b>Effects</b>: Unlinks the leftmost node from the tree, and
617 //! updates the header link to the new leftmost node.
618 //!
619 //! <b>Complexity</b>: Average complexity is constant time.
620 //!
621 //! <b>Throws</b>: Nothing.
622 //!
623 //! <b>Notes</b>: This function breaks the tree and the tree can
624 //! only be used for more unlink_leftmost_without_rebalance calls.
625 //! This function is normally used to achieve a step by step
626 //! controlled destruction of the tree.
627 static node_ptr unlink_leftmost_without_rebalance(const node_ptr & header)
628 {
629 node_ptr leftmost = NodeTraits::get_left(header);
630 if (leftmost == header)
631 return node_ptr();
632 node_ptr leftmost_parent(NodeTraits::get_parent(leftmost));
633 node_ptr leftmost_right (NodeTraits::get_right(leftmost));
634 bool is_root = leftmost_parent == header;
635
636 if (leftmost_right){
637 NodeTraits::set_parent(leftmost_right, leftmost_parent);
638 NodeTraits::set_left(header, base_type::minimum(leftmost_right));
639
640 if (is_root)
641 NodeTraits::set_parent(header, leftmost_right);
642 else
643 NodeTraits::set_left(NodeTraits::get_parent(header), leftmost_right);
644 }
645 else if (is_root){
646 NodeTraits::set_parent(header, node_ptr());
647 NodeTraits::set_left(header, header);
648 NodeTraits::set_right(header, header);
649 }
650 else{
651 NodeTraits::set_left(leftmost_parent, node_ptr());
652 NodeTraits::set_left(header, leftmost_parent);
653 }
654 return leftmost;
655 }
656
657 //! <b>Requires</b>: node is a node of the tree but it's not the header.
658 //!
659 //! <b>Effects</b>: Returns the number of nodes of the subtree.
660 //!
661 //! <b>Complexity</b>: Linear time.
662 //!
663 //! <b>Throws</b>: Nothing.
664 static std::size_t size(const const_node_ptr & header)
665 {
666 node_ptr beg(begin_node(header));
667 node_ptr end(end_node(header));
668 std::size_t i = 0;
669 for(;beg != end; beg = base_type::next_node(beg)) ++i;
670 return i;
671 }
672
673 //! <b>Requires</b>: header1 and header2 must be the header nodes
674 //! of two trees.
675 //!
676 //! <b>Effects</b>: Swaps two trees. After the function header1 will contain
677 //! links to the second tree and header2 will have links to the first tree.
678 //!
679 //! <b>Complexity</b>: Constant.
680 //!
681 //! <b>Throws</b>: Nothing.
682 static void swap_tree(const node_ptr & header1, const node_ptr & header2)
683 {
684 if(header1 == header2)
685 return;
686
687 node_ptr tmp;
688
689 //Parent swap
690 tmp = NodeTraits::get_parent(header1);
691 NodeTraits::set_parent(header1, NodeTraits::get_parent(header2));
692 NodeTraits::set_parent(header2, tmp);
693 //Left swap
694 tmp = NodeTraits::get_left(header1);
695 NodeTraits::set_left(header1, NodeTraits::get_left(header2));
696 NodeTraits::set_left(header2, tmp);
697 //Right swap
698 tmp = NodeTraits::get_right(header1);
699 NodeTraits::set_right(header1, NodeTraits::get_right(header2));
700 NodeTraits::set_right(header2, tmp);
701
702 //Now test parent
703 node_ptr h1_parent(NodeTraits::get_parent(header1));
704 if(h1_parent){
705 NodeTraits::set_parent(h1_parent, header1);
706 }
707 else{
708 NodeTraits::set_left(header1, header1);
709 NodeTraits::set_right(header1, header1);
710 }
711
712 node_ptr h2_parent(NodeTraits::get_parent(header2));
713 if(h2_parent){
714 NodeTraits::set_parent(h2_parent, header2);
715 }
716 else{
717 NodeTraits::set_left(header2, header2);
718 NodeTraits::set_right(header2, header2);
719 }
720 }
721
722 #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
723 //! <b>Requires</b>: p is a node of a tree.
724 //!
725 //! <b>Effects</b>: Returns true if p is the header of the tree.
726 //!
727 //! <b>Complexity</b>: Constant.
728 //!
729 //! <b>Throws</b>: Nothing.
730 static bool is_header(const const_node_ptr & p);
731 #endif
732
733 //! <b>Requires</b>: "header" must be the header node of a tree.
734 //! KeyNodePtrCompare is a function object that induces a strict weak
735 //! ordering compatible with the strict weak ordering used to create the
736 //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
737 //!
738 //! <b>Effects</b>: Returns a node_ptr to the first element that is equivalent to
739 //! "key" according to "comp" or "header" if that element does not exist.
740 //!
741 //! <b>Complexity</b>: Logarithmic.
742 //!
743 //! <b>Throws</b>: If "comp" throws.
744 template<class KeyType, class KeyNodePtrCompare>
745 static node_ptr find
746 (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
747 {
748 node_ptr end = detail::uncast(header);
749 node_ptr y = lower_bound(header, key, comp);
750 return (y == end || comp(key, y)) ? end : y;
751 }
752
753 //! <b>Requires</b>: "header" must be the header node of a tree.
754 //! KeyNodePtrCompare is a function object that induces a strict weak
755 //! ordering compatible with the strict weak ordering used to create the
756 //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
757 //! 'lower_key' must not be greater than 'upper_key' according to 'comp'. If
758 //! 'lower_key' == 'upper_key', ('left_closed' || 'right_closed') must be true.
759 //!
760 //! <b>Effects</b>: Returns an a pair with the following criteria:
761 //!
762 //! first = lower_bound(lower_key) if left_closed, upper_bound(lower_key) otherwise
763 //!
764 //! second = upper_bound(upper_key) if right_closed, lower_bound(upper_key) otherwise
765 //!
766 //! <b>Complexity</b>: Logarithmic.
767 //!
768 //! <b>Throws</b>: If "comp" throws.
769 //!
770 //! <b>Note</b>: This function can be more efficient than calling upper_bound
771 //! and lower_bound for lower_key and upper_key.
772 //!
773 //! <b>Note</b>: Experimental function, the interface might change.
774 template< class KeyType, class KeyNodePtrCompare>
775 static std::pair<node_ptr, node_ptr> bounded_range
776 ( const const_node_ptr & header
777 , const KeyType &lower_key
778 , const KeyType &upper_key
779 , KeyNodePtrCompare comp
780 , bool left_closed
781 , bool right_closed)
782 {
783 node_ptr y = detail::uncast(header);
784 node_ptr x = NodeTraits::get_parent(header);
785
786 while(x){
787 //If x is less than lower_key the target
788 //range is on the right part
789 if(comp(x, lower_key)){
790 //Check for invalid input range
791 BOOST_INTRUSIVE_INVARIANT_ASSERT(comp(x, upper_key));
792 x = NodeTraits::get_right(x);
793 }
794 //If the upper_key is less than x, the target
795 //range is on the left part
796 else if(comp(upper_key, x)){
797 y = x;
798 x = NodeTraits::get_left(x);
799 }
800 else{
801 //x is inside the bounded range(lower_key <= x <= upper_key),
802 //so we must split lower and upper searches
803 //
804 //Sanity check: if lower_key and upper_key are equal, then both left_closed and right_closed can't be false
805 BOOST_INTRUSIVE_INVARIANT_ASSERT(left_closed || right_closed || comp(lower_key, x) || comp(x, upper_key));
806 return std::pair<node_ptr,node_ptr>(
807 left_closed
808 //If left_closed, then comp(x, lower_key) is already the lower_bound
809 //condition so we save one comparison and go to the next level
810 //following traditional lower_bound algo
811 ? lower_bound_loop(NodeTraits::get_left(x), x, lower_key, comp)
812 //If left-open, comp(x, lower_key) is not the upper_bound algo
813 //condition so we must recheck current 'x' node with upper_bound algo
814 : upper_bound_loop(x, y, lower_key, comp)
815 ,
816 right_closed
817 //If right_closed, then comp(upper_key, x) is already the upper_bound
818 //condition so we can save one comparison and go to the next level
819 //following lower_bound algo
820 ? upper_bound_loop(NodeTraits::get_right(x), y, upper_key, comp)
821 //If right-open, comp(upper_key, x) is not the lower_bound algo
822 //condition so we must recheck current 'x' node with lower_bound algo
823 : lower_bound_loop(x, y, upper_key, comp)
824 );
825 }
826 }
827 return std::pair<node_ptr,node_ptr> (y, y);
828 }
829
830 //! <b>Requires</b>: "header" must be the header node of a tree.
831 //! KeyNodePtrCompare is a function object that induces a strict weak
832 //! ordering compatible with the strict weak ordering used to create the
833 //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
834 //!
835 //! <b>Effects</b>: Returns the number of elements with a key equivalent to "key"
836 //! according to "comp".
837 //!
838 //! <b>Complexity</b>: Logarithmic.
839 //!
840 //! <b>Throws</b>: If "comp" throws.
841 template<class KeyType, class KeyNodePtrCompare>
842 static std::size_t count
843 (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
844 {
845 std::pair<node_ptr, node_ptr> ret = equal_range(header, key, comp);
846 std::size_t n = 0;
847 while(ret.first != ret.second){
848 ++n;
849 ret.first = base_type::next_node(ret.first);
850 }
851 return n;
852 }
853
854 //! <b>Requires</b>: "header" must be the header node of a tree.
855 //! KeyNodePtrCompare is a function object that induces a strict weak
856 //! ordering compatible with the strict weak ordering used to create the
857 //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
858 //!
859 //! <b>Effects</b>: Returns an a pair of node_ptr delimiting a range containing
860 //! all elements that are equivalent to "key" according to "comp" or an
861 //! empty range that indicates the position where those elements would be
862 //! if there are no equivalent elements.
863 //!
864 //! <b>Complexity</b>: Logarithmic.
865 //!
866 //! <b>Throws</b>: If "comp" throws.
867 template<class KeyType, class KeyNodePtrCompare>
868 static std::pair<node_ptr, node_ptr> equal_range
869 (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
870 {
871 return bounded_range(header, key, key, comp, true, true);
872 }
873
874 //! <b>Requires</b>: "header" must be the header node of a tree.
875 //! KeyNodePtrCompare is a function object that induces a strict weak
876 //! ordering compatible with the strict weak ordering used to create the
877 //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
878 //!
879 //! <b>Effects</b>: Returns an a pair of node_ptr delimiting a range containing
880 //! the first element that is equivalent to "key" according to "comp" or an
881 //! empty range that indicates the position where that element would be
882 //! if there are no equivalent elements.
883 //!
884 //! <b>Complexity</b>: Logarithmic.
885 //!
886 //! <b>Throws</b>: If "comp" throws.
887 template<class KeyType, class KeyNodePtrCompare>
888 static std::pair<node_ptr, node_ptr> lower_bound_range
889 (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
890 {
891 node_ptr const lb(lower_bound(header, key, comp));
892 std::pair<node_ptr, node_ptr> ret_ii(lb, lb);
893 if(lb != header && !comp(key, lb)){
894 ret_ii.second = base_type::next_node(ret_ii.second);
895 }
896 return ret_ii;
897 }
898
899 //! <b>Requires</b>: "header" must be the header node of a tree.
900 //! KeyNodePtrCompare is a function object that induces a strict weak
901 //! ordering compatible with the strict weak ordering used to create the
902 //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
903 //!
904 //! <b>Effects</b>: Returns a node_ptr to the first element that is
905 //! not less than "key" according to "comp" or "header" if that element does
906 //! not exist.
907 //!
908 //! <b>Complexity</b>: Logarithmic.
909 //!
910 //! <b>Throws</b>: If "comp" throws.
911 template<class KeyType, class KeyNodePtrCompare>
912 static node_ptr lower_bound
913 (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
914 {
915 return lower_bound_loop(NodeTraits::get_parent(header), detail::uncast(header), key, comp);
916 }
917
918 //! <b>Requires</b>: "header" must be the header node of a tree.
919 //! KeyNodePtrCompare is a function object that induces a strict weak
920 //! ordering compatible with the strict weak ordering used to create the
921 //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
922 //!
923 //! <b>Effects</b>: Returns a node_ptr to the first element that is greater
924 //! than "key" according to "comp" or "header" if that element does not exist.
925 //!
926 //! <b>Complexity</b>: Logarithmic.
927 //!
928 //! <b>Throws</b>: If "comp" throws.
929 template<class KeyType, class KeyNodePtrCompare>
930 static node_ptr upper_bound
931 (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
932 {
933 return upper_bound_loop(NodeTraits::get_parent(header), detail::uncast(header), key, comp);
934 }
935
936 //! <b>Requires</b>: "header" must be the header node of a tree.
937 //! "commit_data" must have been obtained from a previous call to
938 //! "insert_unique_check". No objects should have been inserted or erased
939 //! from the set between the "insert_unique_check" that filled "commit_data"
940 //! and the call to "insert_commit".
941 //!
942 //!
943 //! <b>Effects</b>: Inserts new_node in the set using the information obtained
944 //! from the "commit_data" that a previous "insert_check" filled.
945 //!
946 //! <b>Complexity</b>: Constant time.
947 //!
948 //! <b>Throws</b>: Nothing.
949 //!
950 //! <b>Notes</b>: This function has only sense if a "insert_unique_check" has been
951 //! previously executed to fill "commit_data". No value should be inserted or
952 //! erased between the "insert_check" and "insert_commit" calls.
953 static void insert_unique_commit
954 (const node_ptr & header, const node_ptr & new_value, const insert_commit_data &commit_data)
955 { return insert_commit(header, new_node: new_value, commit_data); }
956
957 //! <b>Requires</b>: "header" must be the header node of a tree.
958 //! KeyNodePtrCompare is a function object that induces a strict weak
959 //! ordering compatible with the strict weak ordering used to create the
960 //! the tree. NodePtrCompare compares KeyType with a node_ptr.
961 //!
962 //! <b>Effects</b>: Checks if there is an equivalent node to "key" in the
963 //! tree according to "comp" and obtains the needed information to realize
964 //! a constant-time node insertion if there is no equivalent node.
965 //!
966 //! <b>Returns</b>: If there is an equivalent value
967 //! returns a pair containing a node_ptr to the already present node
968 //! and false. If there is not equivalent key can be inserted returns true
969 //! in the returned pair's boolean and fills "commit_data" that is meant to
970 //! be used with the "insert_commit" function to achieve a constant-time
971 //! insertion function.
972 //!
973 //! <b>Complexity</b>: Average complexity is at most logarithmic.
974 //!
975 //! <b>Throws</b>: If "comp" throws.
976 //!
977 //! <b>Notes</b>: This function is used to improve performance when constructing
978 //! a node is expensive and the user does not want to have two equivalent nodes
979 //! in the tree: if there is an equivalent value
980 //! the constructed object must be discarded. Many times, the part of the
981 //! node that is used to impose the order is much cheaper to construct
982 //! than the node and this function offers the possibility to use that part
983 //! to check if the insertion will be successful.
984 //!
985 //! If the check is successful, the user can construct the node and use
986 //! "insert_commit" to insert the node in constant-time. This gives a total
987 //! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)).
988 //!
989 //! "commit_data" remains valid for a subsequent "insert_unique_commit" only
990 //! if no more objects are inserted or erased from the set.
991 template<class KeyType, class KeyNodePtrCompare>
992 static std::pair<node_ptr, bool> insert_unique_check
993 (const const_node_ptr & header, const KeyType &key
994 ,KeyNodePtrCompare comp, insert_commit_data &commit_data
995 #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
996 , std::size_t *pdepth = 0
997 #endif
998 )
999 {
1000 std::size_t depth = 0;
1001 node_ptr h(detail::uncast(header));
1002 node_ptr y(h);
1003 node_ptr x(NodeTraits::get_parent(y));
1004 node_ptr prev = node_ptr();
1005
1006 //Find the upper bound, cache the previous value and if we should
1007 //store it in the left or right node
1008 bool left_child = true;
1009 while(x){
1010 ++depth;
1011 y = x;
1012 x = (left_child = comp(key, x)) ?
1013 NodeTraits::get_left(x) : (prev = y, NodeTraits::get_right(x));
1014 }
1015
1016 if(pdepth) *pdepth = depth;
1017
1018 //Since we've found the upper bound there is no other value with the same key if:
1019 // - There is no previous node
1020 // - The previous node is less than the key
1021 const bool not_present = !prev || comp(prev, key);
1022 if(not_present){
1023 commit_data.link_left = left_child;
1024 commit_data.node = y;
1025 }
1026 return std::pair<node_ptr, bool>(prev, not_present);
1027 }
1028
1029 //! <b>Requires</b>: "header" must be the header node of a tree.
1030 //! KeyNodePtrCompare is a function object that induces a strict weak
1031 //! ordering compatible with the strict weak ordering used to create the
1032 //! the tree. NodePtrCompare compares KeyType with a node_ptr.
1033 //! "hint" is node from the "header"'s tree.
1034 //!
1035 //! <b>Effects</b>: Checks if there is an equivalent node to "key" in the
1036 //! tree according to "comp" using "hint" as a hint to where it should be
1037 //! inserted and obtains the needed information to realize
1038 //! a constant-time node insertion if there is no equivalent node.
1039 //! If "hint" is the upper_bound the function has constant time
1040 //! complexity (two comparisons in the worst case).
1041 //!
1042 //! <b>Returns</b>: If there is an equivalent value
1043 //! returns a pair containing a node_ptr to the already present node
1044 //! and false. If there is not equivalent key can be inserted returns true
1045 //! in the returned pair's boolean and fills "commit_data" that is meant to
1046 //! be used with the "insert_commit" function to achieve a constant-time
1047 //! insertion function.
1048 //!
1049 //! <b>Complexity</b>: Average complexity is at most logarithmic, but it is
1050 //! amortized constant time if new_node should be inserted immediately before "hint".
1051 //!
1052 //! <b>Throws</b>: If "comp" throws.
1053 //!
1054 //! <b>Notes</b>: This function is used to improve performance when constructing
1055 //! a node is expensive and the user does not want to have two equivalent nodes
1056 //! in the tree: if there is an equivalent value
1057 //! the constructed object must be discarded. Many times, the part of the
1058 //! node that is used to impose the order is much cheaper to construct
1059 //! than the node and this function offers the possibility to use that part
1060 //! to check if the insertion will be successful.
1061 //!
1062 //! If the check is successful, the user can construct the node and use
1063 //! "insert_commit" to insert the node in constant-time. This gives a total
1064 //! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)).
1065 //!
1066 //! "commit_data" remains valid for a subsequent "insert_unique_commit" only
1067 //! if no more objects are inserted or erased from the set.
1068 template<class KeyType, class KeyNodePtrCompare>
1069 static std::pair<node_ptr, bool> insert_unique_check
1070 (const const_node_ptr & header, const node_ptr &hint, const KeyType &key
1071 ,KeyNodePtrCompare comp, insert_commit_data &commit_data
1072 #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
1073 , std::size_t *pdepth = 0
1074 #endif
1075 )
1076 {
1077 //hint must be bigger than the key
1078 if(hint == header || comp(key, hint)){
1079 node_ptr prev(hint);
1080 //Previous value should be less than the key
1081 if(hint == begin_node(header) || comp((prev = base_type::prev_node(hint)), key)){
1082 commit_data.link_left = unique(node: header) || !NodeTraits::get_left(hint);
1083 commit_data.node = commit_data.link_left ? hint : prev;
1084 if(pdepth){
1085 *pdepth = commit_data.node == header ? 0 : depth(node: commit_data.node) + 1;
1086 }
1087 return std::pair<node_ptr, bool>(node_ptr(), true);
1088 }
1089 }
1090 //Hint was wrong, use hintless insertion
1091 return insert_unique_check(header, key, comp, commit_data, pdepth);
1092 }
1093
1094 //! <b>Requires</b>: "header" must be the header node of a tree.
1095 //! NodePtrCompare is a function object that induces a strict weak
1096 //! ordering compatible with the strict weak ordering used to create the
1097 //! the tree. NodePtrCompare compares two node_ptrs. "hint" is node from
1098 //! the "header"'s tree.
1099 //!
1100 //! <b>Effects</b>: Inserts new_node into the tree, using "hint" as a hint to
1101 //! where it will be inserted. If "hint" is the upper_bound
1102 //! the insertion takes constant time (two comparisons in the worst case).
1103 //!
1104 //! <b>Complexity</b>: Logarithmic in general, but it is amortized
1105 //! constant time if new_node is inserted immediately before "hint".
1106 //!
1107 //! <b>Throws</b>: If "comp" throws.
1108 template<class NodePtrCompare>
1109 static node_ptr insert_equal
1110 (const node_ptr & h, const node_ptr & hint, const node_ptr & new_node, NodePtrCompare comp
1111 #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
1112 , std::size_t *pdepth = 0
1113 #endif
1114 )
1115 {
1116 insert_commit_data commit_data;
1117 insert_equal_check(h, hint, new_node, comp, commit_data, pdepth);
1118 insert_commit(header: h, new_node, commit_data);
1119 return new_node;
1120 }
1121
1122 //! <b>Requires</b>: "h" must be the header node of a tree.
1123 //! NodePtrCompare is a function object that induces a strict weak
1124 //! ordering compatible with the strict weak ordering used to create the
1125 //! the tree. NodePtrCompare compares two node_ptrs.
1126 //!
1127 //! <b>Effects</b>: Inserts new_node into the tree before the upper bound
1128 //! according to "comp".
1129 //!
1130 //! <b>Complexity</b>: Average complexity for insert element is at
1131 //! most logarithmic.
1132 //!
1133 //! <b>Throws</b>: If "comp" throws.
1134 template<class NodePtrCompare>
1135 static node_ptr insert_equal_upper_bound
1136 (const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp
1137 #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
1138 , std::size_t *pdepth = 0
1139 #endif
1140 )
1141 {
1142 insert_commit_data commit_data;
1143 insert_equal_upper_bound_check(h, new_node, comp, commit_data, pdepth);
1144 insert_commit(header: h, new_node, commit_data);
1145 return new_node;
1146 }
1147
1148 //! <b>Requires</b>: "h" must be the header node of a tree.
1149 //! NodePtrCompare is a function object that induces a strict weak
1150 //! ordering compatible with the strict weak ordering used to create the
1151 //! the tree. NodePtrCompare compares two node_ptrs.
1152 //!
1153 //! <b>Effects</b>: Inserts new_node into the tree before the lower bound
1154 //! according to "comp".
1155 //!
1156 //! <b>Complexity</b>: Average complexity for insert element is at
1157 //! most logarithmic.
1158 //!
1159 //! <b>Throws</b>: If "comp" throws.
1160 template<class NodePtrCompare>
1161 static node_ptr insert_equal_lower_bound
1162 (const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp
1163 #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
1164 , std::size_t *pdepth = 0
1165 #endif
1166 )
1167 {
1168 insert_commit_data commit_data;
1169 insert_equal_lower_bound_check(h, new_node, comp, commit_data, pdepth);
1170 insert_commit(header: h, new_node, commit_data);
1171 return new_node;
1172 }
1173
1174 //! <b>Requires</b>: "header" must be the header node of a tree.
1175 //! "pos" must be a valid iterator or header (end) node.
1176 //! "pos" must be an iterator pointing to the successor to "new_node"
1177 //! once inserted according to the order of already inserted nodes. This function does not
1178 //! check "pos" and this precondition must be guaranteed by the caller.
1179 //!
1180 //! <b>Effects</b>: Inserts new_node into the tree before "pos".
1181 //!
1182 //! <b>Complexity</b>: Constant-time.
1183 //!
1184 //! <b>Throws</b>: Nothing.
1185 //!
1186 //! <b>Note</b>: If "pos" is not the successor of the newly inserted "new_node"
1187 //! tree invariants might be broken.
1188 static node_ptr insert_before
1189 (const node_ptr & header, const node_ptr & pos, const node_ptr & new_node
1190 #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
1191 , std::size_t *pdepth = 0
1192 #endif
1193 )
1194 {
1195 insert_commit_data commit_data;
1196 insert_before_check(header, pos, commit_data, pdepth);
1197 insert_commit(header, new_node, commit_data);
1198 return new_node;
1199 }
1200
1201 //! <b>Requires</b>: "header" must be the header node of a tree.
1202 //! "new_node" must be, according to the used ordering no less than the
1203 //! greatest inserted key.
1204 //!
1205 //! <b>Effects</b>: Inserts new_node into the tree before "pos".
1206 //!
1207 //! <b>Complexity</b>: Constant-time.
1208 //!
1209 //! <b>Throws</b>: Nothing.
1210 //!
1211 //! <b>Note</b>: If "new_node" is less than the greatest inserted key
1212 //! tree invariants are broken. This function is slightly faster than
1213 //! using "insert_before".
1214 static void push_back
1215 (const node_ptr & header, const node_ptr & new_node
1216 #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
1217 , std::size_t *pdepth = 0
1218 #endif
1219 )
1220 {
1221 insert_commit_data commit_data;
1222 push_back_check(header, commit_data, pdepth);
1223 insert_commit(header, new_node, commit_data);
1224 }
1225
1226 //! <b>Requires</b>: "header" must be the header node of a tree.
1227 //! "new_node" must be, according to the used ordering, no greater than the
1228 //! lowest inserted key.
1229 //!
1230 //! <b>Effects</b>: Inserts new_node into the tree before "pos".
1231 //!
1232 //! <b>Complexity</b>: Constant-time.
1233 //!
1234 //! <b>Throws</b>: Nothing.
1235 //!
1236 //! <b>Note</b>: If "new_node" is greater than the lowest inserted key
1237 //! tree invariants are broken. This function is slightly faster than
1238 //! using "insert_before".
1239 static void push_front
1240 (const node_ptr & header, const node_ptr & new_node
1241 #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
1242 , std::size_t *pdepth = 0
1243 #endif
1244 )
1245 {
1246 insert_commit_data commit_data;
1247 push_front_check(header, commit_data, pdepth);
1248 insert_commit(header, new_node, commit_data);
1249 }
1250
1251 //! <b>Requires</b>: 'node' can't be a header node.
1252 //!
1253 //! <b>Effects</b>: Calculates the depth of a node: the depth of a
1254 //! node is the length (number of edges) of the path from the root
1255 //! to that node. (The root node is at depth 0.)
1256 //!
1257 //! <b>Complexity</b>: Logarithmic to the number of nodes in the tree.
1258 //!
1259 //! <b>Throws</b>: Nothing.
1260 static std::size_t depth(const_node_ptr node)
1261 {
1262 std::size_t depth = 0;
1263 node_ptr p_parent;
1264 while(node != NodeTraits::get_parent(p_parent = NodeTraits::get_parent(node))){
1265 ++depth;
1266 node = p_parent;
1267 }
1268 return depth;
1269 }
1270
1271 //! <b>Requires</b>: "cloner" must be a function
1272 //! object taking a node_ptr and returning a new cloned node of it. "disposer" must
1273 //! take a node_ptr and shouldn't throw.
1274 //!
1275 //! <b>Effects</b>: First empties target tree calling
1276 //! <tt>void disposer::operator()(const node_ptr &)</tt> for every node of the tree
1277 //! except the header.
1278 //!
1279 //! Then, duplicates the entire tree pointed by "source_header" cloning each
1280 //! source node with <tt>node_ptr Cloner::operator()(const node_ptr &)</tt> to obtain
1281 //! the nodes of the target tree. If "cloner" throws, the cloned target nodes
1282 //! are disposed using <tt>void disposer(const node_ptr &)</tt>.
1283 //!
1284 //! <b>Complexity</b>: Linear to the number of element of the source tree plus the
1285 //! number of elements of tree target tree when calling this function.
1286 //!
1287 //! <b>Throws</b>: If cloner functor throws. If this happens target nodes are disposed.
1288 template <class Cloner, class Disposer>
1289 static void clone
1290 (const const_node_ptr & source_header, const node_ptr & target_header, Cloner cloner, Disposer disposer)
1291 {
1292 if(!unique(node: target_header)){
1293 clear_and_dispose(target_header, disposer);
1294 }
1295
1296 node_ptr leftmost, rightmost;
1297 node_ptr new_root = clone_subtree
1298 (source_header, target_header, cloner, disposer, leftmost, rightmost);
1299
1300 //Now update header node
1301 NodeTraits::set_parent(target_header, new_root);
1302 NodeTraits::set_left (target_header, leftmost);
1303 NodeTraits::set_right (target_header, rightmost);
1304 }
1305
1306 //! <b>Requires</b>: header must be the header of a tree, z a node
1307 //! of that tree and z != header.
1308 //!
1309 //! <b>Effects</b>: Erases node "z" from the tree with header "header".
1310 //!
1311 //! <b>Complexity</b>: Amortized constant time.
1312 //!
1313 //! <b>Throws</b>: Nothing.
1314 static void erase(const node_ptr & header, const node_ptr & z)
1315 {
1316 data_for_rebalance ignored;
1317 erase(header, z, ignored);
1318 }
1319
1320 //! <b>Requires</b>: node is a tree node but not the header.
1321 //!
1322 //! <b>Effects</b>: Unlinks the node and rebalances the tree.
1323 //!
1324 //! <b>Complexity</b>: Average complexity is constant time.
1325 //!
1326 //! <b>Throws</b>: Nothing.
1327 static void unlink(const node_ptr & node)
1328 {
1329 node_ptr x = NodeTraits::get_parent(node);
1330 if(x){
1331 while(!base_type::is_header(x))
1332 x = NodeTraits::get_parent(x);
1333 erase(x, node);
1334 }
1335 }
1336
1337 //! <b>Requires</b>: header must be the header of a tree.
1338 //!
1339 //! <b>Effects</b>: Rebalances the tree.
1340 //!
1341 //! <b>Throws</b>: Nothing.
1342 //!
1343 //! <b>Complexity</b>: Linear.
1344 static void rebalance(const node_ptr & header)
1345 {
1346 node_ptr root = NodeTraits::get_parent(header);
1347 if(root){
1348 rebalance_subtree(old_root: root);
1349 }
1350 }
1351
1352 //! <b>Requires</b>: old_root is a node of a tree. It shall not be null.
1353 //!
1354 //! <b>Effects</b>: Rebalances the subtree rooted at old_root.
1355 //!
1356 //! <b>Returns</b>: The new root of the subtree.
1357 //!
1358 //! <b>Throws</b>: Nothing.
1359 //!
1360 //! <b>Complexity</b>: Linear.
1361 static node_ptr rebalance_subtree(const node_ptr & old_root)
1362 {
1363 //Taken from:
1364 //"Tree rebalancing in optimal time and space"
1365 //Quentin F. Stout and Bette L. Warren
1366
1367 //To avoid irregularities in the algorithm (old_root can be a
1368 //left or right child or even the root of the tree) just put the
1369 //root as the right child of its parent. Before doing this backup
1370 //information to restore the original relationship after
1371 //the algorithm is applied.
1372 node_ptr super_root = NodeTraits::get_parent(old_root);
1373 BOOST_INTRUSIVE_INVARIANT_ASSERT(super_root);
1374
1375 //Get root info
1376 node_ptr super_root_right_backup = NodeTraits::get_right(super_root);
1377 bool super_root_is_header = NodeTraits::get_parent(super_root) == old_root;
1378 bool old_root_is_right = is_right_child(p: old_root);
1379 NodeTraits::set_right(super_root, old_root);
1380
1381 std::size_t size;
1382 subtree_to_vine(vine_tail: super_root, size);
1383 vine_to_subtree(super_root, count: size);
1384 node_ptr new_root = NodeTraits::get_right(super_root);
1385
1386 //Recover root
1387 if(super_root_is_header){
1388 NodeTraits::set_right(super_root, super_root_right_backup);
1389 NodeTraits::set_parent(super_root, new_root);
1390 }
1391 else if(old_root_is_right){
1392 NodeTraits::set_right(super_root, new_root);
1393 }
1394 else{
1395 NodeTraits::set_right(super_root, super_root_right_backup);
1396 NodeTraits::set_left(super_root, new_root);
1397 }
1398 return new_root;
1399 }
1400
1401 //! <b>Effects</b>: Asserts the integrity of the container with additional checks provided by the user.
1402 //!
1403 //! <b>Requires</b>: header must be the header of a tree.
1404 //!
1405 //! <b>Complexity</b>: Linear time.
1406 //!
1407 //! <b>Note</b>: The method might not have effect when asserts are turned off (e.g., with NDEBUG).
1408 //! Experimental function, interface might change in future versions.
1409 template<class Checker>
1410 static void check(const const_node_ptr& header, Checker checker, typename Checker::return_type& checker_return)
1411 {
1412 const_node_ptr root_node_ptr = NodeTraits::get_parent(header);
1413 if (!root_node_ptr){
1414 // check left&right header pointers
1415 BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_left(header) == header);
1416 BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_right(header) == header);
1417 }
1418 else{
1419 // check parent pointer of root node
1420 BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_parent(root_node_ptr) == header);
1421 // check subtree from root
1422 check_subtree(root_node_ptr, checker, checker_return);
1423 // check left&right header pointers
1424 const_node_ptr p = root_node_ptr;
1425 while (NodeTraits::get_left(p)) { p = NodeTraits::get_left(p); }
1426 BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_left(header) == p);
1427 p = root_node_ptr;
1428 while (NodeTraits::get_right(p)) { p = NodeTraits::get_right(p); }
1429 BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_right(header) == p);
1430 }
1431 }
1432
1433 protected:
1434 static void erase(const node_ptr & header, const node_ptr & z, data_for_rebalance &info)
1435 {
1436 node_ptr y(z);
1437 node_ptr x;
1438 const node_ptr z_left(NodeTraits::get_left(z));
1439 const node_ptr z_right(NodeTraits::get_right(z));
1440
1441 if(!z_left){
1442 x = z_right; // x might be null.
1443 }
1444 else if(!z_right){ // z has exactly one non-null child. y == z.
1445 x = z_left; // x is not null.
1446 BOOST_ASSERT(x);
1447 }
1448 else{ //make y != z
1449 // y = find z's successor
1450 y = base_type::minimum(z_right);
1451 x = NodeTraits::get_right(y); // x might be null.
1452 }
1453
1454 node_ptr x_parent;
1455 const node_ptr z_parent(NodeTraits::get_parent(z));
1456 const bool z_is_leftchild(NodeTraits::get_left(z_parent) == z);
1457
1458 if(y != z){ //has two children and y is the minimum of z
1459 //y is z's successor and it has a null left child.
1460 //x is the right child of y (it can be null)
1461 //Relink y in place of z and link x with y's old parent
1462 NodeTraits::set_parent(z_left, y);
1463 NodeTraits::set_left(y, z_left);
1464 if(y != z_right){
1465 //Link y with the right tree of z
1466 NodeTraits::set_right(y, z_right);
1467 NodeTraits::set_parent(z_right, y);
1468 //Link x with y's old parent (y must be a left child)
1469 x_parent = NodeTraits::get_parent(y);
1470 BOOST_ASSERT(NodeTraits::get_left(x_parent) == y);
1471 if(x)
1472 NodeTraits::set_parent(x, x_parent);
1473 //Since y was the successor and not the right child of z, it must be a left child
1474 NodeTraits::set_left(x_parent, x);
1475 }
1476 else{ //y was the right child of y so no need to fix x's position
1477 x_parent = y;
1478 }
1479 NodeTraits::set_parent(y, z_parent);
1480 this_type::set_child(header, new_child: y, new_parent: z_parent, link_left: z_is_leftchild);
1481 }
1482 else { // z has zero or one child, x is one child (it can be null)
1483 //Just link x to z's parent
1484 x_parent = z_parent;
1485 if(x)
1486 NodeTraits::set_parent(x, z_parent);
1487 this_type::set_child(header, new_child: x, new_parent: z_parent, link_left: z_is_leftchild);
1488
1489 //Now update leftmost/rightmost in case z was one of them
1490 if(NodeTraits::get_left(header) == z){
1491 //z_left must be null because z is the leftmost
1492 BOOST_ASSERT(!z_left);
1493 NodeTraits::set_left(header, !z_right ?
1494 z_parent : // makes leftmost == header if z == root
1495 base_type::minimum(z_right));
1496 }
1497 if(NodeTraits::get_right(header) == z){
1498 //z_right must be null because z is the rightmost
1499 BOOST_ASSERT(!z_right);
1500 NodeTraits::set_right(header, !z_left ?
1501 z_parent : // makes rightmost == header if z == root
1502 base_type::maximum(z_left));
1503 }
1504 }
1505
1506 //If z had 0/1 child, y == z and one of its children (and maybe null)
1507 //If z had 2 children, y is the successor of z and x is the right child of y
1508 info.x = x;
1509 info.y = y;
1510 //If z had 0/1 child, x_parent is the new parent of the old right child of y (z's successor)
1511 //If z had 2 children, x_parent is the new parent of y (z_parent)
1512 BOOST_ASSERT(!x || NodeTraits::get_parent(x) == x_parent);
1513 info.x_parent = x_parent;
1514 }
1515
1516 //! <b>Requires</b>: node is a node of the tree but it's not the header.
1517 //!
1518 //! <b>Effects</b>: Returns the number of nodes of the subtree.
1519 //!
1520 //! <b>Complexity</b>: Linear time.
1521 //!
1522 //! <b>Throws</b>: Nothing.
1523 static std::size_t subtree_size(const const_node_ptr & subtree)
1524 {
1525 std::size_t count = 0;
1526 if (subtree){
1527 node_ptr n = detail::uncast(subtree);
1528 node_ptr m = NodeTraits::get_left(n);
1529 while(m){
1530 n = m;
1531 m = NodeTraits::get_left(n);
1532 }
1533
1534 while(1){
1535 ++count;
1536 node_ptr n_right(NodeTraits::get_right(n));
1537 if(n_right){
1538 n = n_right;
1539 m = NodeTraits::get_left(n);
1540 while(m){
1541 n = m;
1542 m = NodeTraits::get_left(n);
1543 }
1544 }
1545 else {
1546 do{
1547 if (n == subtree){
1548 return count;
1549 }
1550 m = n;
1551 n = NodeTraits::get_parent(n);
1552 }while(NodeTraits::get_left(n) != m);
1553 }
1554 }
1555 }
1556 return count;
1557 }
1558
1559 //! <b>Requires</b>: p is a node of a tree.
1560 //!
1561 //! <b>Effects</b>: Returns true if p is a left child.
1562 //!
1563 //! <b>Complexity</b>: Constant.
1564 //!
1565 //! <b>Throws</b>: Nothing.
1566 static bool is_left_child(const node_ptr & p)
1567 { return NodeTraits::get_left(NodeTraits::get_parent(p)) == p; }
1568
1569 //! <b>Requires</b>: p is a node of a tree.
1570 //!
1571 //! <b>Effects</b>: Returns true if p is a right child.
1572 //!
1573 //! <b>Complexity</b>: Constant.
1574 //!
1575 //! <b>Throws</b>: Nothing.
1576 static bool is_right_child(const node_ptr & p)
1577 { return NodeTraits::get_right(NodeTraits::get_parent(p)) == p; }
1578
1579 static void insert_before_check
1580 (const node_ptr &header, const node_ptr & pos
1581 , insert_commit_data &commit_data
1582 #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
1583 , std::size_t *pdepth = 0
1584 #endif
1585 )
1586 {
1587 node_ptr prev(pos);
1588 if(pos != NodeTraits::get_left(header))
1589 prev = base_type::prev_node(pos);
1590 bool link_left = unique(node: header) || !NodeTraits::get_left(pos);
1591 commit_data.link_left = link_left;
1592 commit_data.node = link_left ? pos : prev;
1593 if(pdepth){
1594 *pdepth = commit_data.node == header ? 0 : depth(node: commit_data.node) + 1;
1595 }
1596 }
1597
1598 static void push_back_check
1599 (const node_ptr & header, insert_commit_data &commit_data
1600 #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
1601 , std::size_t *pdepth = 0
1602 #endif
1603 )
1604 {
1605 node_ptr prev(NodeTraits::get_right(header));
1606 if(pdepth){
1607 *pdepth = prev == header ? 0 : depth(node: prev) + 1;
1608 }
1609 commit_data.link_left = false;
1610 commit_data.node = prev;
1611 }
1612
1613 static void push_front_check
1614 (const node_ptr & header, insert_commit_data &commit_data
1615 #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
1616 , std::size_t *pdepth = 0
1617 #endif
1618 )
1619 {
1620 node_ptr pos(NodeTraits::get_left(header));
1621 if(pdepth){
1622 *pdepth = pos == header ? 0 : depth(node: pos) + 1;
1623 }
1624 commit_data.link_left = true;
1625 commit_data.node = pos;
1626 }
1627
1628 template<class NodePtrCompare>
1629 static void insert_equal_check
1630 (const node_ptr &header, const node_ptr & hint, const node_ptr & new_node, NodePtrCompare comp
1631 , insert_commit_data &commit_data
1632 /// @cond
1633 , std::size_t *pdepth = 0
1634 /// @endcond
1635 )
1636 {
1637 if(hint == header || !comp(hint, new_node)){
1638 node_ptr prev(hint);
1639 if(hint == NodeTraits::get_left(header) ||
1640 !comp(new_node, (prev = base_type::prev_node(hint)))){
1641 bool link_left = unique(node: header) || !NodeTraits::get_left(hint);
1642 commit_data.link_left = link_left;
1643 commit_data.node = link_left ? hint : prev;
1644 if(pdepth){
1645 *pdepth = commit_data.node == header ? 0 : depth(node: commit_data.node) + 1;
1646 }
1647 }
1648 else{
1649 insert_equal_upper_bound_check(header, new_node, comp, commit_data, pdepth);
1650 }
1651 }
1652 else{
1653 insert_equal_lower_bound_check(header, new_node, comp, commit_data, pdepth);
1654 }
1655 }
1656
1657 template<class NodePtrCompare>
1658 static void insert_equal_upper_bound_check
1659 (const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp, insert_commit_data & commit_data, std::size_t *pdepth = 0)
1660 {
1661 std::size_t depth = 0;
1662 node_ptr y(h);
1663 node_ptr x(NodeTraits::get_parent(y));
1664
1665 while(x){
1666 ++depth;
1667 y = x;
1668 x = comp(new_node, x) ?
1669 NodeTraits::get_left(x) : NodeTraits::get_right(x);
1670 }
1671 if(pdepth) *pdepth = depth;
1672 commit_data.link_left = (y == h) || comp(new_node, y);
1673 commit_data.node = y;
1674 }
1675
1676 template<class NodePtrCompare>
1677 static void insert_equal_lower_bound_check
1678 (const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp, insert_commit_data & commit_data, std::size_t *pdepth = 0)
1679 {
1680 std::size_t depth = 0;
1681 node_ptr y(h);
1682 node_ptr x(NodeTraits::get_parent(y));
1683
1684 while(x){
1685 ++depth;
1686 y = x;
1687 x = !comp(x, new_node) ?
1688 NodeTraits::get_left(x) : NodeTraits::get_right(x);
1689 }
1690 if(pdepth) *pdepth = depth;
1691 commit_data.link_left = (y == h) || !comp(y, new_node);
1692 commit_data.node = y;
1693 }
1694
1695 static void insert_commit
1696 (const node_ptr & header, const node_ptr & new_node, const insert_commit_data &commit_data)
1697 {
1698 //Check if commit_data has not been initialized by a insert_unique_check call.
1699 BOOST_INTRUSIVE_INVARIANT_ASSERT(commit_data.node != node_ptr());
1700 node_ptr parent_node(commit_data.node);
1701 if(parent_node == header){
1702 NodeTraits::set_parent(header, new_node);
1703 NodeTraits::set_right(header, new_node);
1704 NodeTraits::set_left(header, new_node);
1705 }
1706 else if(commit_data.link_left){
1707 NodeTraits::set_left(parent_node, new_node);
1708 if(parent_node == NodeTraits::get_left(header))
1709 NodeTraits::set_left(header, new_node);
1710 }
1711 else{
1712 NodeTraits::set_right(parent_node, new_node);
1713 if(parent_node == NodeTraits::get_right(header))
1714 NodeTraits::set_right(header, new_node);
1715 }
1716 NodeTraits::set_parent(new_node, parent_node);
1717 NodeTraits::set_right(new_node, node_ptr());
1718 NodeTraits::set_left(new_node, node_ptr());
1719 }
1720
1721 //Fix header and own's parent data when replacing x with own, providing own's old data with parent
1722 static void set_child(const node_ptr & header, const node_ptr & new_child, const node_ptr & new_parent, const bool link_left)
1723 {
1724 if(new_parent == header)
1725 NodeTraits::set_parent(header, new_child);
1726 else if(link_left)
1727 NodeTraits::set_left(new_parent, new_child);
1728 else
1729 NodeTraits::set_right(new_parent, new_child);
1730 }
1731
1732 // rotate p to left (no header and p's parent fixup)
1733 static void rotate_left_no_parent_fix(const node_ptr & p, const node_ptr &p_right)
1734 {
1735 node_ptr p_right_left(NodeTraits::get_left(p_right));
1736 NodeTraits::set_right(p, p_right_left);
1737 if(p_right_left){
1738 NodeTraits::set_parent(p_right_left, p);
1739 }
1740 NodeTraits::set_left(p_right, p);
1741 NodeTraits::set_parent(p, p_right);
1742 }
1743
1744 // rotate p to left (with header and p's parent fixup)
1745 static void rotate_left(const node_ptr & p, const node_ptr & p_right, const node_ptr & p_parent, const node_ptr & header)
1746 {
1747 const bool p_was_left(NodeTraits::get_left(p_parent) == p);
1748 rotate_left_no_parent_fix(p, p_right);
1749 NodeTraits::set_parent(p_right, p_parent);
1750 set_child(header, new_child: p_right, new_parent: p_parent, link_left: p_was_left);
1751 }
1752
1753 // rotate p to right (no header and p's parent fixup)
1754 static void rotate_right_no_parent_fix(const node_ptr & p, const node_ptr &p_left)
1755 {
1756 node_ptr p_left_right(NodeTraits::get_right(p_left));
1757 NodeTraits::set_left(p, p_left_right);
1758 if(p_left_right){
1759 NodeTraits::set_parent(p_left_right, p);
1760 }
1761 NodeTraits::set_right(p_left, p);
1762 NodeTraits::set_parent(p, p_left);
1763 }
1764
1765 // rotate p to right (with header and p's parent fixup)
1766 static void rotate_right(const node_ptr & p, const node_ptr & p_left, const node_ptr & p_parent, const node_ptr & header)
1767 {
1768 const bool p_was_left(NodeTraits::get_left(p_parent) == p);
1769 rotate_right_no_parent_fix(p, p_left);
1770 NodeTraits::set_parent(p_left, p_parent);
1771 set_child(header, new_child: p_left, new_parent: p_parent, link_left: p_was_left);
1772 }
1773
1774 private:
1775
1776 static void subtree_to_vine(node_ptr vine_tail, std::size_t &size)
1777 {
1778 //Inspired by LibAVL:
1779 //It uses a clever optimization for trees with parent pointers.
1780 //No parent pointer is updated when transforming a tree to a vine as
1781 //most of them will be overriten during compression rotations.
1782 //A final pass must be made after the rebalancing to updated those
1783 //pointers not updated by tree_to_vine + compression calls
1784 std::size_t len = 0;
1785 node_ptr remainder = NodeTraits::get_right(vine_tail);
1786 while(remainder){
1787 node_ptr tempptr = NodeTraits::get_left(remainder);
1788 if(!tempptr){ //move vine-tail down one
1789 vine_tail = remainder;
1790 remainder = NodeTraits::get_right(remainder);
1791 ++len;
1792 }
1793 else{ //rotate
1794 NodeTraits::set_left(remainder, NodeTraits::get_right(tempptr));
1795 NodeTraits::set_right(tempptr, remainder);
1796 remainder = tempptr;
1797 NodeTraits::set_right(vine_tail, tempptr);
1798 }
1799 }
1800 size = len;
1801 }
1802
1803 static void compress_subtree(node_ptr scanner, std::size_t count)
1804 {
1805 while(count--){ //compress "count" spine nodes in the tree with pseudo-root scanner
1806 node_ptr child = NodeTraits::get_right(scanner);
1807 node_ptr child_right = NodeTraits::get_right(child);
1808 NodeTraits::set_right(scanner, child_right);
1809 //Avoid setting the parent of child_right
1810 scanner = child_right;
1811 node_ptr scanner_left = NodeTraits::get_left(scanner);
1812 NodeTraits::set_right(child, scanner_left);
1813 if(scanner_left)
1814 NodeTraits::set_parent(scanner_left, child);
1815 NodeTraits::set_left(scanner, child);
1816 NodeTraits::set_parent(child, scanner);
1817 }
1818 }
1819
1820 static void vine_to_subtree(const node_ptr & super_root, std::size_t count)
1821 {
1822 const std::size_t one_szt = 1u;
1823 std::size_t leaf_nodes = count + one_szt - std::size_t(one_szt << detail::floor_log2(n: count + one_szt));
1824 compress_subtree(scanner: super_root, count: leaf_nodes); //create deepest leaves
1825 std::size_t vine_nodes = count - leaf_nodes;
1826 while(vine_nodes > 1){
1827 vine_nodes /= 2;
1828 compress_subtree(scanner: super_root, count: vine_nodes);
1829 }
1830
1831 //Update parents of nodes still in the in the original vine line
1832 //as those have not been updated by subtree_to_vine or compress_subtree
1833 for ( node_ptr q = super_root, p = NodeTraits::get_right(super_root)
1834 ; p
1835 ; q = p, p = NodeTraits::get_right(p)){
1836 NodeTraits::set_parent(p, q);
1837 }
1838 }
1839
1840 //! <b>Requires</b>: "n" must be a node inserted in a tree.
1841 //!
1842 //! <b>Effects</b>: Returns a pointer to the header node of the tree.
1843 //!
1844 //! <b>Complexity</b>: Logarithmic.
1845 //!
1846 //! <b>Throws</b>: Nothing.
1847 static node_ptr get_root(const node_ptr & node)
1848 {
1849 BOOST_INTRUSIVE_INVARIANT_ASSERT((!inited(node)));
1850 node_ptr x = NodeTraits::get_parent(node);
1851 if(x){
1852 while(!base_type::is_header(x)){
1853 x = NodeTraits::get_parent(x);
1854 }
1855 return x;
1856 }
1857 else{
1858 return node;
1859 }
1860 }
1861
1862 template <class Cloner, class Disposer>
1863 static node_ptr clone_subtree
1864 (const const_node_ptr &source_parent, const node_ptr &target_parent
1865 , Cloner cloner, Disposer disposer
1866 , node_ptr &leftmost_out, node_ptr &rightmost_out
1867 )
1868 {
1869 node_ptr target_sub_root = target_parent;
1870 node_ptr source_root = NodeTraits::get_parent(source_parent);
1871 if(!source_root){
1872 leftmost_out = rightmost_out = source_root;
1873 }
1874 else{
1875 //We'll calculate leftmost and rightmost nodes while iterating
1876 node_ptr current = source_root;
1877 node_ptr insertion_point = target_sub_root = cloner(current);
1878
1879 //We'll calculate leftmost and rightmost nodes while iterating
1880 node_ptr leftmost = target_sub_root;
1881 node_ptr rightmost = target_sub_root;
1882
1883 //First set the subroot
1884 NodeTraits::set_left(target_sub_root, node_ptr());
1885 NodeTraits::set_right(target_sub_root, node_ptr());
1886 NodeTraits::set_parent(target_sub_root, target_parent);
1887
1888 dispose_subtree_disposer<Disposer> rollback(disposer, target_sub_root);
1889 while(true) {
1890 //First clone left nodes
1891 if( NodeTraits::get_left(current) &&
1892 !NodeTraits::get_left(insertion_point)) {
1893 current = NodeTraits::get_left(current);
1894 node_ptr temp = insertion_point;
1895 //Clone and mark as leaf
1896 insertion_point = cloner(current);
1897 NodeTraits::set_left (insertion_point, node_ptr());
1898 NodeTraits::set_right (insertion_point, node_ptr());
1899 //Insert left
1900 NodeTraits::set_parent(insertion_point, temp);
1901 NodeTraits::set_left (temp, insertion_point);
1902 //Update leftmost
1903 if(rightmost == target_sub_root)
1904 leftmost = insertion_point;
1905 }
1906 //Then clone right nodes
1907 else if( NodeTraits::get_right(current) &&
1908 !NodeTraits::get_right(insertion_point)){
1909 current = NodeTraits::get_right(current);
1910 node_ptr temp = insertion_point;
1911 //Clone and mark as leaf
1912 insertion_point = cloner(current);
1913 NodeTraits::set_left (insertion_point, node_ptr());
1914 NodeTraits::set_right (insertion_point, node_ptr());
1915 //Insert right
1916 NodeTraits::set_parent(insertion_point, temp);
1917 NodeTraits::set_right (temp, insertion_point);
1918 //Update rightmost
1919 rightmost = insertion_point;
1920 }
1921 //If not, go up
1922 else if(current == source_root){
1923 break;
1924 }
1925 else{
1926 //Branch completed, go up searching more nodes to clone
1927 current = NodeTraits::get_parent(current);
1928 insertion_point = NodeTraits::get_parent(insertion_point);
1929 }
1930 }
1931 rollback.release();
1932 leftmost_out = leftmost;
1933 rightmost_out = rightmost;
1934 }
1935 return target_sub_root;
1936 }
1937
1938 template<class Disposer>
1939 static void dispose_subtree(node_ptr x, Disposer disposer)
1940 {
1941 while (x){
1942 node_ptr save(NodeTraits::get_left(x));
1943 if (save) {
1944 // Right rotation
1945 NodeTraits::set_left(x, NodeTraits::get_right(save));
1946 NodeTraits::set_right(save, x);
1947 }
1948 else {
1949 save = NodeTraits::get_right(x);
1950 init(node: x);
1951 disposer(x);
1952 }
1953 x = save;
1954 }
1955 }
1956
1957 template<class KeyType, class KeyNodePtrCompare>
1958 static node_ptr lower_bound_loop
1959 (node_ptr x, node_ptr y, const KeyType &key, KeyNodePtrCompare comp)
1960 {
1961 while(x){
1962 if(comp(x, key)){
1963 x = NodeTraits::get_right(x);
1964 }
1965 else{
1966 y = x;
1967 x = NodeTraits::get_left(x);
1968 }
1969 }
1970 return y;
1971 }
1972
1973 template<class KeyType, class KeyNodePtrCompare>
1974 static node_ptr upper_bound_loop
1975 (node_ptr x, node_ptr y, const KeyType &key, KeyNodePtrCompare comp)
1976 {
1977 while(x){
1978 if(comp(key, x)){
1979 y = x;
1980 x = NodeTraits::get_left(x);
1981 }
1982 else{
1983 x = NodeTraits::get_right(x);
1984 }
1985 }
1986 return y;
1987 }
1988
1989 template<class Checker>
1990 static void check_subtree(const const_node_ptr& node, Checker checker, typename Checker::return_type& check_return)
1991 {
1992 const_node_ptr left = NodeTraits::get_left(node);
1993 const_node_ptr right = NodeTraits::get_right(node);
1994 typename Checker::return_type check_return_left;
1995 typename Checker::return_type check_return_right;
1996 if (left)
1997 {
1998 BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_parent(left) == node);
1999 check_subtree(left, checker, check_return_left);
2000 }
2001 if (right)
2002 {
2003 BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_parent(right) == node);
2004 check_subtree(right, checker, check_return_right);
2005 }
2006 checker(node, check_return_left, check_return_right, check_return);
2007 }
2008};
2009
2010/// @cond
2011
2012template<class NodeTraits>
2013struct get_algo<BsTreeAlgorithms, NodeTraits>
2014{
2015 typedef bstree_algorithms<NodeTraits> type;
2016};
2017
2018template <class ValueTraits, class NodePtrCompare, class ExtraChecker>
2019struct get_node_checker<BsTreeAlgorithms, ValueTraits, NodePtrCompare, ExtraChecker>
2020{
2021 typedef detail::bstree_node_checker<ValueTraits, NodePtrCompare, ExtraChecker> type;
2022};
2023
2024/// @endcond
2025
2026} //namespace intrusive
2027} //namespace boost
2028
2029#include <boost/intrusive/detail/config_end.hpp>
2030
2031#endif //BOOST_INTRUSIVE_BSTREE_ALGORITHMS_HPP
2032

source code of boost/boost/intrusive/bstree_algorithms.hpp