1/*
2 This is a version (aka dlmalloc) of malloc/free/realloc written by
3 Doug Lea and released to the public domain, as explained at
4 http://creativecommons.org/publicdomain/zero/1.0/ Send questions,
5 comments, complaints, performance data, etc to dl@cs.oswego.edu
6
7* Version 2.8.6 Wed Aug 29 06:57:58 2012 Doug Lea
8 Note: There may be an updated version of this malloc obtainable at
9 ftp://gee.cs.oswego.edu/pub/misc/malloc.c
10 Check before installing!
11
12* Quickstart
13
14 This library is all in one file to simplify the most common usage:
15 ftp it, compile it (-O3), and link it into another program. All of
16 the compile-time options default to reasonable values for use on
17 most platforms. You might later want to step through various
18 compile-time and dynamic tuning options.
19
20 For convenience, an include file for code using this malloc is at:
21 ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.6.h
22 You don't really need this .h file unless you call functions not
23 defined in your system include files. The .h file contains only the
24 excerpts from this file needed for using this malloc on ANSI C/C++
25 systems, so long as you haven't changed compile-time options about
26 naming and tuning parameters. If you do, then you can create your
27 own malloc.h that does include all settings by cutting at the point
28 indicated below. Note that you may already by default be using a C
29 library containing a malloc that is based on some version of this
30 malloc (for example in linux). You might still want to use the one
31 in this file to customize settings or to avoid overheads associated
32 with library versions.
33
34* Vital statistics:
35
36 Supported pointer/size_t representation: 4 or 8 bytes
37 size_t MUST be an unsigned type of the same width as
38 pointers. (If you are using an ancient system that declares
39 size_t as a signed type, or need it to be a different width
40 than pointers, you can use a previous release of this malloc
41 (e.g. 2.7.2) supporting these.)
42
43 Alignment: 8 bytes (minimum)
44 This suffices for nearly all current machines and C compilers.
45 However, you can define MALLOC_ALIGNMENT to be wider than this
46 if necessary (up to 128bytes), at the expense of using more space.
47
48 Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
49 8 or 16 bytes (if 8byte sizes)
50 Each malloced chunk has a hidden word of overhead holding size
51 and status information, and additional cross-check word
52 if FOOTERS is defined.
53
54 Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
55 8-byte ptrs: 32 bytes (including overhead)
56
57 Even a request for zero bytes (i.e., malloc(0)) returns a
58 pointer to something of the minimum allocatable size.
59 The maximum overhead wastage (i.e., number of extra bytes
60 allocated than were requested in malloc) is less than or equal
61 to the minimum size, except for requests >= mmap_threshold that
62 are serviced via mmap(), where the worst case wastage is about
63 32 bytes plus the remainder from a system page (the minimal
64 mmap unit); typically 4096 or 8192 bytes.
65
66 Security: static-safe; optionally more or less
67 The "security" of malloc refers to the ability of malicious
68 code to accentuate the effects of errors (for example, freeing
69 space that is not currently malloc'ed or overwriting past the
70 ends of chunks) in code that calls malloc. This malloc
71 guarantees not to modify any memory locations below the base of
72 heap, i.e., static variables, even in the presence of usage
73 errors. The routines additionally detect most improper frees
74 and reallocs. All this holds as long as the static bookkeeping
75 for malloc itself is not corrupted by some other means. This
76 is only one aspect of security -- these checks do not, and
77 cannot, detect all possible programming errors.
78
79 If FOOTERS is defined nonzero, then each allocated chunk
80 carries an additional check word to verify that it was malloced
81 from its space. These check words are the same within each
82 execution of a program using malloc, but differ across
83 executions, so externally crafted fake chunks cannot be
84 freed. This improves security by rejecting frees/reallocs that
85 could corrupt heap memory, in addition to the checks preventing
86 writes to statics that are always on. This may further improve
87 security at the expense of time and space overhead. (Note that
88 FOOTERS may also be worth using with MSPACES.)
89
90 By default detected errors cause the program to abort (calling
91 "abort()"). You can override this to instead proceed past
92 errors by defining PROCEED_ON_ERROR. In this case, a bad free
93 has no effect, and a malloc that encounters a bad address
94 caused by user overwrites will ignore the bad address by
95 dropping pointers and indices to all known memory. This may
96 be appropriate for programs that should continue if at all
97 possible in the face of programming errors, although they may
98 run out of memory because dropped memory is never reclaimed.
99
100 If you don't like either of these options, you can define
101 CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
102 else. And if if you are sure that your program using malloc has
103 no errors or vulnerabilities, you can define INSECURE to 1,
104 which might (or might not) provide a small performance improvement.
105
106 It is also possible to limit the maximum total allocatable
107 space, using malloc_set_footprint_limit. This is not
108 designed as a security feature in itself (calls to set limits
109 are not screened or privileged), but may be useful as one
110 aspect of a secure implementation.
111
112 Thread-safety: NOT thread-safe unless USE_LOCKS defined non-zero
113 When USE_LOCKS is defined, each public call to malloc, free,
114 etc is surrounded with a lock. By default, this uses a plain
115 pthread mutex, win32 critical section, or a spin-lock if if
116 available for the platform and not disabled by setting
117 USE_SPIN_LOCKS=0. However, if USE_RECURSIVE_LOCKS is defined,
118 recursive versions are used instead (which are not required for
119 base functionality but may be needed in layered extensions).
120 Using a global lock is not especially fast, and can be a major
121 bottleneck. It is designed only to provide minimal protection
122 in concurrent environments, and to provide a basis for
123 extensions. If you are using malloc in a concurrent program,
124 consider instead using nedmalloc
125 (http://www.nedprod.com/programs/portable/nedmalloc/) or
126 ptmalloc (See http://www.malloc.de), which are derived from
127 versions of this malloc.
128
129 System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
130 This malloc can use unix sbrk or any emulation (invoked using
131 the CALL_MORECORE macro) and/or mmap/munmap or any emulation
132 (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
133 memory. On most unix systems, it tends to work best if both
134 MORECORE and MMAP are enabled. On Win32, it uses emulations
135 based on VirtualAlloc. It also uses common C library functions
136 like memset.
137
138 Compliance: I believe it is compliant with the Single Unix Specification
139 (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
140 others as well.
141
142* Overview of algorithms
143
144 This is not the fastest, most space-conserving, most portable, or
145 most tunable malloc ever written. However it is among the fastest
146 while also being among the most space-conserving, portable and
147 tunable. Consistent balance across these factors results in a good
148 general-purpose allocator for malloc-intensive programs.
149
150 In most ways, this malloc is a best-fit allocator. Generally, it
151 chooses the best-fitting existing chunk for a request, with ties
152 broken in approximately least-recently-used order. (This strategy
153 normally maintains low fragmentation.) However, for requests less
154 than 256bytes, it deviates from best-fit when there is not an
155 exactly fitting available chunk by preferring to use space adjacent
156 to that used for the previous small request, as well as by breaking
157 ties in approximately most-recently-used order. (These enhance
158 locality of series of small allocations.) And for very large requests
159 (>= 256Kb by default), it relies on system memory mapping
160 facilities, if supported. (This helps avoid carrying around and
161 possibly fragmenting memory used only for large chunks.)
162
163 All operations (except malloc_stats and mallinfo) have execution
164 times that are bounded by a constant factor of the number of bits in
165 a size_t, not counting any clearing in calloc or copying in realloc,
166 or actions surrounding MORECORE and MMAP that have times
167 proportional to the number of non-contiguous regions returned by
168 system allocation routines, which is often just 1. In real-time
169 applications, you can optionally suppress segment traversals using
170 NO_SEGMENT_TRAVERSAL, which assures bounded execution even when
171 system allocators return non-contiguous spaces, at the typical
172 expense of carrying around more memory and increased fragmentation.
173
174 The implementation is not very modular and seriously overuses
175 macros. Perhaps someday all C compilers will do as good a job
176 inlining modular code as can now be done by brute-force expansion,
177 but now, enough of them seem not to.
178
179 Some compilers issue a lot of warnings about code that is
180 dead/unreachable only on some platforms, and also about intentional
181 uses of negation on unsigned types. All known cases of each can be
182 ignored.
183
184 For a longer but out of date high-level description, see
185 http://gee.cs.oswego.edu/dl/html/malloc.html
186
187* MSPACES
188 If MSPACES is defined, then in addition to malloc, free, etc.,
189 this file also defines mspace_malloc, mspace_free, etc. These
190 are versions of malloc routines that take an "mspace" argument
191 obtained using create_mspace, to control all internal bookkeeping.
192 If ONLY_MSPACES is defined, only these versions are compiled.
193 So if you would like to use this allocator for only some allocations,
194 and your system malloc for others, you can compile with
195 ONLY_MSPACES and then do something like...
196 static mspace mymspace = create_mspace(0,0); // for example
197 #define mymalloc(bytes) mspace_malloc(mymspace, bytes)
198
199 (Note: If you only need one instance of an mspace, you can instead
200 use "USE_DL_PREFIX" to relabel the global malloc.)
201
202 You can similarly create thread-local allocators by storing
203 mspaces as thread-locals. For example:
204 static __thread mspace tlms = 0;
205 void* tlmalloc(size_t bytes) {
206 if (tlms == 0) tlms = create_mspace(0, 0);
207 return mspace_malloc(tlms, bytes);
208 }
209 void tlfree(void* mem) { mspace_free(tlms, mem); }
210
211 Unless FOOTERS is defined, each mspace is completely independent.
212 You cannot allocate from one and free to another (although
213 conformance is only weakly checked, so usage errors are not always
214 caught). If FOOTERS is defined, then each chunk carries around a tag
215 indicating its originating mspace, and frees are directed to their
216 originating spaces. Normally, this requires use of locks.
217
218 ------------------------- Compile-time options ---------------------------
219
220Be careful in setting #define values for numerical constants of type
221size_t. On some systems, literal values are not automatically extended
222to size_t precision unless they are explicitly casted. You can also
223use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below.
224
225WIN32 default: defined if _WIN32 defined
226 Defining WIN32 sets up defaults for MS environment and compilers.
227 Otherwise defaults are for unix. Beware that there seem to be some
228 cases where this malloc might not be a pure drop-in replacement for
229 Win32 malloc: Random-looking failures from Win32 GDI API's (eg;
230 SetDIBits()) may be due to bugs in some video driver implementations
231 when pixel buffers are malloc()ed, and the region spans more than
232 one VirtualAlloc()ed region. Because dlmalloc uses a small (64Kb)
233 default granularity, pixel buffers may straddle virtual allocation
234 regions more often than when using the Microsoft allocator. You can
235 avoid this by using VirtualAlloc() and VirtualFree() for all pixel
236 buffers rather than using malloc(). If this is not possible,
237 recompile this malloc with a larger DEFAULT_GRANULARITY. Note:
238 in cases where MSC and gcc (cygwin) are known to differ on WIN32,
239 conditions use _MSC_VER to distinguish them.
240
241DLMALLOC_EXPORT default: extern
242 Defines how public APIs are declared. If you want to export via a
243 Windows DLL, you might define this as
244 #define DLMALLOC_EXPORT extern __declspec(dllexport)
245 If you want a POSIX ELF shared object, you might use
246 #define DLMALLOC_EXPORT extern __attribute__((visibility("default")))
247
248MALLOC_ALIGNMENT default: (size_t)(2 * sizeof(void *))
249 Controls the minimum alignment for malloc'ed chunks. It must be a
250 power of two and at least 8, even on machines for which smaller
251 alignments would suffice. It may be defined as larger than this
252 though. Note however that code and data structures are optimized for
253 the case of 8-byte alignment.
254
255MSPACES default: 0 (false)
256 If true, compile in support for independent allocation spaces.
257 This is only supported if HAVE_MMAP is true.
258
259ONLY_MSPACES default: 0 (false)
260 If true, only compile in mspace versions, not regular versions.
261
262USE_LOCKS default: 0 (false)
263 Causes each call to each public routine to be surrounded with
264 pthread or WIN32 mutex lock/unlock. (If set true, this can be
265 overridden on a per-mspace basis for mspace versions.) If set to a
266 non-zero value other than 1, locks are used, but their
267 implementation is left out, so lock functions must be supplied manually,
268 as described below.
269
270USE_SPIN_LOCKS default: 1 iff USE_LOCKS and spin locks available
271 If true, uses custom spin locks for locking. This is currently
272 supported only gcc >= 4.1, older gccs on x86 platforms, and recent
273 MS compilers. Otherwise, posix locks or win32 critical sections are
274 used.
275
276USE_RECURSIVE_LOCKS default: not defined
277 If defined nonzero, uses recursive (aka reentrant) locks, otherwise
278 uses plain mutexes. This is not required for malloc proper, but may
279 be needed for layered allocators such as nedmalloc.
280
281LOCK_AT_FORK default: not defined
282 If defined nonzero, performs pthread_atfork upon initialization
283 to initialize child lock while holding parent lock. The implementation
284 assumes that pthread locks (not custom locks) are being used. In other
285 cases, you may need to customize the implementation.
286
287FOOTERS default: 0
288 If true, provide extra checking and dispatching by placing
289 information in the footers of allocated chunks. This adds
290 space and time overhead.
291
292INSECURE default: 0
293 If true, omit checks for usage errors and heap space overwrites.
294
295USE_DL_PREFIX default: NOT defined
296 Causes compiler to prefix all public routines with the string 'dl'.
297 This can be useful when you only want to use this malloc in one part
298 of a program, using your regular system malloc elsewhere.
299
300MALLOC_INSPECT_ALL default: NOT defined
301 If defined, compiles malloc_inspect_all and mspace_inspect_all, that
302 perform traversal of all heap space. Unless access to these
303 functions is otherwise restricted, you probably do not want to
304 include them in secure implementations.
305
306ABORT default: defined as abort()
307 Defines how to abort on failed checks. On most systems, a failed
308 check cannot die with an "assert" or even print an informative
309 message, because the underlying print routines in turn call malloc,
310 which will fail again. Generally, the best policy is to simply call
311 abort(). It's not very useful to do more than this because many
312 errors due to overwriting will show up as address faults (null, odd
313 addresses etc) rather than malloc-triggered checks, so will also
314 abort. Also, most compilers know that abort() does not return, so
315 can better optimize code conditionally calling it.
316
317PROCEED_ON_ERROR default: defined as 0 (false)
318 Controls whether detected bad addresses cause them to bypassed
319 rather than aborting. If set, detected bad arguments to free and
320 realloc are ignored. And all bookkeeping information is zeroed out
321 upon a detected overwrite of freed heap space, thus losing the
322 ability to ever return it from malloc again, but enabling the
323 application to proceed. If PROCEED_ON_ERROR is defined, the
324 static variable malloc_corruption_error_count is compiled in
325 and can be examined to see if errors have occurred. This option
326 generates slower code than the default abort policy.
327
328DEBUG default: NOT defined
329 The DEBUG setting is mainly intended for people trying to modify
330 this code or diagnose problems when porting to new platforms.
331 However, it may also be able to better isolate user errors than just
332 using runtime checks. The assertions in the check routines spell
333 out in more detail the assumptions and invariants underlying the
334 algorithms. The checking is fairly extensive, and will slow down
335 execution noticeably. Calling malloc_stats or mallinfo with DEBUG
336 set will attempt to check every non-mmapped allocated and free chunk
337 in the course of computing the summaries.
338
339ABORT_ON_ASSERT_FAILURE default: defined as 1 (true)
340 Debugging assertion failures can be nearly impossible if your
341 version of the assert macro causes malloc to be called, which will
342 lead to a cascade of further failures, blowing the runtime stack.
343 ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
344 which will usually make debugging easier.
345
346MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32
347 The action to take before "return 0" when malloc fails to be able to
348 return memory because there is none available.
349
350HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES
351 True if this system supports sbrk or an emulation of it.
352
353MORECORE default: sbrk
354 The name of the sbrk-style system routine to call to obtain more
355 memory. See below for guidance on writing custom MORECORE
356 functions. The type of the argument to sbrk/MORECORE varies across
357 systems. It cannot be size_t, because it supports negative
358 arguments, so it is normally the signed type of the same width as
359 size_t (sometimes declared as "intptr_t"). It doesn't much matter
360 though. Internally, we only call it with arguments less than half
361 the max value of a size_t, which should work across all reasonable
362 possibilities, although sometimes generating compiler warnings.
363
364MORECORE_CONTIGUOUS default: 1 (true) if HAVE_MORECORE
365 If true, take advantage of fact that consecutive calls to MORECORE
366 with positive arguments always return contiguous increasing
367 addresses. This is true of unix sbrk. It does not hurt too much to
368 set it true anyway, since malloc copes with non-contiguities.
369 Setting it false when definitely non-contiguous saves time
370 and possibly wasted space it would take to discover this though.
371
372MORECORE_CANNOT_TRIM default: NOT defined
373 True if MORECORE cannot release space back to the system when given
374 negative arguments. This is generally necessary only if you are
375 using a hand-crafted MORECORE function that cannot handle negative
376 arguments.
377
378NO_SEGMENT_TRAVERSAL default: 0
379 If non-zero, suppresses traversals of memory segments
380 returned by either MORECORE or CALL_MMAP. This disables
381 merging of segments that are contiguous, and selectively
382 releasing them to the OS if unused, but bounds execution times.
383
384HAVE_MMAP default: 1 (true)
385 True if this system supports mmap or an emulation of it. If so, and
386 HAVE_MORECORE is not true, MMAP is used for all system
387 allocation. If set and HAVE_MORECORE is true as well, MMAP is
388 primarily used to directly allocate very large blocks. It is also
389 used as a backup strategy in cases where MORECORE fails to provide
390 space from system. Note: A single call to MUNMAP is assumed to be
391 able to unmap memory that may have be allocated using multiple calls
392 to MMAP, so long as they are adjacent.
393
394HAVE_MREMAP default: 1 on linux, else 0
395 If true realloc() uses mremap() to re-allocate large blocks and
396 extend or shrink allocation spaces.
397
398MMAP_CLEARS default: 1 except on WINCE.
399 True if mmap clears memory so calloc doesn't need to. This is true
400 for standard unix mmap using /dev/zero and on WIN32 except for WINCE.
401
402USE_BUILTIN_FFS default: 0 (i.e., not used)
403 Causes malloc to use the builtin ffs() function to compute indices.
404 Some compilers may recognize and intrinsify ffs to be faster than the
405 supplied C version. Also, the case of x86 using gcc is special-cased
406 to an asm instruction, so is already as fast as it can be, and so
407 this setting has no effect. Similarly for Win32 under recent MS compilers.
408 (On most x86s, the asm version is only slightly faster than the C version.)
409
410malloc_getpagesize default: derive from system includes, or 4096.
411 The system page size. To the extent possible, this malloc manages
412 memory from the system in page-size units. This may be (and
413 usually is) a function rather than a constant. This is ignored
414 if WIN32, where page size is determined using getSystemInfo during
415 initialization.
416
417USE_DEV_RANDOM default: 0 (i.e., not used)
418 Causes malloc to use /dev/random to initialize secure magic seed for
419 stamping footers. Otherwise, the current time is used.
420
421NO_MALLINFO default: 0
422 If defined, don't compile "mallinfo". This can be a simple way
423 of dealing with mismatches between system declarations and
424 those in this file.
425
426MALLINFO_FIELD_TYPE default: size_t
427 The type of the fields in the mallinfo struct. This was originally
428 defined as "int" in SVID etc, but is more usefully defined as
429 size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set
430
431NO_MALLOC_STATS default: 0
432 If defined, don't compile "malloc_stats". This avoids calls to
433 fprintf and bringing in stdio dependencies you might not want.
434
435REALLOC_ZERO_BYTES_FREES default: not defined
436 This should be set if a call to realloc with zero bytes should
437 be the same as a call to free. Some people think it should. Otherwise,
438 since this malloc returns a unique pointer for malloc(0), so does
439 realloc(p, 0).
440
441LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
442LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H
443LACKS_STDLIB_H LACKS_SCHED_H LACKS_TIME_H default: NOT defined unless on WIN32
444 Define these if your system does not have these header files.
445 You might need to manually insert some of the declarations they provide.
446
447DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS,
448 system_info.dwAllocationGranularity in WIN32,
449 otherwise 64K.
450 Also settable using mallopt(M_GRANULARITY, x)
451 The unit for allocating and deallocating memory from the system. On
452 most systems with contiguous MORECORE, there is no reason to
453 make this more than a page. However, systems with MMAP tend to
454 either require or encourage larger granularities. You can increase
455 this value to prevent system allocation functions to be called so
456 often, especially if they are slow. The value must be at least one
457 page and must be a power of two. Setting to 0 causes initialization
458 to either page size or win32 region size. (Note: In previous
459 versions of malloc, the equivalent of this option was called
460 "TOP_PAD")
461
462DEFAULT_TRIM_THRESHOLD default: 2MB
463 Also settable using mallopt(M_TRIM_THRESHOLD, x)
464 The maximum amount of unused top-most memory to keep before
465 releasing via malloc_trim in free(). Automatic trimming is mainly
466 useful in long-lived programs using contiguous MORECORE. Because
467 trimming via sbrk can be slow on some systems, and can sometimes be
468 wasteful (in cases where programs immediately afterward allocate
469 more large chunks) the value should be high enough so that your
470 overall system performance would improve by releasing this much
471 memory. As a rough guide, you might set to a value close to the
472 average size of a process (program) running on your system.
473 Releasing this much memory would allow such a process to run in
474 memory. Generally, it is worth tuning trim thresholds when a
475 program undergoes phases where several large chunks are allocated
476 and released in ways that can reuse each other's storage, perhaps
477 mixed with phases where there are no such chunks at all. The trim
478 value must be greater than page size to have any useful effect. To
479 disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
480 some people use of mallocing a huge space and then freeing it at
481 program startup, in an attempt to reserve system memory, doesn't
482 have the intended effect under automatic trimming, since that memory
483 will immediately be returned to the system.
484
485DEFAULT_MMAP_THRESHOLD default: 256K
486 Also settable using mallopt(M_MMAP_THRESHOLD, x)
487 The request size threshold for using MMAP to directly service a
488 request. Requests of at least this size that cannot be allocated
489 using already-existing space will be serviced via mmap. (If enough
490 normal freed space already exists it is used instead.) Using mmap
491 segregates relatively large chunks of memory so that they can be
492 individually obtained and released from the host system. A request
493 serviced through mmap is never reused by any other request (at least
494 not directly; the system may just so happen to remap successive
495 requests to the same locations). Segregating space in this way has
496 the benefits that: Mmapped space can always be individually released
497 back to the system, which helps keep the system level memory demands
498 of a long-lived program low. Also, mapped memory doesn't become
499 `locked' between other chunks, as can happen with normally allocated
500 chunks, which means that even trimming via malloc_trim would not
501 release them. However, it has the disadvantage that the space
502 cannot be reclaimed, consolidated, and then used to service later
503 requests, as happens with normal chunks. The advantages of mmap
504 nearly always outweigh disadvantages for "large" chunks, but the
505 value of "large" may vary across systems. The default is an
506 empirically derived value that works well in most systems. You can
507 disable mmap by setting to MAX_SIZE_T.
508
509MAX_RELEASE_CHECK_RATE default: 4095 unless not HAVE_MMAP
510 The number of consolidated frees between checks to release
511 unused segments when freeing. When using non-contiguous segments,
512 especially with multiple mspaces, checking only for topmost space
513 doesn't always suffice to trigger trimming. To compensate for this,
514 free() will, with a period of MAX_RELEASE_CHECK_RATE (or the
515 current number of segments, if greater) try to release unused
516 segments to the OS when freeing chunks that result in
517 consolidation. The best value for this parameter is a compromise
518 between slowing down frees with relatively costly checks that
519 rarely trigger versus holding on to unused memory. To effectively
520 disable, set to MAX_SIZE_T. This may lead to a very slight speed
521 improvement at the expense of carrying around more memory.
522*/
523
524/* Version identifier to allow people to support multiple versions */
525#ifndef DLMALLOC_VERSION
526#define DLMALLOC_VERSION 20806
527#endif /* DLMALLOC_VERSION */
528
529#ifndef DLMALLOC_EXPORT
530#define DLMALLOC_EXPORT extern
531#endif
532
533#ifndef WIN32
534#ifdef _WIN32
535#define WIN32 1
536#endif /* _WIN32 */
537#ifdef _WIN32_WCE
538#define LACKS_FCNTL_H
539#define WIN32 1
540#endif /* _WIN32_WCE */
541#endif /* WIN32 */
542#ifdef WIN32
543#define WIN32_LEAN_AND_MEAN
544#include <windows.h>
545#include <tchar.h>
546#define HAVE_MMAP 1
547#define HAVE_MORECORE 0
548#define LACKS_UNISTD_H
549#define LACKS_SYS_PARAM_H
550#define LACKS_SYS_MMAN_H
551#define LACKS_STRING_H
552#define LACKS_STRINGS_H
553#define LACKS_SYS_TYPES_H
554#define LACKS_ERRNO_H
555#define LACKS_SCHED_H
556#ifndef MALLOC_FAILURE_ACTION
557#define MALLOC_FAILURE_ACTION
558#endif /* MALLOC_FAILURE_ACTION */
559#ifndef MMAP_CLEARS
560#ifdef _WIN32_WCE /* WINCE reportedly does not clear */
561#define MMAP_CLEARS 0
562#else
563#define MMAP_CLEARS 1
564#endif /* _WIN32_WCE */
565#endif /*MMAP_CLEARS */
566#endif /* WIN32 */
567
568#if defined(DARWIN) || defined(_DARWIN)
569/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
570#ifndef HAVE_MORECORE
571#define HAVE_MORECORE 0
572#define HAVE_MMAP 1
573/* OSX allocators provide 16 byte alignment */
574#ifndef MALLOC_ALIGNMENT
575#define MALLOC_ALIGNMENT ((size_t)16U)
576#endif
577#endif /* HAVE_MORECORE */
578#endif /* DARWIN */
579
580#ifndef LACKS_SYS_TYPES_H
581#include <sys/types.h> /* For size_t */
582#endif /* LACKS_SYS_TYPES_H */
583
584/* The maximum possible size_t value has all bits set */
585#define MAX_SIZE_T (~(size_t)0)
586
587#ifndef USE_LOCKS /* ensure true if spin or recursive locks set */
588#define USE_LOCKS ((defined(USE_SPIN_LOCKS) && USE_SPIN_LOCKS != 0) || \
589 (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0))
590#endif /* USE_LOCKS */
591
592#if USE_LOCKS /* Spin locks for gcc >= 4.1, older gcc on x86, MSC >= 1310 */
593#if ((defined(__GNUC__) && \
594 ((__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1)) || \
595 defined(__i386__) || defined(__x86_64__))) || \
596 (defined(_MSC_VER) && _MSC_VER>=1310))
597#ifndef USE_SPIN_LOCKS
598#define USE_SPIN_LOCKS 1
599#endif /* USE_SPIN_LOCKS */
600#elif USE_SPIN_LOCKS
601#error "USE_SPIN_LOCKS defined without implementation"
602#endif /* ... locks available... */
603#elif !defined(USE_SPIN_LOCKS)
604#define USE_SPIN_LOCKS 0
605#endif /* USE_LOCKS */
606
607#ifndef ONLY_MSPACES
608#define ONLY_MSPACES 0
609#endif /* ONLY_MSPACES */
610#ifndef MSPACES
611#if ONLY_MSPACES
612#define MSPACES 1
613#else /* ONLY_MSPACES */
614#define MSPACES 0
615#endif /* ONLY_MSPACES */
616#endif /* MSPACES */
617#ifndef MALLOC_ALIGNMENT
618#define MALLOC_ALIGNMENT ((size_t)(2 * sizeof(void *)))
619#endif /* MALLOC_ALIGNMENT */
620#ifndef FOOTERS
621#define FOOTERS 0
622#endif /* FOOTERS */
623#ifndef ABORT
624#define ABORT abort()
625#endif /* ABORT */
626#ifndef ABORT_ON_ASSERT_FAILURE
627#define ABORT_ON_ASSERT_FAILURE 1
628#endif /* ABORT_ON_ASSERT_FAILURE */
629#ifndef PROCEED_ON_ERROR
630#define PROCEED_ON_ERROR 0
631#endif /* PROCEED_ON_ERROR */
632
633#ifndef INSECURE
634#define INSECURE 0
635#endif /* INSECURE */
636#ifndef MALLOC_INSPECT_ALL
637#define MALLOC_INSPECT_ALL 0
638#endif /* MALLOC_INSPECT_ALL */
639#ifndef HAVE_MMAP
640#define HAVE_MMAP 1
641#endif /* HAVE_MMAP */
642#ifndef MMAP_CLEARS
643#define MMAP_CLEARS 1
644#endif /* MMAP_CLEARS */
645#ifndef HAVE_MREMAP
646#ifdef linux
647#define HAVE_MREMAP 1
648#define _GNU_SOURCE /* Turns on mremap() definition */
649#else /* linux */
650#define HAVE_MREMAP 0
651#endif /* linux */
652#endif /* HAVE_MREMAP */
653#ifndef MALLOC_FAILURE_ACTION
654#define MALLOC_FAILURE_ACTION errno = ENOMEM;
655#endif /* MALLOC_FAILURE_ACTION */
656#ifndef HAVE_MORECORE
657#if ONLY_MSPACES
658#define HAVE_MORECORE 0
659#else /* ONLY_MSPACES */
660#define HAVE_MORECORE 1
661#endif /* ONLY_MSPACES */
662#endif /* HAVE_MORECORE */
663#if !HAVE_MORECORE
664#define MORECORE_CONTIGUOUS 0
665#else /* !HAVE_MORECORE */
666#define MORECORE_DEFAULT sbrk
667#ifndef MORECORE_CONTIGUOUS
668#define MORECORE_CONTIGUOUS 1
669#endif /* MORECORE_CONTIGUOUS */
670#endif /* HAVE_MORECORE */
671#ifndef DEFAULT_GRANULARITY
672#if (MORECORE_CONTIGUOUS || defined(WIN32))
673#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */
674#else /* MORECORE_CONTIGUOUS */
675#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
676#endif /* MORECORE_CONTIGUOUS */
677#endif /* DEFAULT_GRANULARITY */
678#ifndef DEFAULT_TRIM_THRESHOLD
679#ifndef MORECORE_CANNOT_TRIM
680#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
681#else /* MORECORE_CANNOT_TRIM */
682#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
683#endif /* MORECORE_CANNOT_TRIM */
684#endif /* DEFAULT_TRIM_THRESHOLD */
685#ifndef DEFAULT_MMAP_THRESHOLD
686#if HAVE_MMAP
687#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
688#else /* HAVE_MMAP */
689#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
690#endif /* HAVE_MMAP */
691#endif /* DEFAULT_MMAP_THRESHOLD */
692#ifndef MAX_RELEASE_CHECK_RATE
693#if HAVE_MMAP
694#define MAX_RELEASE_CHECK_RATE 4095
695#else
696#define MAX_RELEASE_CHECK_RATE MAX_SIZE_T
697#endif /* HAVE_MMAP */
698#endif /* MAX_RELEASE_CHECK_RATE */
699#ifndef USE_BUILTIN_FFS
700#define USE_BUILTIN_FFS 0
701#endif /* USE_BUILTIN_FFS */
702#ifndef USE_DEV_RANDOM
703#define USE_DEV_RANDOM 0
704#endif /* USE_DEV_RANDOM */
705#ifndef NO_MALLINFO
706#define NO_MALLINFO 0
707#endif /* NO_MALLINFO */
708#ifndef MALLINFO_FIELD_TYPE
709#define MALLINFO_FIELD_TYPE size_t
710#endif /* MALLINFO_FIELD_TYPE */
711#ifndef NO_MALLOC_STATS
712#define NO_MALLOC_STATS 0
713#endif /* NO_MALLOC_STATS */
714#ifndef NO_SEGMENT_TRAVERSAL
715#define NO_SEGMENT_TRAVERSAL 0
716#endif /* NO_SEGMENT_TRAVERSAL */
717
718/*
719 mallopt tuning options. SVID/XPG defines four standard parameter
720 numbers for mallopt, normally defined in malloc.h. None of these
721 are used in this malloc, so setting them has no effect. But this
722 malloc does support the following options.
723*/
724
725#define M_TRIM_THRESHOLD (-1)
726#define M_GRANULARITY (-2)
727#define M_MMAP_THRESHOLD (-3)
728
729/* ------------------------ Mallinfo declarations ------------------------ */
730
731#if !NO_MALLINFO
732/*
733 This version of malloc supports the standard SVID/XPG mallinfo
734 routine that returns a struct containing usage properties and
735 statistics. It should work on any system that has a
736 /usr/include/malloc.h defining struct mallinfo. The main
737 declaration needed is the mallinfo struct that is returned (by-copy)
738 by mallinfo(). The malloinfo struct contains a bunch of fields that
739 are not even meaningful in this version of malloc. These fields are
740 are instead filled by mallinfo() with other numbers that might be of
741 interest.
742
743 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
744 /usr/include/malloc.h file that includes a declaration of struct
745 mallinfo. If so, it is included; else a compliant version is
746 declared below. These must be precisely the same for mallinfo() to
747 work. The original SVID version of this struct, defined on most
748 systems with mallinfo, declares all fields as ints. But some others
749 define as unsigned long. If your system defines the fields using a
750 type of different width than listed here, you MUST #include your
751 system version and #define HAVE_USR_INCLUDE_MALLOC_H.
752*/
753
754/* #define HAVE_USR_INCLUDE_MALLOC_H */
755
756#ifdef HAVE_USR_INCLUDE_MALLOC_H
757#include "/usr/include/malloc.h"
758#else /* HAVE_USR_INCLUDE_MALLOC_H */
759#ifndef STRUCT_MALLINFO_DECLARED
760/* HP-UX (and others?) redefines mallinfo unless _STRUCT_MALLINFO is defined */
761#define _STRUCT_MALLINFO
762#define STRUCT_MALLINFO_DECLARED 1
763struct mallinfo {
764 MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */
765 MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */
766 MALLINFO_FIELD_TYPE smblks; /* always 0 */
767 MALLINFO_FIELD_TYPE hblks; /* always 0 */
768 MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */
769 MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */
770 MALLINFO_FIELD_TYPE fsmblks; /* always 0 */
771 MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
772 MALLINFO_FIELD_TYPE fordblks; /* total free space */
773 MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
774};
775#endif /* STRUCT_MALLINFO_DECLARED */
776#endif /* HAVE_USR_INCLUDE_MALLOC_H */
777#endif /* NO_MALLINFO */
778
779/*
780 Try to persuade compilers to inline. The most critical functions for
781 inlining are defined as macros, so these aren't used for them.
782*/
783
784#ifndef FORCEINLINE
785 #if defined(__GNUC__)
786#define FORCEINLINE __inline __attribute__ ((always_inline))
787 #elif defined(_MSC_VER)
788 #define FORCEINLINE __forceinline
789 #endif
790#endif
791#ifndef NOINLINE
792 #if defined(__GNUC__)
793 #define NOINLINE __attribute__ ((noinline))
794 #elif defined(_MSC_VER)
795 #define NOINLINE __declspec(noinline)
796 #else
797 #define NOINLINE
798 #endif
799#endif
800
801#ifdef __cplusplus
802extern "C" {
803#ifndef FORCEINLINE
804 #define FORCEINLINE inline
805#endif
806#endif /* __cplusplus */
807#ifndef FORCEINLINE
808 #define FORCEINLINE
809#endif
810
811#if !ONLY_MSPACES
812
813/* ------------------- Declarations of public routines ------------------- */
814
815#ifndef USE_DL_PREFIX
816#define dlcalloc calloc
817#define dlfree free
818#define dlmalloc malloc
819#define dlmemalign memalign
820#define dlposix_memalign posix_memalign
821#define dlrealloc realloc
822#define dlrealloc_in_place realloc_in_place
823#define dlvalloc valloc
824#define dlpvalloc pvalloc
825#define dlmallinfo mallinfo
826#define dlmallopt mallopt
827#define dlmalloc_trim malloc_trim
828#define dlmalloc_stats malloc_stats
829#define dlmalloc_usable_size malloc_usable_size
830#define dlmalloc_footprint malloc_footprint
831#define dlmalloc_max_footprint malloc_max_footprint
832#define dlmalloc_footprint_limit malloc_footprint_limit
833#define dlmalloc_set_footprint_limit malloc_set_footprint_limit
834#define dlmalloc_inspect_all malloc_inspect_all
835#define dlindependent_calloc independent_calloc
836#define dlindependent_comalloc independent_comalloc
837#define dlbulk_free bulk_free
838#endif /* USE_DL_PREFIX */
839
840/*
841 malloc(size_t n)
842 Returns a pointer to a newly allocated chunk of at least n bytes, or
843 null if no space is available, in which case errno is set to ENOMEM
844 on ANSI C systems.
845
846 If n is zero, malloc returns a minimum-sized chunk. (The minimum
847 size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
848 systems.) Note that size_t is an unsigned type, so calls with
849 arguments that would be negative if signed are interpreted as
850 requests for huge amounts of space, which will often fail. The
851 maximum supported value of n differs across systems, but is in all
852 cases less than the maximum representable value of a size_t.
853*/
854DLMALLOC_EXPORT void* dlmalloc(size_t);
855
856/*
857 free(void* p)
858 Releases the chunk of memory pointed to by p, that had been previously
859 allocated using malloc or a related routine such as realloc.
860 It has no effect if p is null. If p was not malloced or already
861 freed, free(p) will by default cause the current program to abort.
862*/
863DLMALLOC_EXPORT void dlfree(void*);
864
865/*
866 calloc(size_t n_elements, size_t element_size);
867 Returns a pointer to n_elements * element_size bytes, with all locations
868 set to zero.
869*/
870DLMALLOC_EXPORT void* dlcalloc(size_t, size_t);
871
872/*
873 realloc(void* p, size_t n)
874 Returns a pointer to a chunk of size n that contains the same data
875 as does chunk p up to the minimum of (n, p's size) bytes, or null
876 if no space is available.
877
878 The returned pointer may or may not be the same as p. The algorithm
879 prefers extending p in most cases when possible, otherwise it
880 employs the equivalent of a malloc-copy-free sequence.
881
882 If p is null, realloc is equivalent to malloc.
883
884 If space is not available, realloc returns null, errno is set (if on
885 ANSI) and p is NOT freed.
886
887 if n is for fewer bytes than already held by p, the newly unused
888 space is lopped off and freed if possible. realloc with a size
889 argument of zero (re)allocates a minimum-sized chunk.
890
891 The old unix realloc convention of allowing the last-free'd chunk
892 to be used as an argument to realloc is not supported.
893*/
894DLMALLOC_EXPORT void* dlrealloc(void*, size_t);
895
896/*
897 realloc_in_place(void* p, size_t n)
898 Resizes the space allocated for p to size n, only if this can be
899 done without moving p (i.e., only if there is adjacent space
900 available if n is greater than p's current allocated size, or n is
901 less than or equal to p's size). This may be used instead of plain
902 realloc if an alternative allocation strategy is needed upon failure
903 to expand space; for example, reallocation of a buffer that must be
904 memory-aligned or cleared. You can use realloc_in_place to trigger
905 these alternatives only when needed.
906
907 Returns p if successful; otherwise null.
908*/
909DLMALLOC_EXPORT void* dlrealloc_in_place(void*, size_t);
910
911/*
912 memalign(size_t alignment, size_t n);
913 Returns a pointer to a newly allocated chunk of n bytes, aligned
914 in accord with the alignment argument.
915
916 The alignment argument should be a power of two. If the argument is
917 not a power of two, the nearest greater power is used.
918 8-byte alignment is guaranteed by normal malloc calls, so don't
919 bother calling memalign with an argument of 8 or less.
920
921 Overreliance on memalign is a sure way to fragment space.
922*/
923DLMALLOC_EXPORT void* dlmemalign(size_t, size_t);
924
925/*
926 int posix_memalign(void** pp, size_t alignment, size_t n);
927 Allocates a chunk of n bytes, aligned in accord with the alignment
928 argument. Differs from memalign only in that it (1) assigns the
929 allocated memory to *pp rather than returning it, (2) fails and
930 returns EINVAL if the alignment is not a power of two (3) fails and
931 returns ENOMEM if memory cannot be allocated.
932*/
933DLMALLOC_EXPORT int dlposix_memalign(void**, size_t, size_t);
934
935/*
936 valloc(size_t n);
937 Equivalent to memalign(pagesize, n), where pagesize is the page
938 size of the system. If the pagesize is unknown, 4096 is used.
939*/
940DLMALLOC_EXPORT void* dlvalloc(size_t);
941
942/*
943 mallopt(int parameter_number, int parameter_value)
944 Sets tunable parameters The format is to provide a
945 (parameter-number, parameter-value) pair. mallopt then sets the
946 corresponding parameter to the argument value if it can (i.e., so
947 long as the value is meaningful), and returns 1 if successful else
948 0. To workaround the fact that mallopt is specified to use int,
949 not size_t parameters, the value -1 is specially treated as the
950 maximum unsigned size_t value.
951
952 SVID/XPG/ANSI defines four standard param numbers for mallopt,
953 normally defined in malloc.h. None of these are use in this malloc,
954 so setting them has no effect. But this malloc also supports other
955 options in mallopt. See below for details. Briefly, supported
956 parameters are as follows (listed defaults are for "typical"
957 configurations).
958
959 Symbol param # default allowed param values
960 M_TRIM_THRESHOLD -1 2*1024*1024 any (-1 disables)
961 M_GRANULARITY -2 page size any power of 2 >= page size
962 M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support)
963*/
964DLMALLOC_EXPORT int dlmallopt(int, int);
965
966/*
967 malloc_footprint();
968 Returns the number of bytes obtained from the system. The total
969 number of bytes allocated by malloc, realloc etc., is less than this
970 value. Unlike mallinfo, this function returns only a precomputed
971 result, so can be called frequently to monitor memory consumption.
972 Even if locks are otherwise defined, this function does not use them,
973 so results might not be up to date.
974*/
975DLMALLOC_EXPORT size_t dlmalloc_footprint(void);
976
977/*
978 malloc_max_footprint();
979 Returns the maximum number of bytes obtained from the system. This
980 value will be greater than current footprint if deallocated space
981 has been reclaimed by the system. The peak number of bytes allocated
982 by malloc, realloc etc., is less than this value. Unlike mallinfo,
983 this function returns only a precomputed result, so can be called
984 frequently to monitor memory consumption. Even if locks are
985 otherwise defined, this function does not use them, so results might
986 not be up to date.
987*/
988DLMALLOC_EXPORT size_t dlmalloc_max_footprint(void);
989
990/*
991 malloc_footprint_limit();
992 Returns the number of bytes that the heap is allowed to obtain from
993 the system, returning the last value returned by
994 malloc_set_footprint_limit, or the maximum size_t value if
995 never set. The returned value reflects a permission. There is no
996 guarantee that this number of bytes can actually be obtained from
997 the system.
998*/
999DLMALLOC_EXPORT size_t dlmalloc_footprint_limit();
1000
1001/*
1002 malloc_set_footprint_limit();
1003 Sets the maximum number of bytes to obtain from the system, causing
1004 failure returns from malloc and related functions upon attempts to
1005 exceed this value. The argument value may be subject to page
1006 rounding to an enforceable limit; this actual value is returned.
1007 Using an argument of the maximum possible size_t effectively
1008 disables checks. If the argument is less than or equal to the
1009 current malloc_footprint, then all future allocations that require
1010 additional system memory will fail. However, invocation cannot
1011 retroactively deallocate existing used memory.
1012*/
1013DLMALLOC_EXPORT size_t dlmalloc_set_footprint_limit(size_t bytes);
1014
1015#if MALLOC_INSPECT_ALL
1016/*
1017 malloc_inspect_all(void(*handler)(void *start,
1018 void *end,
1019 size_t used_bytes,
1020 void* callback_arg),
1021 void* arg);
1022 Traverses the heap and calls the given handler for each managed
1023 region, skipping all bytes that are (or may be) used for bookkeeping
1024 purposes. Traversal does not include include chunks that have been
1025 directly memory mapped. Each reported region begins at the start
1026 address, and continues up to but not including the end address. The
1027 first used_bytes of the region contain allocated data. If
1028 used_bytes is zero, the region is unallocated. The handler is
1029 invoked with the given callback argument. If locks are defined, they
1030 are held during the entire traversal. It is a bad idea to invoke
1031 other malloc functions from within the handler.
1032
1033 For example, to count the number of in-use chunks with size greater
1034 than 1000, you could write:
1035 static int count = 0;
1036 void count_chunks(void* start, void* end, size_t used, void* arg) {
1037 if (used >= 1000) ++count;
1038 }
1039 then:
1040 malloc_inspect_all(count_chunks, NULL);
1041
1042 malloc_inspect_all is compiled only if MALLOC_INSPECT_ALL is defined.
1043*/
1044DLMALLOC_EXPORT void dlmalloc_inspect_all(void(*handler)(void*, void *, size_t, void*),
1045 void* arg);
1046
1047#endif /* MALLOC_INSPECT_ALL */
1048
1049#if !NO_MALLINFO
1050/*
1051 mallinfo()
1052 Returns (by copy) a struct containing various summary statistics:
1053
1054 arena: current total non-mmapped bytes allocated from system
1055 ordblks: the number of free chunks
1056 smblks: always zero.
1057 hblks: current number of mmapped regions
1058 hblkhd: total bytes held in mmapped regions
1059 usmblks: the maximum total allocated space. This will be greater
1060 than current total if trimming has occurred.
1061 fsmblks: always zero
1062 uordblks: current total allocated space (normal or mmapped)
1063 fordblks: total free space
1064 keepcost: the maximum number of bytes that could ideally be released
1065 back to system via malloc_trim. ("ideally" means that
1066 it ignores page restrictions etc.)
1067
1068 Because these fields are ints, but internal bookkeeping may
1069 be kept as longs, the reported values may wrap around zero and
1070 thus be inaccurate.
1071*/
1072DLMALLOC_EXPORT struct mallinfo dlmallinfo(void);
1073#endif /* NO_MALLINFO */
1074
1075/*
1076 independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
1077
1078 independent_calloc is similar to calloc, but instead of returning a
1079 single cleared space, it returns an array of pointers to n_elements
1080 independent elements that can hold contents of size elem_size, each
1081 of which starts out cleared, and can be independently freed,
1082 realloc'ed etc. The elements are guaranteed to be adjacently
1083 allocated (this is not guaranteed to occur with multiple callocs or
1084 mallocs), which may also improve cache locality in some
1085 applications.
1086
1087 The "chunks" argument is optional (i.e., may be null, which is
1088 probably the most typical usage). If it is null, the returned array
1089 is itself dynamically allocated and should also be freed when it is
1090 no longer needed. Otherwise, the chunks array must be of at least
1091 n_elements in length. It is filled in with the pointers to the
1092 chunks.
1093
1094 In either case, independent_calloc returns this pointer array, or
1095 null if the allocation failed. If n_elements is zero and "chunks"
1096 is null, it returns a chunk representing an array with zero elements
1097 (which should be freed if not wanted).
1098
1099 Each element must be freed when it is no longer needed. This can be
1100 done all at once using bulk_free.
1101
1102 independent_calloc simplifies and speeds up implementations of many
1103 kinds of pools. It may also be useful when constructing large data
1104 structures that initially have a fixed number of fixed-sized nodes,
1105 but the number is not known at compile time, and some of the nodes
1106 may later need to be freed. For example:
1107
1108 struct Node { int item; struct Node* next; };
1109
1110 struct Node* build_list() {
1111 struct Node** pool;
1112 int n = read_number_of_nodes_needed();
1113 if (n <= 0) return 0;
1114 pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
1115 if (pool == 0) die();
1116 // organize into a linked list...
1117 struct Node* first = pool[0];
1118 for (i = 0; i < n-1; ++i)
1119 pool[i]->next = pool[i+1];
1120 free(pool); // Can now free the array (or not, if it is needed later)
1121 return first;
1122 }
1123*/
1124DLMALLOC_EXPORT void** dlindependent_calloc(size_t, size_t, void**);
1125
1126/*
1127 independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
1128
1129 independent_comalloc allocates, all at once, a set of n_elements
1130 chunks with sizes indicated in the "sizes" array. It returns
1131 an array of pointers to these elements, each of which can be
1132 independently freed, realloc'ed etc. The elements are guaranteed to
1133 be adjacently allocated (this is not guaranteed to occur with
1134 multiple callocs or mallocs), which may also improve cache locality
1135 in some applications.
1136
1137 The "chunks" argument is optional (i.e., may be null). If it is null
1138 the returned array is itself dynamically allocated and should also
1139 be freed when it is no longer needed. Otherwise, the chunks array
1140 must be of at least n_elements in length. It is filled in with the
1141 pointers to the chunks.
1142
1143 In either case, independent_comalloc returns this pointer array, or
1144 null if the allocation failed. If n_elements is zero and chunks is
1145 null, it returns a chunk representing an array with zero elements
1146 (which should be freed if not wanted).
1147
1148 Each element must be freed when it is no longer needed. This can be
1149 done all at once using bulk_free.
1150
1151 independent_comallac differs from independent_calloc in that each
1152 element may have a different size, and also that it does not
1153 automatically clear elements.
1154
1155 independent_comalloc can be used to speed up allocation in cases
1156 where several structs or objects must always be allocated at the
1157 same time. For example:
1158
1159 struct Head { ... }
1160 struct Foot { ... }
1161
1162 void send_message(char* msg) {
1163 int msglen = strlen(msg);
1164 size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
1165 void* chunks[3];
1166 if (independent_comalloc(3, sizes, chunks) == 0)
1167 die();
1168 struct Head* head = (struct Head*)(chunks[0]);
1169 char* body = (char*)(chunks[1]);
1170 struct Foot* foot = (struct Foot*)(chunks[2]);
1171 // ...
1172 }
1173
1174 In general though, independent_comalloc is worth using only for
1175 larger values of n_elements. For small values, you probably won't
1176 detect enough difference from series of malloc calls to bother.
1177
1178 Overuse of independent_comalloc can increase overall memory usage,
1179 since it cannot reuse existing noncontiguous small chunks that
1180 might be available for some of the elements.
1181*/
1182DLMALLOC_EXPORT void** dlindependent_comalloc(size_t, size_t*, void**);
1183
1184/*
1185 bulk_free(void* array[], size_t n_elements)
1186 Frees and clears (sets to null) each non-null pointer in the given
1187 array. This is likely to be faster than freeing them one-by-one.
1188 If footers are used, pointers that have been allocated in different
1189 mspaces are not freed or cleared, and the count of all such pointers
1190 is returned. For large arrays of pointers with poor locality, it
1191 may be worthwhile to sort this array before calling bulk_free.
1192*/
1193DLMALLOC_EXPORT size_t dlbulk_free(void**, size_t n_elements);
1194
1195/*
1196 pvalloc(size_t n);
1197 Equivalent to valloc(minimum-page-that-holds(n)), that is,
1198 round up n to nearest pagesize.
1199 */
1200DLMALLOC_EXPORT void* dlpvalloc(size_t);
1201
1202/*
1203 malloc_trim(size_t pad);
1204
1205 If possible, gives memory back to the system (via negative arguments
1206 to sbrk) if there is unused memory at the `high' end of the malloc
1207 pool or in unused MMAP segments. You can call this after freeing
1208 large blocks of memory to potentially reduce the system-level memory
1209 requirements of a program. However, it cannot guarantee to reduce
1210 memory. Under some allocation patterns, some large free blocks of
1211 memory will be locked between two used chunks, so they cannot be
1212 given back to the system.
1213
1214 The `pad' argument to malloc_trim represents the amount of free
1215 trailing space to leave untrimmed. If this argument is zero, only
1216 the minimum amount of memory to maintain internal data structures
1217 will be left. Non-zero arguments can be supplied to maintain enough
1218 trailing space to service future expected allocations without having
1219 to re-obtain memory from the system.
1220
1221 Malloc_trim returns 1 if it actually released any memory, else 0.
1222*/
1223DLMALLOC_EXPORT int dlmalloc_trim(size_t);
1224
1225/*
1226 malloc_stats();
1227 Prints on stderr the amount of space obtained from the system (both
1228 via sbrk and mmap), the maximum amount (which may be more than
1229 current if malloc_trim and/or munmap got called), and the current
1230 number of bytes allocated via malloc (or realloc, etc) but not yet
1231 freed. Note that this is the number of bytes allocated, not the
1232 number requested. It will be larger than the number requested
1233 because of alignment and bookkeeping overhead. Because it includes
1234 alignment wastage as being in use, this figure may be greater than
1235 zero even when no user-level chunks are allocated.
1236
1237 The reported current and maximum system memory can be inaccurate if
1238 a program makes other calls to system memory allocation functions
1239 (normally sbrk) outside of malloc.
1240
1241 malloc_stats prints only the most commonly interesting statistics.
1242 More information can be obtained by calling mallinfo.
1243*/
1244DLMALLOC_EXPORT void dlmalloc_stats(void);
1245
1246/*
1247 malloc_usable_size(void* p);
1248
1249 Returns the number of bytes you can actually use in
1250 an allocated chunk, which may be more than you requested (although
1251 often not) due to alignment and minimum size constraints.
1252 You can use this many bytes without worrying about
1253 overwriting other allocated objects. This is not a particularly great
1254 programming practice. malloc_usable_size can be more useful in
1255 debugging and assertions, for example:
1256
1257 p = malloc(n);
1258 assert(malloc_usable_size(p) >= 256);
1259*/
1260size_t dlmalloc_usable_size(void*);
1261
1262#endif /* ONLY_MSPACES */
1263
1264#if MSPACES
1265
1266/*
1267 mspace is an opaque type representing an independent
1268 region of space that supports mspace_malloc, etc.
1269*/
1270typedef void* mspace;
1271
1272/*
1273 create_mspace creates and returns a new independent space with the
1274 given initial capacity, or, if 0, the default granularity size. It
1275 returns null if there is no system memory available to create the
1276 space. If argument locked is non-zero, the space uses a separate
1277 lock to control access. The capacity of the space will grow
1278 dynamically as needed to service mspace_malloc requests. You can
1279 control the sizes of incremental increases of this space by
1280 compiling with a different DEFAULT_GRANULARITY or dynamically
1281 setting with mallopt(M_GRANULARITY, value).
1282*/
1283DLMALLOC_EXPORT mspace create_mspace(size_t capacity, int locked);
1284
1285/*
1286 destroy_mspace destroys the given space, and attempts to return all
1287 of its memory back to the system, returning the total number of
1288 bytes freed. After destruction, the results of access to all memory
1289 used by the space become undefined.
1290*/
1291DLMALLOC_EXPORT size_t destroy_mspace(mspace msp);
1292
1293/*
1294 create_mspace_with_base uses the memory supplied as the initial base
1295 of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
1296 space is used for bookkeeping, so the capacity must be at least this
1297 large. (Otherwise 0 is returned.) When this initial space is
1298 exhausted, additional memory will be obtained from the system.
1299 Destroying this space will deallocate all additionally allocated
1300 space (if possible) but not the initial base.
1301*/
1302DLMALLOC_EXPORT mspace create_mspace_with_base(void* base, size_t capacity, int locked);
1303
1304/*
1305 mspace_track_large_chunks controls whether requests for large chunks
1306 are allocated in their own untracked mmapped regions, separate from
1307 others in this mspace. By default large chunks are not tracked,
1308 which reduces fragmentation. However, such chunks are not
1309 necessarily released to the system upon destroy_mspace. Enabling
1310 tracking by setting to true may increase fragmentation, but avoids
1311 leakage when relying on destroy_mspace to release all memory
1312 allocated using this space. The function returns the previous
1313 setting.
1314*/
1315DLMALLOC_EXPORT int mspace_track_large_chunks(mspace msp, int enable);
1316
1317
1318/*
1319 mspace_malloc behaves as malloc, but operates within
1320 the given space.
1321*/
1322DLMALLOC_EXPORT void* mspace_malloc(mspace msp, size_t bytes);
1323
1324/*
1325 mspace_free behaves as free, but operates within
1326 the given space.
1327
1328 If compiled with FOOTERS==1, mspace_free is not actually needed.
1329 free may be called instead of mspace_free because freed chunks from
1330 any space are handled by their originating spaces.
1331*/
1332DLMALLOC_EXPORT void mspace_free(mspace msp, void* mem);
1333
1334/*
1335 mspace_realloc behaves as realloc, but operates within
1336 the given space.
1337
1338 If compiled with FOOTERS==1, mspace_realloc is not actually
1339 needed. realloc may be called instead of mspace_realloc because
1340 realloced chunks from any space are handled by their originating
1341 spaces.
1342*/
1343DLMALLOC_EXPORT void* mspace_realloc(mspace msp, void* mem, size_t newsize);
1344
1345/*
1346 mspace_calloc behaves as calloc, but operates within
1347 the given space.
1348*/
1349DLMALLOC_EXPORT void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
1350
1351/*
1352 mspace_memalign behaves as memalign, but operates within
1353 the given space.
1354*/
1355DLMALLOC_EXPORT void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
1356
1357/*
1358 mspace_independent_calloc behaves as independent_calloc, but
1359 operates within the given space.
1360*/
1361DLMALLOC_EXPORT void** mspace_independent_calloc(mspace msp, size_t n_elements,
1362 size_t elem_size, void* chunks[]);
1363
1364/*
1365 mspace_independent_comalloc behaves as independent_comalloc, but
1366 operates within the given space.
1367*/
1368DLMALLOC_EXPORT void** mspace_independent_comalloc(mspace msp, size_t n_elements,
1369 size_t sizes[], void* chunks[]);
1370
1371/*
1372 mspace_footprint() returns the number of bytes obtained from the
1373 system for this space.
1374*/
1375DLMALLOC_EXPORT size_t mspace_footprint(mspace msp);
1376
1377/*
1378 mspace_max_footprint() returns the peak number of bytes obtained from the
1379 system for this space.
1380*/
1381DLMALLOC_EXPORT size_t mspace_max_footprint(mspace msp);
1382
1383
1384#if !NO_MALLINFO
1385/*
1386 mspace_mallinfo behaves as mallinfo, but reports properties of
1387 the given space.
1388*/
1389DLMALLOC_EXPORT struct mallinfo mspace_mallinfo(mspace msp);
1390#endif /* NO_MALLINFO */
1391
1392/*
1393 malloc_usable_size(void* p) behaves the same as malloc_usable_size;
1394*/
1395DLMALLOC_EXPORT size_t mspace_usable_size(const void* mem);
1396
1397/*
1398 mspace_malloc_stats behaves as malloc_stats, but reports
1399 properties of the given space.
1400*/
1401DLMALLOC_EXPORT void mspace_malloc_stats(mspace msp);
1402
1403/*
1404 mspace_trim behaves as malloc_trim, but
1405 operates within the given space.
1406*/
1407DLMALLOC_EXPORT int mspace_trim(mspace msp, size_t pad);
1408
1409/*
1410 An alias for mallopt.
1411*/
1412DLMALLOC_EXPORT int mspace_mallopt(int, int);
1413
1414#endif /* MSPACES */
1415
1416#ifdef __cplusplus
1417} /* end of extern "C" */
1418#endif /* __cplusplus */
1419
1420/*
1421 ========================================================================
1422 To make a fully customizable malloc.h header file, cut everything
1423 above this line, put into file malloc.h, edit to suit, and #include it
1424 on the next line, as well as in programs that use this malloc.
1425 ========================================================================
1426*/
1427
1428/* #include "malloc.h" */
1429
1430/*------------------------------ internal #includes ---------------------- */
1431
1432#ifdef _MSC_VER
1433#pragma warning( disable : 4146 ) /* no "unsigned" warnings */
1434#endif /* _MSC_VER */
1435#if !NO_MALLOC_STATS
1436#include <stdio.h> /* for printing in malloc_stats */
1437#endif /* NO_MALLOC_STATS */
1438#ifndef LACKS_ERRNO_H
1439#include <errno.h> /* for MALLOC_FAILURE_ACTION */
1440#endif /* LACKS_ERRNO_H */
1441#ifdef DEBUG
1442#if ABORT_ON_ASSERT_FAILURE
1443#undef assert
1444#define assert(x) if(!(x)) ABORT
1445#else /* ABORT_ON_ASSERT_FAILURE */
1446#include <assert.h>
1447#endif /* ABORT_ON_ASSERT_FAILURE */
1448#else /* DEBUG */
1449#ifndef assert
1450#define assert(x)
1451#endif
1452#define DEBUG 0
1453#endif /* DEBUG */
1454#if !defined(WIN32) && !defined(LACKS_TIME_H)
1455#include <time.h> /* for magic initialization */
1456#endif /* WIN32 */
1457#ifndef LACKS_STDLIB_H
1458#include <stdlib.h> /* for abort() */
1459#endif /* LACKS_STDLIB_H */
1460#ifndef LACKS_STRING_H
1461#include <string.h> /* for memset etc */
1462#endif /* LACKS_STRING_H */
1463#if USE_BUILTIN_FFS
1464#ifndef LACKS_STRINGS_H
1465#include <strings.h> /* for ffs */
1466#endif /* LACKS_STRINGS_H */
1467#endif /* USE_BUILTIN_FFS */
1468#if HAVE_MMAP
1469#ifndef LACKS_SYS_MMAN_H
1470/* On some versions of linux, mremap decl in mman.h needs __USE_GNU set */
1471#if (defined(linux) && !defined(__USE_GNU))
1472#define __USE_GNU 1
1473#include <sys/mman.h> /* for mmap */
1474#undef __USE_GNU
1475#else
1476#include <sys/mman.h> /* for mmap */
1477#endif /* linux */
1478#endif /* LACKS_SYS_MMAN_H */
1479#ifndef LACKS_FCNTL_H
1480#include <fcntl.h>
1481#endif /* LACKS_FCNTL_H */
1482#endif /* HAVE_MMAP */
1483#ifndef LACKS_UNISTD_H
1484#include <unistd.h> /* for sbrk, sysconf */
1485#else /* LACKS_UNISTD_H */
1486#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
1487extern void* sbrk(ptrdiff_t);
1488#endif /* FreeBSD etc */
1489#endif /* LACKS_UNISTD_H */
1490
1491/* Declarations for locking */
1492#if USE_LOCKS
1493#ifndef WIN32
1494#if defined (__SVR4) && defined (__sun) /* solaris */
1495#include <thread.h>
1496#elif !defined(LACKS_SCHED_H)
1497#include <sched.h>
1498#endif /* solaris or LACKS_SCHED_H */
1499#if (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0) || !USE_SPIN_LOCKS
1500#include <pthread.h>
1501#endif /* USE_RECURSIVE_LOCKS ... */
1502#elif defined(_MSC_VER)
1503#ifndef _M_AMD64
1504/* These are already defined on AMD64 builds */
1505#ifdef __cplusplus
1506extern "C" {
1507#endif /* __cplusplus */
1508LONG __cdecl _InterlockedCompareExchange(LONG volatile *Dest, LONG Exchange, LONG Comp);
1509LONG __cdecl _InterlockedExchange(LONG volatile *Target, LONG Value);
1510#ifdef __cplusplus
1511}
1512#endif /* __cplusplus */
1513#endif /* _M_AMD64 */
1514#pragma intrinsic (_InterlockedCompareExchange)
1515#pragma intrinsic (_InterlockedExchange)
1516#define interlockedcompareexchange _InterlockedCompareExchange
1517#define interlockedexchange _InterlockedExchange
1518#elif defined(WIN32) && (defined(__GNUC__) || defined(__clang__))
1519#define interlockedcompareexchange(a, b, c) __sync_val_compare_and_swap(a, c, b)
1520#define interlockedexchange __sync_lock_test_and_set
1521#endif /* Win32 */
1522#else /* USE_LOCKS */
1523#endif /* USE_LOCKS */
1524
1525#ifndef LOCK_AT_FORK
1526#define LOCK_AT_FORK 0
1527#endif
1528
1529/* Declarations for bit scanning on win32 */
1530#if defined(_MSC_VER) && _MSC_VER>=1300
1531#ifndef BitScanForward /* Try to avoid pulling in WinNT.h */
1532#ifdef __cplusplus
1533extern "C" {
1534#endif /* __cplusplus */
1535unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
1536unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
1537#ifdef __cplusplus
1538}
1539#endif /* __cplusplus */
1540
1541#define BitScanForward _BitScanForward
1542#define BitScanReverse _BitScanReverse
1543#pragma intrinsic(_BitScanForward)
1544#pragma intrinsic(_BitScanReverse)
1545#endif /* BitScanForward */
1546#endif /* defined(_MSC_VER) && _MSC_VER>=1300 */
1547
1548#ifndef WIN32
1549#ifndef malloc_getpagesize
1550# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
1551# ifndef _SC_PAGE_SIZE
1552# define _SC_PAGE_SIZE _SC_PAGESIZE
1553# endif
1554# endif
1555# ifdef _SC_PAGE_SIZE
1556# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
1557# else
1558# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
1559 extern size_t getpagesize();
1560# define malloc_getpagesize getpagesize()
1561# else
1562# ifdef WIN32 /* use supplied emulation of getpagesize */
1563# define malloc_getpagesize getpagesize()
1564# else
1565# ifndef LACKS_SYS_PARAM_H
1566# include <sys/param.h>
1567# endif
1568# ifdef EXEC_PAGESIZE
1569# define malloc_getpagesize EXEC_PAGESIZE
1570# else
1571# ifdef NBPG
1572# ifndef CLSIZE
1573# define malloc_getpagesize NBPG
1574# else
1575# define malloc_getpagesize (NBPG * CLSIZE)
1576# endif
1577# else
1578# ifdef NBPC
1579# define malloc_getpagesize NBPC
1580# else
1581# ifdef PAGESIZE
1582# define malloc_getpagesize PAGESIZE
1583# else /* just guess */
1584# define malloc_getpagesize ((size_t)4096U)
1585# endif
1586# endif
1587# endif
1588# endif
1589# endif
1590# endif
1591# endif
1592#endif
1593#endif
1594
1595/* ------------------- size_t and alignment properties -------------------- */
1596
1597/* The byte and bit size of a size_t */
1598#define SIZE_T_SIZE (sizeof(size_t))
1599#define SIZE_T_BITSIZE (sizeof(size_t) << 3)
1600
1601/* Some constants coerced to size_t */
1602/* Annoying but necessary to avoid errors on some platforms */
1603#define SIZE_T_ZERO ((size_t)0)
1604#define SIZE_T_ONE ((size_t)1)
1605#define SIZE_T_TWO ((size_t)2)
1606#define SIZE_T_FOUR ((size_t)4)
1607#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
1608#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
1609#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
1610#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
1611
1612/* The bit mask value corresponding to MALLOC_ALIGNMENT */
1613#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
1614
1615/* True if address a has acceptable alignment */
1616#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
1617
1618/* the number of bytes to offset an address to align it */
1619#define align_offset(A)\
1620 ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
1621 ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
1622
1623/* -------------------------- MMAP preliminaries ------------------------- */
1624
1625/*
1626 If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
1627 checks to fail so compiler optimizer can delete code rather than
1628 using so many "#if"s.
1629*/
1630
1631
1632/* MORECORE and MMAP must return MFAIL on failure */
1633#define MFAIL ((void*)(MAX_SIZE_T))
1634#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */
1635
1636#if HAVE_MMAP
1637
1638#ifndef WIN32
1639#define MUNMAP_DEFAULT(a, s) munmap((a), (s))
1640#define MMAP_PROT (PROT_READ|PROT_WRITE)
1641#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1642#define MAP_ANONYMOUS MAP_ANON
1643#endif /* MAP_ANON */
1644#ifdef MAP_ANONYMOUS
1645#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
1646#define MMAP_DEFAULT(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
1647#else /* MAP_ANONYMOUS */
1648/*
1649 Nearly all versions of mmap support MAP_ANONYMOUS, so the following
1650 is unlikely to be needed, but is supplied just in case.
1651*/
1652#define MMAP_FLAGS (MAP_PRIVATE)
1653static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
1654#define MMAP_DEFAULT(s) ((dev_zero_fd < 0) ? \
1655 (dev_zero_fd = open("/dev/zero", O_RDWR), \
1656 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
1657 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
1658#endif /* MAP_ANONYMOUS */
1659
1660#define DIRECT_MMAP_DEFAULT(s) MMAP_DEFAULT(s)
1661
1662#else /* WIN32 */
1663
1664/* Win32 MMAP via VirtualAlloc */
1665static FORCEINLINE void* win32mmap(size_t size) {
1666 void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
1667 return (ptr != 0)? ptr: MFAIL;
1668}
1669
1670/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
1671static FORCEINLINE void* win32direct_mmap(size_t size) {
1672 void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
1673 PAGE_READWRITE);
1674 return (ptr != 0)? ptr: MFAIL;
1675}
1676
1677/* This function supports releasing coalesed segments */
1678static FORCEINLINE int win32munmap(void* ptr, size_t size) {
1679 MEMORY_BASIC_INFORMATION minfo;
1680 char* cptr = (char*)ptr;
1681 while (size) {
1682 if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
1683 return -1;
1684 if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
1685 minfo.State != MEM_COMMIT || minfo.RegionSize > size)
1686 return -1;
1687 if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
1688 return -1;
1689 cptr += minfo.RegionSize;
1690 size -= minfo.RegionSize;
1691 }
1692 return 0;
1693}
1694
1695#define MMAP_DEFAULT(s) win32mmap(s)
1696#define MUNMAP_DEFAULT(a, s) win32munmap((a), (s))
1697#define DIRECT_MMAP_DEFAULT(s) win32direct_mmap(s)
1698#endif /* WIN32 */
1699#endif /* HAVE_MMAP */
1700
1701#if HAVE_MREMAP
1702#ifndef WIN32
1703#define MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
1704#endif /* WIN32 */
1705#endif /* HAVE_MREMAP */
1706
1707/**
1708 * Define CALL_MORECORE
1709 */
1710#if HAVE_MORECORE
1711 #ifdef MORECORE
1712 #define CALL_MORECORE(S) MORECORE(S)
1713 #else /* MORECORE */
1714 #define CALL_MORECORE(S) MORECORE_DEFAULT(S)
1715 #endif /* MORECORE */
1716#else /* HAVE_MORECORE */
1717 #define CALL_MORECORE(S) MFAIL
1718#endif /* HAVE_MORECORE */
1719
1720/**
1721 * Define CALL_MMAP/CALL_MUNMAP/CALL_DIRECT_MMAP
1722 */
1723#if HAVE_MMAP
1724 #define USE_MMAP_BIT (SIZE_T_ONE)
1725
1726 #ifdef MMAP
1727 #define CALL_MMAP(s) MMAP(s)
1728 #else /* MMAP */
1729 #define CALL_MMAP(s) MMAP_DEFAULT(s)
1730 #endif /* MMAP */
1731 #ifdef MUNMAP
1732 #define CALL_MUNMAP(a, s) MUNMAP((a), (s))
1733 #else /* MUNMAP */
1734 #define CALL_MUNMAP(a, s) MUNMAP_DEFAULT((a), (s))
1735 #endif /* MUNMAP */
1736 #ifdef DIRECT_MMAP
1737 #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
1738 #else /* DIRECT_MMAP */
1739 #define CALL_DIRECT_MMAP(s) DIRECT_MMAP_DEFAULT(s)
1740 #endif /* DIRECT_MMAP */
1741#else /* HAVE_MMAP */
1742 #define USE_MMAP_BIT (SIZE_T_ZERO)
1743
1744 #define MMAP(s) MFAIL
1745 #define MUNMAP(a, s) (-1)
1746 #define DIRECT_MMAP(s) MFAIL
1747 #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
1748 #define CALL_MMAP(s) MMAP(s)
1749 #define CALL_MUNMAP(a, s) MUNMAP((a), (s))
1750#endif /* HAVE_MMAP */
1751
1752/**
1753 * Define CALL_MREMAP
1754 */
1755#if HAVE_MMAP && HAVE_MREMAP
1756 #ifdef MREMAP
1757 #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv))
1758 #else /* MREMAP */
1759 #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP_DEFAULT((addr), (osz), (nsz), (mv))
1760 #endif /* MREMAP */
1761#else /* HAVE_MMAP && HAVE_MREMAP */
1762 #define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
1763#endif /* HAVE_MMAP && HAVE_MREMAP */
1764
1765/* mstate bit set if contiguous morecore disabled or failed */
1766#define USE_NONCONTIGUOUS_BIT (4U)
1767
1768/* segment bit set in create_mspace_with_base */
1769#define EXTERN_BIT (8U)
1770
1771
1772/* --------------------------- Lock preliminaries ------------------------ */
1773
1774/*
1775 When locks are defined, there is one global lock, plus
1776 one per-mspace lock.
1777
1778 The global lock_ensures that mparams.magic and other unique
1779 mparams values are initialized only once. It also protects
1780 sequences of calls to MORECORE. In many cases sys_alloc requires
1781 two calls, that should not be interleaved with calls by other
1782 threads. This does not protect against direct calls to MORECORE
1783 by other threads not using this lock, so there is still code to
1784 cope the best we can on interference.
1785
1786 Per-mspace locks surround calls to malloc, free, etc.
1787 By default, locks are simple non-reentrant mutexes.
1788
1789 Because lock-protected regions generally have bounded times, it is
1790 OK to use the supplied simple spinlocks. Spinlocks are likely to
1791 improve performance for lightly contended applications, but worsen
1792 performance under heavy contention.
1793
1794 If USE_LOCKS is > 1, the definitions of lock routines here are
1795 bypassed, in which case you will need to define the type MLOCK_T,
1796 and at least INITIAL_LOCK, DESTROY_LOCK, ACQUIRE_LOCK, RELEASE_LOCK
1797 and TRY_LOCK. You must also declare a
1798 static MLOCK_T malloc_global_mutex = { initialization values };.
1799
1800*/
1801
1802#if !USE_LOCKS
1803#define USE_LOCK_BIT (0U)
1804#define INITIAL_LOCK(l) (0)
1805#define DESTROY_LOCK(l) (0)
1806#define ACQUIRE_MALLOC_GLOBAL_LOCK()
1807#define RELEASE_MALLOC_GLOBAL_LOCK()
1808
1809#else
1810#if USE_LOCKS > 1
1811/* ----------------------- User-defined locks ------------------------ */
1812/* Define your own lock implementation here */
1813/* #define INITIAL_LOCK(lk) ... */
1814/* #define DESTROY_LOCK(lk) ... */
1815/* #define ACQUIRE_LOCK(lk) ... */
1816/* #define RELEASE_LOCK(lk) ... */
1817/* #define TRY_LOCK(lk) ... */
1818/* static MLOCK_T malloc_global_mutex = ... */
1819
1820#elif USE_SPIN_LOCKS
1821
1822/* First, define CAS_LOCK and CLEAR_LOCK on ints */
1823/* Note CAS_LOCK defined to return 0 on success */
1824
1825#if defined(__GNUC__)&& (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1))
1826#define CAS_LOCK(sl) __sync_lock_test_and_set(sl, 1)
1827#define CLEAR_LOCK(sl) __sync_lock_release(sl)
1828
1829#elif (defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)))
1830/* Custom spin locks for older gcc on x86 */
1831static FORCEINLINE int x86_cas_lock(int *sl) {
1832 int ret;
1833 int val = 1;
1834 int cmp = 0;
1835 __asm__ __volatile__ ("lock; cmpxchgl %1, %2"
1836 : "=a" (ret)
1837 : "r" (val), "m" (*(sl)), "0"(cmp)
1838 : "memory", "cc");
1839 return ret;
1840}
1841
1842static FORCEINLINE void x86_clear_lock(int* sl) {
1843 assert(*sl != 0);
1844 int prev = 0;
1845 int ret;
1846 __asm__ __volatile__ ("lock; xchgl %0, %1"
1847 : "=r" (ret)
1848 : "m" (*(sl)), "0"(prev)
1849 : "memory");
1850}
1851
1852#define CAS_LOCK(sl) x86_cas_lock(sl)
1853#define CLEAR_LOCK(sl) x86_clear_lock(sl)
1854
1855#else /* Win32 MSC */
1856#define CAS_LOCK(sl) interlockedexchange(sl, (LONG)1)
1857#define CLEAR_LOCK(sl) interlockedexchange (sl, (LONG)0)
1858
1859#endif /* ... gcc spins locks ... */
1860
1861/* How to yield for a spin lock */
1862#define SPINS_PER_YIELD 63
1863#if defined(_MSC_VER)
1864#define SLEEP_EX_DURATION 50 /* delay for yield/sleep */
1865#define SPIN_LOCK_YIELD SleepEx(SLEEP_EX_DURATION, FALSE)
1866#elif defined (__SVR4) && defined (__sun) /* solaris */
1867#define SPIN_LOCK_YIELD thr_yield();
1868#elif !defined(LACKS_SCHED_H)
1869#define SPIN_LOCK_YIELD sched_yield();
1870#else
1871#define SPIN_LOCK_YIELD
1872#endif /* ... yield ... */
1873
1874#if !defined(USE_RECURSIVE_LOCKS) || USE_RECURSIVE_LOCKS == 0
1875/* Plain spin locks use single word (embedded in malloc_states) */
1876static int spin_acquire_lock(int *sl) {
1877 int spins = 0;
1878 while (*(volatile int *)sl != 0 || CAS_LOCK(sl)) {
1879 if ((++spins & SPINS_PER_YIELD) == 0) {
1880 SPIN_LOCK_YIELD;
1881 }
1882 }
1883 return 0;
1884}
1885
1886#define MLOCK_T int
1887#define TRY_LOCK(sl) !CAS_LOCK(sl)
1888#define RELEASE_LOCK(sl) CLEAR_LOCK(sl)
1889#define ACQUIRE_LOCK(sl) (CAS_LOCK(sl)? spin_acquire_lock(sl) : 0)
1890#define INITIAL_LOCK(sl) (*sl = 0)
1891#define DESTROY_LOCK(sl) (0)
1892static MLOCK_T malloc_global_mutex = 0;
1893
1894#else /* USE_RECURSIVE_LOCKS */
1895/* types for lock owners */
1896#ifdef WIN32
1897#define THREAD_ID_T DWORD
1898#define CURRENT_THREAD GetCurrentThreadId()
1899#define EQ_OWNER(X,Y) ((X) == (Y))
1900#else
1901/*
1902 Note: the following assume that pthread_t is a type that can be
1903 initialized to (casted) zero. If this is not the case, you will need to
1904 somehow redefine these or not use spin locks.
1905*/
1906#define THREAD_ID_T pthread_t
1907#define CURRENT_THREAD pthread_self()
1908#define EQ_OWNER(X,Y) pthread_equal(X, Y)
1909#endif
1910
1911struct malloc_recursive_lock {
1912 int sl;
1913 unsigned int c;
1914 THREAD_ID_T threadid;
1915};
1916
1917#define MLOCK_T struct malloc_recursive_lock
1918static MLOCK_T malloc_global_mutex = { 0, 0, (THREAD_ID_T)0};
1919
1920static FORCEINLINE void recursive_release_lock(MLOCK_T *lk) {
1921 assert(lk->sl != 0);
1922 if (--lk->c == 0) {
1923 CLEAR_LOCK(&lk->sl);
1924 }
1925}
1926
1927static FORCEINLINE int recursive_acquire_lock(MLOCK_T *lk) {
1928 THREAD_ID_T mythreadid = CURRENT_THREAD;
1929 int spins = 0;
1930 for (;;) {
1931 if (*((volatile int *)(&lk->sl)) == 0) {
1932 if (!CAS_LOCK(&lk->sl)) {
1933 lk->threadid = mythreadid;
1934 lk->c = 1;
1935 return 0;
1936 }
1937 }
1938 else if (EQ_OWNER(lk->threadid, mythreadid)) {
1939 ++lk->c;
1940 return 0;
1941 }
1942 if ((++spins & SPINS_PER_YIELD) == 0) {
1943 SPIN_LOCK_YIELD;
1944 }
1945 }
1946}
1947
1948static FORCEINLINE int recursive_try_lock(MLOCK_T *lk) {
1949 THREAD_ID_T mythreadid = CURRENT_THREAD;
1950 if (*((volatile int *)(&lk->sl)) == 0) {
1951 if (!CAS_LOCK(&lk->sl)) {
1952 lk->threadid = mythreadid;
1953 lk->c = 1;
1954 return 1;
1955 }
1956 }
1957 else if (EQ_OWNER(lk->threadid, mythreadid)) {
1958 ++lk->c;
1959 return 1;
1960 }
1961 return 0;
1962}
1963
1964#define RELEASE_LOCK(lk) recursive_release_lock(lk)
1965#define TRY_LOCK(lk) recursive_try_lock(lk)
1966#define ACQUIRE_LOCK(lk) recursive_acquire_lock(lk)
1967#define INITIAL_LOCK(lk) ((lk)->threadid = (THREAD_ID_T)0, (lk)->sl = 0, (lk)->c = 0)
1968#define DESTROY_LOCK(lk) (0)
1969#endif /* USE_RECURSIVE_LOCKS */
1970
1971#elif defined(WIN32) /* Win32 critical sections */
1972#define MLOCK_T CRITICAL_SECTION
1973#define ACQUIRE_LOCK(lk) (EnterCriticalSection(lk), 0)
1974#define RELEASE_LOCK(lk) LeaveCriticalSection(lk)
1975#define TRY_LOCK(lk) TryEnterCriticalSection(lk)
1976#define INITIAL_LOCK(lk) (!InitializeCriticalSectionAndSpinCount((lk), 0x80000000|4000))
1977#define DESTROY_LOCK(lk) (DeleteCriticalSection(lk), 0)
1978#define NEED_GLOBAL_LOCK_INIT
1979
1980static MLOCK_T malloc_global_mutex;
1981static volatile LONG malloc_global_mutex_status;
1982
1983/* Use spin loop to initialize global lock */
1984static void init_malloc_global_mutex() {
1985 for (;;) {
1986 long stat = malloc_global_mutex_status;
1987 if (stat > 0)
1988 return;
1989 /* transition to < 0 while initializing, then to > 0) */
1990 if (stat == 0 &&
1991 interlockedcompareexchange(&malloc_global_mutex_status, (LONG)-1, (LONG)0) == 0) {
1992 InitializeCriticalSection(&malloc_global_mutex);
1993 interlockedexchange(&malloc_global_mutex_status, (LONG)1);
1994 return;
1995 }
1996 SleepEx(0, FALSE);
1997 }
1998}
1999
2000#else /* pthreads-based locks */
2001#define MLOCK_T pthread_mutex_t
2002#define ACQUIRE_LOCK(lk) pthread_mutex_lock(lk)
2003#define RELEASE_LOCK(lk) pthread_mutex_unlock(lk)
2004#define TRY_LOCK(lk) (!pthread_mutex_trylock(lk))
2005#define INITIAL_LOCK(lk) pthread_init_lock(lk)
2006#define DESTROY_LOCK(lk) pthread_mutex_destroy(lk)
2007
2008#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0 && defined(linux) && !defined(PTHREAD_MUTEX_RECURSIVE)
2009/* Cope with old-style linux recursive lock initialization by adding */
2010/* skipped internal declaration from pthread.h */
2011extern int pthread_mutexattr_setkind_np __P ((pthread_mutexattr_t *__attr,
2012 int __kind));
2013#define PTHREAD_MUTEX_RECURSIVE PTHREAD_MUTEX_RECURSIVE_NP
2014#define pthread_mutexattr_settype(x,y) pthread_mutexattr_setkind_np(x,y)
2015#endif /* USE_RECURSIVE_LOCKS ... */
2016
2017static MLOCK_T malloc_global_mutex = PTHREAD_MUTEX_INITIALIZER;
2018
2019static int pthread_init_lock (MLOCK_T *lk) {
2020 pthread_mutexattr_t attr;
2021 if (pthread_mutexattr_init(&attr)) return 1;
2022#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0
2023 if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1;
2024#endif
2025 if (pthread_mutex_init(lk, &attr)) return 1;
2026 if (pthread_mutexattr_destroy(&attr)) return 1;
2027 return 0;
2028}
2029
2030#endif /* ... lock types ... */
2031
2032/* Common code for all lock types */
2033#define USE_LOCK_BIT (2U)
2034
2035#ifndef ACQUIRE_MALLOC_GLOBAL_LOCK
2036#define ACQUIRE_MALLOC_GLOBAL_LOCK() ACQUIRE_LOCK(&malloc_global_mutex);
2037#endif
2038
2039#ifndef RELEASE_MALLOC_GLOBAL_LOCK
2040#define RELEASE_MALLOC_GLOBAL_LOCK() RELEASE_LOCK(&malloc_global_mutex);
2041#endif
2042
2043#endif /* USE_LOCKS */
2044
2045/* ----------------------- Chunk representations ------------------------ */
2046
2047/*
2048 (The following includes lightly edited explanations by Colin Plumb.)
2049
2050 The malloc_chunk declaration below is misleading (but accurate and
2051 necessary). It declares a "view" into memory allowing access to
2052 necessary fields at known offsets from a given base.
2053
2054 Chunks of memory are maintained using a `boundary tag' method as
2055 originally described by Knuth. (See the paper by Paul Wilson
2056 ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
2057 techniques.) Sizes of free chunks are stored both in the front of
2058 each chunk and at the end. This makes consolidating fragmented
2059 chunks into bigger chunks fast. The head fields also hold bits
2060 representing whether chunks are free or in use.
2061
2062 Here are some pictures to make it clearer. They are "exploded" to
2063 show that the state of a chunk can be thought of as extending from
2064 the high 31 bits of the head field of its header through the
2065 prev_foot and PINUSE_BIT bit of the following chunk header.
2066
2067 A chunk that's in use looks like:
2068
2069 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2070 | Size of previous chunk (if P = 0) |
2071 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2072 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
2073 | Size of this chunk 1| +-+
2074 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2075 | |
2076 +- -+
2077 | |
2078 +- -+
2079 | :
2080 +- size - sizeof(size_t) available payload bytes -+
2081 : |
2082 chunk-> +- -+
2083 | |
2084 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2085 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
2086 | Size of next chunk (may or may not be in use) | +-+
2087 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2088
2089 And if it's free, it looks like this:
2090
2091 chunk-> +- -+
2092 | User payload (must be in use, or we would have merged!) |
2093 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2094 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
2095 | Size of this chunk 0| +-+
2096 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2097 | Next pointer |
2098 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2099 | Prev pointer |
2100 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2101 | :
2102 +- size - sizeof(struct chunk) unused bytes -+
2103 : |
2104 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2105 | Size of this chunk |
2106 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2107 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
2108 | Size of next chunk (must be in use, or we would have merged)| +-+
2109 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2110 | :
2111 +- User payload -+
2112 : |
2113 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2114 |0|
2115 +-+
2116 Note that since we always merge adjacent free chunks, the chunks
2117 adjacent to a free chunk must be in use.
2118
2119 Given a pointer to a chunk (which can be derived trivially from the
2120 payload pointer) we can, in O(1) time, find out whether the adjacent
2121 chunks are free, and if so, unlink them from the lists that they
2122 are on and merge them with the current chunk.
2123
2124 Chunks always begin on even word boundaries, so the mem portion
2125 (which is returned to the user) is also on an even word boundary, and
2126 thus at least double-word aligned.
2127
2128 The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
2129 chunk size (which is always a multiple of two words), is an in-use
2130 bit for the *previous* chunk. If that bit is *clear*, then the
2131 word before the current chunk size contains the previous chunk
2132 size, and can be used to find the front of the previous chunk.
2133 The very first chunk allocated always has this bit set, preventing
2134 access to non-existent (or non-owned) memory. If pinuse is set for
2135 any given chunk, then you CANNOT determine the size of the
2136 previous chunk, and might even get a memory addressing fault when
2137 trying to do so.
2138
2139 The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
2140 the chunk size redundantly records whether the current chunk is
2141 inuse (unless the chunk is mmapped). This redundancy enables usage
2142 checks within free and realloc, and reduces indirection when freeing
2143 and consolidating chunks.
2144
2145 Each freshly allocated chunk must have both cinuse and pinuse set.
2146 That is, each allocated chunk borders either a previously allocated
2147 and still in-use chunk, or the base of its memory arena. This is
2148 ensured by making all allocations from the `lowest' part of any
2149 found chunk. Further, no free chunk physically borders another one,
2150 so each free chunk is known to be preceded and followed by either
2151 inuse chunks or the ends of memory.
2152
2153 Note that the `foot' of the current chunk is actually represented
2154 as the prev_foot of the NEXT chunk. This makes it easier to
2155 deal with alignments etc but can be very confusing when trying
2156 to extend or adapt this code.
2157
2158 The exceptions to all this are
2159
2160 1. The special chunk `top' is the top-most available chunk (i.e.,
2161 the one bordering the end of available memory). It is treated
2162 specially. Top is never included in any bin, is used only if
2163 no other chunk is available, and is released back to the
2164 system if it is very large (see M_TRIM_THRESHOLD). In effect,
2165 the top chunk is treated as larger (and thus less well
2166 fitting) than any other available chunk. The top chunk
2167 doesn't update its trailing size field since there is no next
2168 contiguous chunk that would have to index off it. However,
2169 space is still allocated for it (TOP_FOOT_SIZE) to enable
2170 separation or merging when space is extended.
2171
2172 3. Chunks allocated via mmap, have both cinuse and pinuse bits
2173 cleared in their head fields. Because they are allocated
2174 one-by-one, each must carry its own prev_foot field, which is
2175 also used to hold the offset this chunk has within its mmapped
2176 region, which is needed to preserve alignment. Each mmapped
2177 chunk is trailed by the first two fields of a fake next-chunk
2178 for sake of usage checks.
2179
2180*/
2181
2182struct malloc_chunk {
2183 size_t prev_foot; /* Size of previous chunk (if free). */
2184 size_t head; /* Size and inuse bits. */
2185 struct malloc_chunk* fd; /* double links -- used only if free. */
2186 struct malloc_chunk* bk;
2187};
2188
2189typedef struct malloc_chunk mchunk;
2190typedef struct malloc_chunk* mchunkptr;
2191typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */
2192typedef unsigned int bindex_t; /* Described below */
2193typedef unsigned int binmap_t; /* Described below */
2194typedef unsigned int flag_t; /* The type of various bit flag sets */
2195
2196/* ------------------- Chunks sizes and alignments ----------------------- */
2197
2198#define MCHUNK_SIZE (sizeof(mchunk))
2199
2200#if FOOTERS
2201#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
2202#else /* FOOTERS */
2203#define CHUNK_OVERHEAD (SIZE_T_SIZE)
2204#endif /* FOOTERS */
2205
2206/* MMapped chunks need a second word of overhead ... */
2207#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
2208/* ... and additional padding for fake next-chunk at foot */
2209#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)
2210
2211/* The smallest size we can malloc is an aligned minimal chunk */
2212#define MIN_CHUNK_SIZE\
2213 ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
2214
2215/* conversion from malloc headers to user pointers, and back */
2216#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))
2217#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
2218/* chunk associated with aligned address A */
2219#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
2220
2221/* Bounds on request (not chunk) sizes. */
2222#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
2223#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
2224
2225/* pad request bytes into a usable size */
2226#define pad_request(req) \
2227 (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
2228
2229/* pad request, checking for minimum (but not maximum) */
2230#define request2size(req) \
2231 (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
2232
2233
2234/* ------------------ Operations on head and foot fields ----------------- */
2235
2236/*
2237 The head field of a chunk is or'ed with PINUSE_BIT when previous
2238 adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
2239 use, unless mmapped, in which case both bits are cleared.
2240
2241 FLAG4_BIT is not used by this malloc, but might be useful in extensions.
2242*/
2243
2244#define PINUSE_BIT (SIZE_T_ONE)
2245#define CINUSE_BIT (SIZE_T_TWO)
2246#define FLAG4_BIT (SIZE_T_FOUR)
2247#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
2248#define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT)
2249
2250/* Head value for fenceposts */
2251#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
2252
2253/* extraction of fields from head words */
2254#define cinuse(p) ((p)->head & CINUSE_BIT)
2255#define pinuse(p) ((p)->head & PINUSE_BIT)
2256#define flag4inuse(p) ((p)->head & FLAG4_BIT)
2257#define is_inuse(p) (((p)->head & INUSE_BITS) != PINUSE_BIT)
2258#define is_mmapped(p) (((p)->head & INUSE_BITS) == 0)
2259
2260#define chunksize(p) ((p)->head & ~(FLAG_BITS))
2261
2262#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
2263#define set_flag4(p) ((p)->head |= FLAG4_BIT)
2264#define clear_flag4(p) ((p)->head &= ~FLAG4_BIT)
2265
2266/* Treat space at ptr +/- offset as a chunk */
2267#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
2268#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
2269
2270/* Ptr to next or previous physical malloc_chunk. */
2271#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS)))
2272#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
2273
2274/* extract next chunk's pinuse bit */
2275#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
2276
2277/* Get/set size at footer */
2278#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)
2279#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
2280
2281/* Set size, pinuse bit, and foot */
2282#define set_size_and_pinuse_of_free_chunk(p, s)\
2283 ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
2284
2285/* Set size, pinuse bit, foot, and clear next pinuse */
2286#define set_free_with_pinuse(p, s, n)\
2287 (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
2288
2289/* Get the internal overhead associated with chunk p */
2290#define overhead_for(p)\
2291 (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
2292
2293/* Return true if malloced space is not necessarily cleared */
2294#if MMAP_CLEARS
2295#define calloc_must_clear(p) (!is_mmapped(p))
2296#else /* MMAP_CLEARS */
2297#define calloc_must_clear(p) (1)
2298#endif /* MMAP_CLEARS */
2299
2300/* ---------------------- Overlaid data structures ----------------------- */
2301
2302/*
2303 When chunks are not in use, they are treated as nodes of either
2304 lists or trees.
2305
2306 "Small" chunks are stored in circular doubly-linked lists, and look
2307 like this:
2308
2309 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2310 | Size of previous chunk |
2311 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2312 `head:' | Size of chunk, in bytes |P|
2313 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2314 | Forward pointer to next chunk in list |
2315 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2316 | Back pointer to previous chunk in list |
2317 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2318 | Unused space (may be 0 bytes long) .
2319 . .
2320 . |
2321nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2322 `foot:' | Size of chunk, in bytes |
2323 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2324
2325 Larger chunks are kept in a form of bitwise digital trees (aka
2326 tries) keyed on chunksizes. Because malloc_tree_chunks are only for
2327 free chunks greater than 256 bytes, their size doesn't impose any
2328 constraints on user chunk sizes. Each node looks like:
2329
2330 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2331 | Size of previous chunk |
2332 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2333 `head:' | Size of chunk, in bytes |P|
2334 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2335 | Forward pointer to next chunk of same size |
2336 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2337 | Back pointer to previous chunk of same size |
2338 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2339 | Pointer to left child (child[0]) |
2340 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2341 | Pointer to right child (child[1]) |
2342 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2343 | Pointer to parent |
2344 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2345 | bin index of this chunk |
2346 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2347 | Unused space .
2348 . |
2349nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2350 `foot:' | Size of chunk, in bytes |
2351 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2352
2353 Each tree holding treenodes is a tree of unique chunk sizes. Chunks
2354 of the same size are arranged in a circularly-linked list, with only
2355 the oldest chunk (the next to be used, in our FIFO ordering)
2356 actually in the tree. (Tree members are distinguished by a non-null
2357 parent pointer.) If a chunk with the same size an an existing node
2358 is inserted, it is linked off the existing node using pointers that
2359 work in the same way as fd/bk pointers of small chunks.
2360
2361 Each tree contains a power of 2 sized range of chunk sizes (the
2362 smallest is 0x100 <= x < 0x180), which is is divided in half at each
2363 tree level, with the chunks in the smaller half of the range (0x100
2364 <= x < 0x140 for the top nose) in the left subtree and the larger
2365 half (0x140 <= x < 0x180) in the right subtree. This is, of course,
2366 done by inspecting individual bits.
2367
2368 Using these rules, each node's left subtree contains all smaller
2369 sizes than its right subtree. However, the node at the root of each
2370 subtree has no particular ordering relationship to either. (The
2371 dividing line between the subtree sizes is based on trie relation.)
2372 If we remove the last chunk of a given size from the interior of the
2373 tree, we need to replace it with a leaf node. The tree ordering
2374 rules permit a node to be replaced by any leaf below it.
2375
2376 The smallest chunk in a tree (a common operation in a best-fit
2377 allocator) can be found by walking a path to the leftmost leaf in
2378 the tree. Unlike a usual binary tree, where we follow left child
2379 pointers until we reach a null, here we follow the right child
2380 pointer any time the left one is null, until we reach a leaf with
2381 both child pointers null. The smallest chunk in the tree will be
2382 somewhere along that path.
2383
2384 The worst case number of steps to add, find, or remove a node is
2385 bounded by the number of bits differentiating chunks within
2386 bins. Under current bin calculations, this ranges from 6 up to 21
2387 (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
2388 is of course much better.
2389*/
2390
2391struct malloc_tree_chunk {
2392 /* The first four fields must be compatible with malloc_chunk */
2393 size_t prev_foot;
2394 size_t head;
2395 struct malloc_tree_chunk* fd;
2396 struct malloc_tree_chunk* bk;
2397
2398 struct malloc_tree_chunk* child[2];
2399 struct malloc_tree_chunk* parent;
2400 bindex_t index;
2401};
2402
2403typedef struct malloc_tree_chunk tchunk;
2404typedef struct malloc_tree_chunk* tchunkptr;
2405typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
2406
2407/* A little helper macro for trees */
2408#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
2409
2410/* ----------------------------- Segments -------------------------------- */
2411
2412/*
2413 Each malloc space may include non-contiguous segments, held in a
2414 list headed by an embedded malloc_segment record representing the
2415 top-most space. Segments also include flags holding properties of
2416 the space. Large chunks that are directly allocated by mmap are not
2417 included in this list. They are instead independently created and
2418 destroyed without otherwise keeping track of them.
2419
2420 Segment management mainly comes into play for spaces allocated by
2421 MMAP. Any call to MMAP might or might not return memory that is
2422 adjacent to an existing segment. MORECORE normally contiguously
2423 extends the current space, so this space is almost always adjacent,
2424 which is simpler and faster to deal with. (This is why MORECORE is
2425 used preferentially to MMAP when both are available -- see
2426 sys_alloc.) When allocating using MMAP, we don't use any of the
2427 hinting mechanisms (inconsistently) supported in various
2428 implementations of unix mmap, or distinguish reserving from
2429 committing memory. Instead, we just ask for space, and exploit
2430 contiguity when we get it. It is probably possible to do
2431 better than this on some systems, but no general scheme seems
2432 to be significantly better.
2433
2434 Management entails a simpler variant of the consolidation scheme
2435 used for chunks to reduce fragmentation -- new adjacent memory is
2436 normally prepended or appended to an existing segment. However,
2437 there are limitations compared to chunk consolidation that mostly
2438 reflect the fact that segment processing is relatively infrequent
2439 (occurring only when getting memory from system) and that we
2440 don't expect to have huge numbers of segments:
2441
2442 * Segments are not indexed, so traversal requires linear scans. (It
2443 would be possible to index these, but is not worth the extra
2444 overhead and complexity for most programs on most platforms.)
2445 * New segments are only appended to old ones when holding top-most
2446 memory; if they cannot be prepended to others, they are held in
2447 different segments.
2448
2449 Except for the top-most segment of an mstate, each segment record
2450 is kept at the tail of its segment. Segments are added by pushing
2451 segment records onto the list headed by &mstate.seg for the
2452 containing mstate.
2453
2454 Segment flags control allocation/merge/deallocation policies:
2455 * If EXTERN_BIT set, then we did not allocate this segment,
2456 and so should not try to deallocate or merge with others.
2457 (This currently holds only for the initial segment passed
2458 into create_mspace_with_base.)
2459 * If USE_MMAP_BIT set, the segment may be merged with
2460 other surrounding mmapped segments and trimmed/de-allocated
2461 using munmap.
2462 * If neither bit is set, then the segment was obtained using
2463 MORECORE so can be merged with surrounding MORECORE'd segments
2464 and deallocated/trimmed using MORECORE with negative arguments.
2465*/
2466
2467struct malloc_segment {
2468 char* base; /* base address */
2469 size_t size; /* allocated size */
2470 struct malloc_segment* next; /* ptr to next segment */
2471 flag_t sflags; /* mmap and extern flag */
2472};
2473
2474#define is_mmapped_segment(S) ((S)->sflags & USE_MMAP_BIT)
2475#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT)
2476
2477typedef struct malloc_segment msegment;
2478typedef struct malloc_segment* msegmentptr;
2479
2480/* ---------------------------- malloc_state ----------------------------- */
2481
2482/*
2483 A malloc_state holds all of the bookkeeping for a space.
2484 The main fields are:
2485
2486 Top
2487 The topmost chunk of the currently active segment. Its size is
2488 cached in topsize. The actual size of topmost space is
2489 topsize+TOP_FOOT_SIZE, which includes space reserved for adding
2490 fenceposts and segment records if necessary when getting more
2491 space from the system. The size at which to autotrim top is
2492 cached from mparams in trim_check, except that it is disabled if
2493 an autotrim fails.
2494
2495 Designated victim (dv)
2496 This is the preferred chunk for servicing small requests that
2497 don't have exact fits. It is normally the chunk split off most
2498 recently to service another small request. Its size is cached in
2499 dvsize. The link fields of this chunk are not maintained since it
2500 is not kept in a bin.
2501
2502 SmallBins
2503 An array of bin headers for free chunks. These bins hold chunks
2504 with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
2505 chunks of all the same size, spaced 8 bytes apart. To simplify
2506 use in double-linked lists, each bin header acts as a malloc_chunk
2507 pointing to the real first node, if it exists (else pointing to
2508 itself). This avoids special-casing for headers. But to avoid
2509 waste, we allocate only the fd/bk pointers of bins, and then use
2510 repositioning tricks to treat these as the fields of a chunk.
2511
2512 TreeBins
2513 Treebins are pointers to the roots of trees holding a range of
2514 sizes. There are 2 equally spaced treebins for each power of two
2515 from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
2516 larger.
2517
2518 Bin maps
2519 There is one bit map for small bins ("smallmap") and one for
2520 treebins ("treemap). Each bin sets its bit when non-empty, and
2521 clears the bit when empty. Bit operations are then used to avoid
2522 bin-by-bin searching -- nearly all "search" is done without ever
2523 looking at bins that won't be selected. The bit maps
2524 conservatively use 32 bits per map word, even if on 64bit system.
2525 For a good description of some of the bit-based techniques used
2526 here, see Henry S. Warren Jr's book "Hacker's Delight" (and
2527 supplement at http://hackersdelight.org/). Many of these are
2528 intended to reduce the branchiness of paths through malloc etc, as
2529 well as to reduce the number of memory locations read or written.
2530
2531 Segments
2532 A list of segments headed by an embedded malloc_segment record
2533 representing the initial space.
2534
2535 Address check support
2536 The least_addr field is the least address ever obtained from
2537 MORECORE or MMAP. Attempted frees and reallocs of any address less
2538 than this are trapped (unless INSECURE is defined).
2539
2540 Magic tag
2541 A cross-check field that should always hold same value as mparams.magic.
2542
2543 Max allowed footprint
2544 The maximum allowed bytes to allocate from system (zero means no limit)
2545
2546 Flags
2547 Bits recording whether to use MMAP, locks, or contiguous MORECORE
2548
2549 Statistics
2550 Each space keeps track of current and maximum system memory
2551 obtained via MORECORE or MMAP.
2552
2553 Trim support
2554 Fields holding the amount of unused topmost memory that should trigger
2555 trimming, and a counter to force periodic scanning to release unused
2556 non-topmost segments.
2557
2558 Locking
2559 If USE_LOCKS is defined, the "mutex" lock is acquired and released
2560 around every public call using this mspace.
2561
2562 Extension support
2563 A void* pointer and a size_t field that can be used to help implement
2564 extensions to this malloc.
2565*/
2566
2567/* Bin types, widths and sizes */
2568#define NSMALLBINS (32U)
2569#define NTREEBINS (32U)
2570#define SMALLBIN_SHIFT (3U)
2571#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
2572#define TREEBIN_SHIFT (8U)
2573#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
2574#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
2575#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
2576
2577struct malloc_state {
2578 binmap_t smallmap;
2579 binmap_t treemap;
2580 size_t dvsize;
2581 size_t topsize;
2582 char* least_addr;
2583 mchunkptr dv;
2584 mchunkptr top;
2585 size_t trim_check;
2586 size_t release_checks;
2587 size_t magic;
2588 mchunkptr smallbins[(NSMALLBINS+1)*2];
2589 tbinptr treebins[NTREEBINS];
2590 size_t footprint;
2591 size_t max_footprint;
2592 size_t footprint_limit; /* zero means no limit */
2593 flag_t mflags;
2594#if USE_LOCKS
2595 MLOCK_T mutex; /* locate lock among fields that rarely change */
2596#endif /* USE_LOCKS */
2597 msegment seg;
2598 void* extp; /* Unused but available for extensions */
2599 size_t exts;
2600};
2601
2602typedef struct malloc_state* mstate;
2603
2604/* ------------- Global malloc_state and malloc_params ------------------- */
2605
2606/*
2607 malloc_params holds global properties, including those that can be
2608 dynamically set using mallopt. There is a single instance, mparams,
2609 initialized in init_mparams. Note that the non-zeroness of "magic"
2610 also serves as an initialization flag.
2611*/
2612
2613struct malloc_params {
2614 size_t magic;
2615 size_t page_size;
2616 size_t granularity;
2617 size_t mmap_threshold;
2618 size_t trim_threshold;
2619 flag_t default_mflags;
2620};
2621
2622static struct malloc_params mparams;
2623
2624/* Ensure mparams initialized */
2625#define ensure_initialization() (void)(mparams.magic != 0 || init_mparams())
2626
2627#if !ONLY_MSPACES
2628
2629/* The global malloc_state used for all non-"mspace" calls */
2630static struct malloc_state _gm_;
2631#define gm (&_gm_)
2632#define is_global(M) ((M) == &_gm_)
2633
2634#endif /* !ONLY_MSPACES */
2635
2636#define is_initialized(M) ((M)->top != 0)
2637
2638/* -------------------------- system alloc setup ------------------------- */
2639
2640/* Operations on mflags */
2641
2642#define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
2643#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
2644#if USE_LOCKS
2645#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
2646#else
2647#define disable_lock(M)
2648#endif
2649
2650#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)
2651#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)
2652#if HAVE_MMAP
2653#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)
2654#else
2655#define disable_mmap(M)
2656#endif
2657
2658#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)
2659#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)
2660
2661#define set_lock(M,L)\
2662 ((M)->mflags = (L)?\
2663 ((M)->mflags | USE_LOCK_BIT) :\
2664 ((M)->mflags & ~USE_LOCK_BIT))
2665
2666/* page-align a size */
2667#define page_align(S)\
2668 (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE))
2669
2670/* granularity-align a size */
2671#define granularity_align(S)\
2672 (((S) + (mparams.granularity - SIZE_T_ONE))\
2673 & ~(mparams.granularity - SIZE_T_ONE))
2674
2675
2676/* For mmap, use granularity alignment on windows, else page-align */
2677#ifdef WIN32
2678#define mmap_align(S) granularity_align(S)
2679#else
2680#define mmap_align(S) page_align(S)
2681#endif
2682
2683/* For sys_alloc, enough padding to ensure can malloc request on success */
2684#define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT)
2685
2686#define is_page_aligned(S)\
2687 (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
2688#define is_granularity_aligned(S)\
2689 (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
2690
2691/* True if segment S holds address A */
2692#define segment_holds(S, A)\
2693 ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
2694
2695/* Return segment holding given address */
2696static msegmentptr segment_holding(mstate m, char* addr) {
2697 msegmentptr sp = &m->seg;
2698 for (;;) {
2699 if (addr >= sp->base && addr < sp->base + sp->size)
2700 return sp;
2701 if ((sp = sp->next) == 0)
2702 return 0;
2703 }
2704}
2705
2706/* Return true if segment contains a segment link */
2707static int has_segment_link(mstate m, msegmentptr ss) {
2708 msegmentptr sp = &m->seg;
2709 for (;;) {
2710 if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
2711 return 1;
2712 if ((sp = sp->next) == 0)
2713 return 0;
2714 }
2715}
2716
2717#ifndef MORECORE_CANNOT_TRIM
2718#define should_trim(M,s) ((s) > (M)->trim_check)
2719#else /* MORECORE_CANNOT_TRIM */
2720#define should_trim(M,s) (0)
2721#endif /* MORECORE_CANNOT_TRIM */
2722
2723/*
2724 TOP_FOOT_SIZE is padding at the end of a segment, including space
2725 that may be needed to place segment records and fenceposts when new
2726 noncontiguous segments are added.
2727*/
2728#define TOP_FOOT_SIZE\
2729 (align_offset(TWO_SIZE_T_SIZES)+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
2730
2731
2732/* ------------------------------- Hooks -------------------------------- */
2733
2734/*
2735 PREACTION should be defined to return 0 on success, and nonzero on
2736 failure. If you are not using locking, you can redefine these to do
2737 anything you like.
2738*/
2739
2740#if USE_LOCKS
2741#define PREACTION(M) ((use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
2742#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
2743#else /* USE_LOCKS */
2744
2745#ifndef PREACTION
2746#define PREACTION(M) (0)
2747#endif /* PREACTION */
2748
2749#ifndef POSTACTION
2750#define POSTACTION(M)
2751#endif /* POSTACTION */
2752
2753#endif /* USE_LOCKS */
2754
2755/*
2756 CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
2757 USAGE_ERROR_ACTION is triggered on detected bad frees and
2758 reallocs. The argument p is an address that might have triggered the
2759 fault. It is ignored by the two predefined actions, but might be
2760 useful in custom actions that try to help diagnose errors.
2761*/
2762
2763#if PROCEED_ON_ERROR
2764
2765/* A count of the number of corruption errors causing resets */
2766int malloc_corruption_error_count;
2767
2768/* default corruption action */
2769static void reset_on_error(mstate m);
2770
2771#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
2772#define USAGE_ERROR_ACTION(m, p)
2773
2774#else /* PROCEED_ON_ERROR */
2775
2776#ifndef CORRUPTION_ERROR_ACTION
2777#define CORRUPTION_ERROR_ACTION(m) ABORT
2778#endif /* CORRUPTION_ERROR_ACTION */
2779
2780#ifndef USAGE_ERROR_ACTION
2781#define USAGE_ERROR_ACTION(m,p) ABORT
2782#endif /* USAGE_ERROR_ACTION */
2783
2784#endif /* PROCEED_ON_ERROR */
2785
2786
2787/* -------------------------- Debugging setup ---------------------------- */
2788
2789#if ! DEBUG
2790
2791#define check_free_chunk(M,P)
2792#define check_inuse_chunk(M,P)
2793#define check_malloced_chunk(M,P,N)
2794#define check_mmapped_chunk(M,P)
2795#define check_malloc_state(M)
2796#define check_top_chunk(M,P)
2797
2798#else /* DEBUG */
2799#define check_free_chunk(M,P) do_check_free_chunk(M,P)
2800#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
2801#define check_top_chunk(M,P) do_check_top_chunk(M,P)
2802#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
2803#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)
2804#define check_malloc_state(M) do_check_malloc_state(M)
2805
2806static void do_check_any_chunk(mstate m, mchunkptr p);
2807static void do_check_top_chunk(mstate m, mchunkptr p);
2808static void do_check_mmapped_chunk(mstate m, mchunkptr p);
2809static void do_check_inuse_chunk(mstate m, mchunkptr p);
2810static void do_check_free_chunk(mstate m, mchunkptr p);
2811static void do_check_malloced_chunk(mstate m, void* mem, size_t s);
2812static void do_check_tree(mstate m, tchunkptr t);
2813static void do_check_treebin(mstate m, bindex_t i);
2814static void do_check_smallbin(mstate m, bindex_t i);
2815static void do_check_malloc_state(mstate m);
2816static int bin_find(mstate m, mchunkptr x);
2817static size_t traverse_and_check(mstate m);
2818#endif /* DEBUG */
2819
2820/* ---------------------------- Indexing Bins ---------------------------- */
2821
2822#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
2823#define small_index(s) (bindex_t)((s) >> SMALLBIN_SHIFT)
2824#define small_index2size(i) ((i) << SMALLBIN_SHIFT)
2825#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
2826
2827/* addressing by index. See above about smallbin repositioning */
2828#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
2829#define treebin_at(M,i) (&((M)->treebins[i]))
2830
2831/* assign tree index for size S to variable I. Use x86 asm if possible */
2832#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
2833#define compute_tree_index(S, I)\
2834{\
2835 unsigned int X = S >> TREEBIN_SHIFT;\
2836 if (X == 0)\
2837 I = 0;\
2838 else if (X > 0xFFFF)\
2839 I = NTREEBINS-1;\
2840 else {\
2841 unsigned int K = (unsigned) sizeof(X)*__CHAR_BIT__ - 1 - (unsigned) __builtin_clz(X); \
2842 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
2843 }\
2844}
2845
2846#elif defined (__INTEL_COMPILER)
2847#define compute_tree_index(S, I)\
2848{\
2849 size_t X = S >> TREEBIN_SHIFT;\
2850 if (X == 0)\
2851 I = 0;\
2852 else if (X > 0xFFFF)\
2853 I = NTREEBINS-1;\
2854 else {\
2855 unsigned int K = _bit_scan_reverse (X); \
2856 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
2857 }\
2858}
2859
2860#elif defined(_MSC_VER) && _MSC_VER>=1300
2861#define compute_tree_index(S, I)\
2862{\
2863 size_t X = S >> TREEBIN_SHIFT;\
2864 if (X == 0)\
2865 I = 0;\
2866 else if (X > 0xFFFF)\
2867 I = NTREEBINS-1;\
2868 else {\
2869 unsigned int K;\
2870 _BitScanReverse((DWORD *) &K, (DWORD) X);\
2871 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
2872 }\
2873}
2874
2875#else /* GNUC */
2876#define compute_tree_index(S, I)\
2877{\
2878 size_t X = S >> TREEBIN_SHIFT;\
2879 if (X == 0)\
2880 I = 0;\
2881 else if (X > 0xFFFF)\
2882 I = NTREEBINS-1;\
2883 else {\
2884 unsigned int Y = (unsigned int)X;\
2885 unsigned int N = ((Y - 0x100) >> 16) & 8;\
2886 unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
2887 N += K;\
2888 N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
2889 K = 14 - N + ((Y <<= K) >> 15);\
2890 I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
2891 }\
2892}
2893#endif /* GNUC */
2894
2895/* Bit representing maximum resolved size in a treebin at i */
2896#define bit_for_tree_index(i) \
2897 (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
2898
2899/* Shift placing maximum resolved bit in a treebin at i as sign bit */
2900#define leftshift_for_tree_index(i) \
2901 ((i == NTREEBINS-1)? 0 : \
2902 ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
2903
2904/* The size of the smallest chunk held in bin with index i */
2905#define minsize_for_tree_index(i) \
2906 ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
2907 (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
2908
2909
2910/* ------------------------ Operations on bin maps ----------------------- */
2911
2912/* bit corresponding to given index */
2913#define idx2bit(i) ((binmap_t)(1) << (i))
2914
2915/* Mark/Clear bits with given index */
2916#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
2917#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
2918#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
2919
2920#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
2921#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
2922#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
2923
2924/* isolate the least set bit of a bitmap */
2925#define least_bit(x) ((x) & -(x))
2926
2927/* mask with all bits to left of least bit of x on */
2928#define left_bits(x) ((x<<1) | -(x<<1))
2929
2930/* mask with all bits to left of or equal to least bit of x on */
2931#define same_or_left_bits(x) ((x) | -(x))
2932
2933/* index corresponding to given bit. Use x86 asm if possible */
2934
2935#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
2936#define compute_bit2idx(X, I)\
2937{\
2938 unsigned int J;\
2939 J = __builtin_ctz(X); \
2940 I = (bindex_t)J;\
2941}
2942
2943#elif defined (__INTEL_COMPILER)
2944#define compute_bit2idx(X, I)\
2945{\
2946 unsigned int J;\
2947 J = _bit_scan_forward (X); \
2948 I = (bindex_t)J;\
2949}
2950
2951#elif defined(_MSC_VER) && _MSC_VER>=1300
2952#define compute_bit2idx(X, I)\
2953{\
2954 unsigned int J;\
2955 _BitScanForward((DWORD *) &J, X);\
2956 I = (bindex_t)J;\
2957}
2958
2959#elif USE_BUILTIN_FFS
2960#define compute_bit2idx(X, I) I = ffs(X)-1
2961
2962#else
2963#define compute_bit2idx(X, I)\
2964{\
2965 unsigned int Y = X - 1;\
2966 unsigned int K = Y >> (16-4) & 16;\
2967 unsigned int N = K; Y >>= K;\
2968 N += K = Y >> (8-3) & 8; Y >>= K;\
2969 N += K = Y >> (4-2) & 4; Y >>= K;\
2970 N += K = Y >> (2-1) & 2; Y >>= K;\
2971 N += K = Y >> (1-0) & 1; Y >>= K;\
2972 I = (bindex_t)(N + Y);\
2973}
2974#endif /* GNUC */
2975
2976
2977/* ----------------------- Runtime Check Support ------------------------- */
2978
2979/*
2980 For security, the main invariant is that malloc/free/etc never
2981 writes to a static address other than malloc_state, unless static
2982 malloc_state itself has been corrupted, which cannot occur via
2983 malloc (because of these checks). In essence this means that we
2984 believe all pointers, sizes, maps etc held in malloc_state, but
2985 check all of those linked or offsetted from other embedded data
2986 structures. These checks are interspersed with main code in a way
2987 that tends to minimize their run-time cost.
2988
2989 When FOOTERS is defined, in addition to range checking, we also
2990 verify footer fields of inuse chunks, which can be used guarantee
2991 that the mstate controlling malloc/free is intact. This is a
2992 streamlined version of the approach described by William Robertson
2993 et al in "Run-time Detection of Heap-based Overflows" LISA'03
2994 http://www.usenix.org/events/lisa03/tech/robertson.html The footer
2995 of an inuse chunk holds the xor of its mstate and a random seed,
2996 that is checked upon calls to free() and realloc(). This is
2997 (probabalistically) unguessable from outside the program, but can be
2998 computed by any code successfully malloc'ing any chunk, so does not
2999 itself provide protection against code that has already broken
3000 security through some other means. Unlike Robertson et al, we
3001 always dynamically check addresses of all offset chunks (previous,
3002 next, etc). This turns out to be cheaper than relying on hashes.
3003*/
3004
3005#if !INSECURE
3006/* Check if address a is at least as high as any from MORECORE or MMAP */
3007#define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
3008/* Check if address of next chunk n is higher than base chunk p */
3009#define ok_next(p, n) ((char*)(p) < (char*)(n))
3010/* Check if p has inuse status */
3011#define ok_inuse(p) is_inuse(p)
3012/* Check if p has its pinuse bit on */
3013#define ok_pinuse(p) pinuse(p)
3014
3015#else /* !INSECURE */
3016#define ok_address(M, a) (1)
3017#define ok_next(b, n) (1)
3018#define ok_inuse(p) (1)
3019#define ok_pinuse(p) (1)
3020#endif /* !INSECURE */
3021
3022#if (FOOTERS && !INSECURE)
3023/* Check if (alleged) mstate m has expected magic field */
3024#define ok_magic(M) ((M)->magic == mparams.magic)
3025#else /* (FOOTERS && !INSECURE) */
3026#define ok_magic(M) (1)
3027#endif /* (FOOTERS && !INSECURE) */
3028
3029/* In gcc, use __builtin_expect to minimize impact of checks */
3030#if !INSECURE
3031#if defined(__GNUC__) && __GNUC__ >= 3
3032#define RTCHECK(e) __builtin_expect(e, 1)
3033#else /* GNUC */
3034#define RTCHECK(e) (e)
3035#endif /* GNUC */
3036#else /* !INSECURE */
3037#define RTCHECK(e) (1)
3038#endif /* !INSECURE */
3039
3040/* macros to set up inuse chunks with or without footers */
3041
3042#if !FOOTERS
3043
3044#define mark_inuse_foot(M,p,s)
3045
3046/* Macros for setting head/foot of non-mmapped chunks */
3047
3048/* Set cinuse bit and pinuse bit of next chunk */
3049#define set_inuse(M,p,s)\
3050 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
3051 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
3052
3053/* Set cinuse and pinuse of this chunk and pinuse of next chunk */
3054#define set_inuse_and_pinuse(M,p,s)\
3055 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
3056 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
3057
3058/* Set size, cinuse and pinuse bit of this chunk */
3059#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
3060 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
3061
3062#else /* FOOTERS */
3063
3064/* Set foot of inuse chunk to be xor of mstate and seed */
3065#define mark_inuse_foot(M,p,s)\
3066 (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
3067
3068#define get_mstate_for(p)\
3069 ((mstate)(((mchunkptr)((char*)(p) +\
3070 (chunksize(p))))->prev_foot ^ mparams.magic))
3071
3072#define set_inuse(M,p,s)\
3073 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
3074 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
3075 mark_inuse_foot(M,p,s))
3076
3077#define set_inuse_and_pinuse(M,p,s)\
3078 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
3079 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
3080 mark_inuse_foot(M,p,s))
3081
3082#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
3083 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
3084 mark_inuse_foot(M, p, s))
3085
3086#endif /* !FOOTERS */
3087
3088/* ---------------------------- setting mparams -------------------------- */
3089
3090#if LOCK_AT_FORK
3091static void pre_fork(void) { ACQUIRE_LOCK(&(gm)->mutex); }
3092static void post_fork_parent(void) { RELEASE_LOCK(&(gm)->mutex); }
3093static void post_fork_child(void) { INITIAL_LOCK(&(gm)->mutex); }
3094#endif /* LOCK_AT_FORK */
3095
3096/* Initialize mparams */
3097static int init_mparams(void) {
3098#ifdef NEED_GLOBAL_LOCK_INIT
3099 if (malloc_global_mutex_status <= 0)
3100 init_malloc_global_mutex();
3101#endif
3102
3103 ACQUIRE_MALLOC_GLOBAL_LOCK();
3104 if (mparams.magic == 0) {
3105 size_t magic;
3106 size_t psize;
3107 size_t gsize;
3108
3109#ifndef WIN32
3110 psize = malloc_getpagesize;
3111 gsize = ((DEFAULT_GRANULARITY != 0)? DEFAULT_GRANULARITY : psize);
3112#else /* WIN32 */
3113 {
3114 SYSTEM_INFO system_info;
3115 GetSystemInfo(&system_info);
3116 psize = system_info.dwPageSize;
3117 gsize = ((DEFAULT_GRANULARITY != 0)?
3118 DEFAULT_GRANULARITY : system_info.dwAllocationGranularity);
3119 }
3120#endif /* WIN32 */
3121
3122 /* Sanity-check configuration:
3123 size_t must be unsigned and as wide as pointer type.
3124 ints must be at least 4 bytes.
3125 alignment must be at least 8.
3126 Alignment, min chunk size, and page size must all be powers of 2.
3127 */
3128 if ((sizeof(size_t) != sizeof(char*)) ||
3129 (MAX_SIZE_T < MIN_CHUNK_SIZE) ||
3130 (sizeof(int) < 4) ||
3131 (MALLOC_ALIGNMENT < (size_t)8U) ||
3132 ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
3133 ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) ||
3134 ((gsize & (gsize-SIZE_T_ONE)) != 0) ||
3135 ((psize & (psize-SIZE_T_ONE)) != 0))
3136 ABORT;
3137 mparams.granularity = gsize;
3138 mparams.page_size = psize;
3139 mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
3140 mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
3141#if MORECORE_CONTIGUOUS
3142 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
3143#else /* MORECORE_CONTIGUOUS */
3144 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
3145#endif /* MORECORE_CONTIGUOUS */
3146
3147#if !ONLY_MSPACES
3148 /* Set up lock for main malloc area */
3149 gm->mflags = mparams.default_mflags;
3150 (void)INITIAL_LOCK(&gm->mutex);
3151#endif
3152#if LOCK_AT_FORK
3153 pthread_atfork(&pre_fork, &post_fork_parent, &post_fork_child);
3154#endif
3155
3156 {
3157#if USE_DEV_RANDOM
3158 int fd;
3159 unsigned char buf[sizeof(size_t)];
3160 /* Try to use /dev/urandom, else fall back on using time */
3161 if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
3162 read(fd, buf, sizeof(buf)) == sizeof(buf)) {
3163 magic = *((size_t *) buf);
3164 close(fd);
3165 }
3166 else
3167#endif /* USE_DEV_RANDOM */
3168#ifdef WIN32
3169 magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U);
3170#elif defined(LACKS_TIME_H)
3171 magic = (size_t)&magic ^ (size_t)0x55555555U;
3172#else
3173 magic = (size_t)(time(timer: 0) ^ (size_t)0x55555555U);
3174#endif
3175 magic |= (size_t)8U; /* ensure nonzero */
3176 magic &= ~(size_t)7U; /* improve chances of fault for bad values */
3177 /* Until memory modes commonly available, use volatile-write */
3178 (*(volatile size_t *)(&(mparams.magic))) = magic;
3179 }
3180 }
3181
3182 RELEASE_MALLOC_GLOBAL_LOCK();
3183 return 1;
3184}
3185
3186/* support for mallopt */
3187static int change_mparam(int param_number, int value) {
3188 size_t val;
3189 ensure_initialization();
3190 val = (value == -1)? MAX_SIZE_T : (size_t)value;
3191 switch(param_number) {
3192 case M_TRIM_THRESHOLD:
3193 mparams.trim_threshold = val;
3194 return 1;
3195 case M_GRANULARITY:
3196 if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
3197 mparams.granularity = val;
3198 return 1;
3199 }
3200 else
3201 return 0;
3202 case M_MMAP_THRESHOLD:
3203 mparams.mmap_threshold = val;
3204 return 1;
3205 default:
3206 return 0;
3207 }
3208}
3209
3210#if DEBUG
3211/* ------------------------- Debugging Support --------------------------- */
3212
3213/* Check properties of any chunk, whether free, inuse, mmapped etc */
3214static void do_check_any_chunk(mstate m, mchunkptr p) {
3215 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
3216 assert(ok_address(m, p));
3217}
3218
3219/* Check properties of top chunk */
3220static void do_check_top_chunk(mstate m, mchunkptr p) {
3221 msegmentptr sp = segment_holding(m, (char*)p);
3222 size_t sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */
3223 assert(sp != 0);
3224 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
3225 assert(ok_address(m, p));
3226 assert(sz == m->topsize);
3227 assert(sz > 0);
3228 assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
3229 assert(pinuse(p));
3230 assert(!pinuse(chunk_plus_offset(p, sz)));
3231}
3232
3233/* Check properties of (inuse) mmapped chunks */
3234static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
3235 size_t sz = chunksize(p);
3236 size_t len = (sz + (p->prev_foot) + MMAP_FOOT_PAD);
3237 assert(is_mmapped(p));
3238 assert(use_mmap(m));
3239 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
3240 assert(ok_address(m, p));
3241 assert(!is_small(sz));
3242 assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
3243 assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
3244 assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
3245}
3246
3247/* Check properties of inuse chunks */
3248static void do_check_inuse_chunk(mstate m, mchunkptr p) {
3249 do_check_any_chunk(m, p);
3250 assert(is_inuse(p));
3251 assert(next_pinuse(p));
3252 /* If not pinuse and not mmapped, previous chunk has OK offset */
3253 assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
3254 if (is_mmapped(p))
3255 do_check_mmapped_chunk(m, p);
3256}
3257
3258/* Check properties of free chunks */
3259static void do_check_free_chunk(mstate m, mchunkptr p) {
3260 size_t sz = chunksize(p);
3261 mchunkptr next = chunk_plus_offset(p, sz);
3262 do_check_any_chunk(m, p);
3263 assert(!is_inuse(p));
3264 assert(!next_pinuse(p));
3265 assert (!is_mmapped(p));
3266 if (p != m->dv && p != m->top) {
3267 if (sz >= MIN_CHUNK_SIZE) {
3268 assert((sz & CHUNK_ALIGN_MASK) == 0);
3269 assert(is_aligned(chunk2mem(p)));
3270 assert(next->prev_foot == sz);
3271 assert(pinuse(p));
3272 assert (next == m->top || is_inuse(next));
3273 assert(p->fd->bk == p);
3274 assert(p->bk->fd == p);
3275 }
3276 else /* markers are always of size SIZE_T_SIZE */
3277 assert(sz == SIZE_T_SIZE);
3278 }
3279}
3280
3281/* Check properties of malloced chunks at the point they are malloced */
3282static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
3283 if (mem != 0) {
3284 mchunkptr p = mem2chunk(mem);
3285 size_t sz = p->head & ~INUSE_BITS;
3286 do_check_inuse_chunk(m, p);
3287 assert((sz & CHUNK_ALIGN_MASK) == 0);
3288 assert(sz >= MIN_CHUNK_SIZE);
3289 assert(sz >= s);
3290 /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
3291 assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
3292 }
3293}
3294
3295/* Check a tree and its subtrees. */
3296static void do_check_tree(mstate m, tchunkptr t) {
3297 tchunkptr head = 0;
3298 tchunkptr u = t;
3299 bindex_t tindex = t->index;
3300 size_t tsize = chunksize(t);
3301 bindex_t idx;
3302 compute_tree_index(tsize, idx);
3303 assert(tindex == idx);
3304 assert(tsize >= MIN_LARGE_SIZE);
3305 assert(tsize >= minsize_for_tree_index(idx));
3306 assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
3307
3308 do { /* traverse through chain of same-sized nodes */
3309 do_check_any_chunk(m, ((mchunkptr)u));
3310 assert(u->index == tindex);
3311 assert(chunksize(u) == tsize);
3312 assert(!is_inuse(u));
3313 assert(!next_pinuse(u));
3314 assert(u->fd->bk == u);
3315 assert(u->bk->fd == u);
3316 if (u->parent == 0) {
3317 assert(u->child[0] == 0);
3318 assert(u->child[1] == 0);
3319 }
3320 else {
3321 assert(head == 0); /* only one node on chain has parent */
3322 head = u;
3323 assert(u->parent != u);
3324 assert (u->parent->child[0] == u ||
3325 u->parent->child[1] == u ||
3326 *((tbinptr*)(u->parent)) == u);
3327 if (u->child[0] != 0) {
3328 assert(u->child[0]->parent == u);
3329 assert(u->child[0] != u);
3330 do_check_tree(m, u->child[0]);
3331 }
3332 if (u->child[1] != 0) {
3333 assert(u->child[1]->parent == u);
3334 assert(u->child[1] != u);
3335 do_check_tree(m, u->child[1]);
3336 }
3337 if (u->child[0] != 0 && u->child[1] != 0) {
3338 assert(chunksize(u->child[0]) < chunksize(u->child[1]));
3339 }
3340 }
3341 u = u->fd;
3342 } while (u != t);
3343 assert(head != 0);
3344}
3345
3346/* Check all the chunks in a treebin. */
3347static void do_check_treebin(mstate m, bindex_t i) {
3348 tbinptr* tb = treebin_at(m, i);
3349 tchunkptr t = *tb;
3350 int empty = (m->treemap & (1U << i)) == 0;
3351 if (t == 0)
3352 assert(empty);
3353 if (!empty)
3354 do_check_tree(m, t);
3355}
3356
3357/* Check all the chunks in a smallbin. */
3358static void do_check_smallbin(mstate m, bindex_t i) {
3359 sbinptr b = smallbin_at(m, i);
3360 mchunkptr p = b->bk;
3361 unsigned int empty = (m->smallmap & (1U << i)) == 0;
3362 if (p == b)
3363 assert(empty);
3364 if (!empty) {
3365 for (; p != b; p = p->bk) {
3366 size_t size = chunksize(p);
3367 mchunkptr q;
3368 /* each chunk claims to be free */
3369 do_check_free_chunk(m, p);
3370 /* chunk belongs in bin */
3371 assert(small_index(size) == i);
3372 assert(p->bk == b || chunksize(p->bk) == chunksize(p));
3373 /* chunk is followed by an inuse chunk */
3374 q = next_chunk(p);
3375 if (q->head != FENCEPOST_HEAD)
3376 do_check_inuse_chunk(m, q);
3377 }
3378 }
3379}
3380
3381/* Find x in a bin. Used in other check functions. */
3382static int bin_find(mstate m, mchunkptr x) {
3383 size_t size = chunksize(x);
3384 if (is_small(size)) {
3385 bindex_t sidx = small_index(size);
3386 sbinptr b = smallbin_at(m, sidx);
3387 if (smallmap_is_marked(m, sidx)) {
3388 mchunkptr p = b;
3389 do {
3390 if (p == x)
3391 return 1;
3392 } while ((p = p->fd) != b);
3393 }
3394 }
3395 else {
3396 bindex_t tidx;
3397 compute_tree_index(size, tidx);
3398 if (treemap_is_marked(m, tidx)) {
3399 tchunkptr t = *treebin_at(m, tidx);
3400 size_t sizebits = size << leftshift_for_tree_index(tidx);
3401 while (t != 0 && chunksize(t) != size) {
3402 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
3403 sizebits <<= 1;
3404 }
3405 if (t != 0) {
3406 tchunkptr u = t;
3407 do {
3408 if (u == (tchunkptr)x)
3409 return 1;
3410 } while ((u = u->fd) != t);
3411 }
3412 }
3413 }
3414 return 0;
3415}
3416
3417/* Traverse each chunk and check it; return total */
3418static size_t traverse_and_check(mstate m) {
3419 size_t sum = 0;
3420 if (is_initialized(m)) {
3421 msegmentptr s = &m->seg;
3422 sum += m->topsize + TOP_FOOT_SIZE;
3423 while (s != 0) {
3424 mchunkptr q = align_as_chunk(s->base);
3425 mchunkptr lastq = 0;
3426 assert(pinuse(q));
3427 while (segment_holds(s, q) &&
3428 q != m->top && q->head != FENCEPOST_HEAD) {
3429 sum += chunksize(q);
3430 if (is_inuse(q)) {
3431 assert(!bin_find(m, q));
3432 do_check_inuse_chunk(m, q);
3433 }
3434 else {
3435 assert(q == m->dv || bin_find(m, q));
3436 assert(lastq == 0 || is_inuse(lastq)); /* Not 2 consecutive free */
3437 do_check_free_chunk(m, q);
3438 }
3439 lastq = q;
3440 q = next_chunk(q);
3441 }
3442 s = s->next;
3443 }
3444 }
3445 return sum;
3446}
3447
3448
3449/* Check all properties of malloc_state. */
3450static void do_check_malloc_state(mstate m) {
3451 bindex_t i;
3452 size_t total;
3453 /* check bins */
3454 for (i = 0; i < NSMALLBINS; ++i)
3455 do_check_smallbin(m, i);
3456 for (i = 0; i < NTREEBINS; ++i)
3457 do_check_treebin(m, i);
3458
3459 if (m->dvsize != 0) { /* check dv chunk */
3460 do_check_any_chunk(m, m->dv);
3461 assert(m->dvsize == chunksize(m->dv));
3462 assert(m->dvsize >= MIN_CHUNK_SIZE);
3463 assert(bin_find(m, m->dv) == 0);
3464 }
3465
3466 if (m->top != 0) { /* check top chunk */
3467 do_check_top_chunk(m, m->top);
3468 /*assert(m->topsize == chunksize(m->top)); redundant */
3469 assert(m->topsize > 0);
3470 assert(bin_find(m, m->top) == 0);
3471 }
3472
3473 total = traverse_and_check(m);
3474 assert(total <= m->footprint);
3475 assert(m->footprint <= m->max_footprint);
3476}
3477#endif /* DEBUG */
3478
3479/* ----------------------------- statistics ------------------------------ */
3480
3481#if !NO_MALLINFO
3482static struct mallinfo internal_mallinfo(mstate m) {
3483 struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
3484 ensure_initialization();
3485 if (!PREACTION(m)) {
3486 check_malloc_state(m);
3487 if (is_initialized(m)) {
3488 size_t nfree = SIZE_T_ONE; /* top always free */
3489 size_t mfree = m->topsize + TOP_FOOT_SIZE;
3490 size_t sum = mfree;
3491 msegmentptr s = &m->seg;
3492 while (s != 0) {
3493 mchunkptr q = align_as_chunk(s->base);
3494 while (segment_holds(s, q) &&
3495 q != m->top && q->head != FENCEPOST_HEAD) {
3496 size_t sz = chunksize(q);
3497 sum += sz;
3498 if (!is_inuse(q)) {
3499 mfree += sz;
3500 ++nfree;
3501 }
3502 q = next_chunk(q);
3503 }
3504 s = s->next;
3505 }
3506
3507 nm.arena = sum;
3508 nm.ordblks = nfree;
3509 nm.hblkhd = m->footprint - sum;
3510 nm.usmblks = m->max_footprint;
3511 nm.uordblks = m->footprint - mfree;
3512 nm.fordblks = mfree;
3513 nm.keepcost = m->topsize;
3514 }
3515
3516 POSTACTION(m);
3517 }
3518 return nm;
3519}
3520#endif /* !NO_MALLINFO */
3521
3522#if !NO_MALLOC_STATS
3523static void internal_malloc_stats(mstate m) {
3524 ensure_initialization();
3525 if (!PREACTION(m)) {
3526 size_t maxfp = 0;
3527 size_t fp = 0;
3528 size_t used = 0;
3529 check_malloc_state(m);
3530 if (is_initialized(m)) {
3531 msegmentptr s = &m->seg;
3532 maxfp = m->max_footprint;
3533 fp = m->footprint;
3534 used = fp - (m->topsize + TOP_FOOT_SIZE);
3535
3536 while (s != 0) {
3537 mchunkptr q = align_as_chunk(s->base);
3538 while (segment_holds(s, q) &&
3539 q != m->top && q->head != FENCEPOST_HEAD) {
3540 if (!is_inuse(q))
3541 used -= chunksize(q);
3542 q = next_chunk(q);
3543 }
3544 s = s->next;
3545 }
3546 }
3547 POSTACTION(m); /* drop lock */
3548 fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
3549 fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp));
3550 fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used));
3551 }
3552}
3553#endif /* NO_MALLOC_STATS */
3554
3555/* ----------------------- Operations on smallbins ----------------------- */
3556
3557/*
3558 Various forms of linking and unlinking are defined as macros. Even
3559 the ones for trees, which are very long but have very short typical
3560 paths. This is ugly but reduces reliance on inlining support of
3561 compilers.
3562*/
3563
3564/* Link a free chunk into a smallbin */
3565#define insert_small_chunk(M, P, S) {\
3566 bindex_t I = small_index(S);\
3567 mchunkptr B = smallbin_at(M, I);\
3568 mchunkptr F = B;\
3569 assert(S >= MIN_CHUNK_SIZE);\
3570 if (!smallmap_is_marked(M, I))\
3571 mark_smallmap(M, I);\
3572 else if (RTCHECK(ok_address(M, B->fd)))\
3573 F = B->fd;\
3574 else {\
3575 CORRUPTION_ERROR_ACTION(M);\
3576 }\
3577 B->fd = P;\
3578 F->bk = P;\
3579 P->fd = F;\
3580 P->bk = B;\
3581}
3582
3583/* Unlink a chunk from a smallbin */
3584#define unlink_small_chunk(M, P, S) {\
3585 mchunkptr F = P->fd;\
3586 mchunkptr B = P->bk;\
3587 bindex_t I = small_index(S);\
3588 assert(P != B);\
3589 assert(P != F);\
3590 assert(chunksize(P) == small_index2size(I));\
3591 if (RTCHECK(F == smallbin_at(M,I) || (ok_address(M, F) && F->bk == P))) { \
3592 if (B == F) {\
3593 clear_smallmap(M, I);\
3594 }\
3595 else if (RTCHECK(B == smallbin_at(M,I) ||\
3596 (ok_address(M, B) && B->fd == P))) {\
3597 F->bk = B;\
3598 B->fd = F;\
3599 }\
3600 else {\
3601 CORRUPTION_ERROR_ACTION(M);\
3602 }\
3603 }\
3604 else {\
3605 CORRUPTION_ERROR_ACTION(M);\
3606 }\
3607}
3608
3609/* Unlink the first chunk from a smallbin */
3610#define unlink_first_small_chunk(M, B, P, I) {\
3611 mchunkptr F = P->fd;\
3612 assert(P != B);\
3613 assert(P != F);\
3614 assert(chunksize(P) == small_index2size(I));\
3615 if (B == F) {\
3616 clear_smallmap(M, I);\
3617 }\
3618 else if (RTCHECK(ok_address(M, F) && F->bk == P)) {\
3619 F->bk = B;\
3620 B->fd = F;\
3621 }\
3622 else {\
3623 CORRUPTION_ERROR_ACTION(M);\
3624 }\
3625}
3626
3627/* Replace dv node, binning the old one */
3628/* Used only when dvsize known to be small */
3629#define replace_dv(M, P, S) {\
3630 size_t DVS = M->dvsize;\
3631 assert(is_small(DVS));\
3632 if (DVS != 0) {\
3633 mchunkptr DV = M->dv;\
3634 insert_small_chunk(M, DV, DVS);\
3635 }\
3636 M->dvsize = S;\
3637 M->dv = P;\
3638}
3639
3640/* ------------------------- Operations on trees ------------------------- */
3641
3642/* Insert chunk into tree */
3643#define insert_large_chunk(M, X, S) {\
3644 tbinptr* H;\
3645 bindex_t I;\
3646 compute_tree_index(S, I);\
3647 H = treebin_at(M, I);\
3648 X->index = I;\
3649 X->child[0] = X->child[1] = 0;\
3650 if (!treemap_is_marked(M, I)) {\
3651 mark_treemap(M, I);\
3652 *H = X;\
3653 X->parent = (tchunkptr)H;\
3654 X->fd = X->bk = X;\
3655 }\
3656 else {\
3657 tchunkptr T = *H;\
3658 size_t K = S << leftshift_for_tree_index(I);\
3659 for (;;) {\
3660 if (chunksize(T) != S) {\
3661 tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
3662 K <<= 1;\
3663 if (*C != 0)\
3664 T = *C;\
3665 else if (RTCHECK(ok_address(M, C))) {\
3666 *C = X;\
3667 X->parent = T;\
3668 X->fd = X->bk = X;\
3669 break;\
3670 }\
3671 else {\
3672 CORRUPTION_ERROR_ACTION(M);\
3673 break;\
3674 }\
3675 }\
3676 else {\
3677 tchunkptr F = T->fd;\
3678 if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
3679 T->fd = F->bk = X;\
3680 X->fd = F;\
3681 X->bk = T;\
3682 X->parent = 0;\
3683 break;\
3684 }\
3685 else {\
3686 CORRUPTION_ERROR_ACTION(M);\
3687 break;\
3688 }\
3689 }\
3690 }\
3691 }\
3692}
3693
3694/*
3695 Unlink steps:
3696
3697 1. If x is a chained node, unlink it from its same-sized fd/bk links
3698 and choose its bk node as its replacement.
3699 2. If x was the last node of its size, but not a leaf node, it must
3700 be replaced with a leaf node (not merely one with an open left or
3701 right), to make sure that lefts and rights of descendents
3702 correspond properly to bit masks. We use the rightmost descendent
3703 of x. We could use any other leaf, but this is easy to locate and
3704 tends to counteract removal of leftmosts elsewhere, and so keeps
3705 paths shorter than minimally guaranteed. This doesn't loop much
3706 because on average a node in a tree is near the bottom.
3707 3. If x is the base of a chain (i.e., has parent links) relink
3708 x's parent and children to x's replacement (or null if none).
3709*/
3710
3711#define unlink_large_chunk(M, X) {\
3712 tchunkptr XP = X->parent;\
3713 tchunkptr R;\
3714 if (X->bk != X) {\
3715 tchunkptr F = X->fd;\
3716 R = X->bk;\
3717 if (RTCHECK(ok_address(M, F) && F->bk == X && R->fd == X)) {\
3718 F->bk = R;\
3719 R->fd = F;\
3720 }\
3721 else {\
3722 CORRUPTION_ERROR_ACTION(M);\
3723 }\
3724 }\
3725 else {\
3726 tchunkptr* RP;\
3727 if (((R = *(RP = &(X->child[1]))) != 0) ||\
3728 ((R = *(RP = &(X->child[0]))) != 0)) {\
3729 tchunkptr* CP;\
3730 while ((*(CP = &(R->child[1])) != 0) ||\
3731 (*(CP = &(R->child[0])) != 0)) {\
3732 R = *(RP = CP);\
3733 }\
3734 if (RTCHECK(ok_address(M, RP)))\
3735 *RP = 0;\
3736 else {\
3737 CORRUPTION_ERROR_ACTION(M);\
3738 }\
3739 }\
3740 }\
3741 if (XP != 0) {\
3742 tbinptr* H = treebin_at(M, X->index);\
3743 if (X == *H) {\
3744 if ((*H = R) == 0) \
3745 clear_treemap(M, X->index);\
3746 }\
3747 else if (RTCHECK(ok_address(M, XP))) {\
3748 if (XP->child[0] == X) \
3749 XP->child[0] = R;\
3750 else \
3751 XP->child[1] = R;\
3752 }\
3753 else\
3754 CORRUPTION_ERROR_ACTION(M);\
3755 if (R != 0) {\
3756 if (RTCHECK(ok_address(M, R))) {\
3757 tchunkptr C0, C1;\
3758 R->parent = XP;\
3759 if ((C0 = X->child[0]) != 0) {\
3760 if (RTCHECK(ok_address(M, C0))) {\
3761 R->child[0] = C0;\
3762 C0->parent = R;\
3763 }\
3764 else\
3765 CORRUPTION_ERROR_ACTION(M);\
3766 }\
3767 if ((C1 = X->child[1]) != 0) {\
3768 if (RTCHECK(ok_address(M, C1))) {\
3769 R->child[1] = C1;\
3770 C1->parent = R;\
3771 }\
3772 else\
3773 CORRUPTION_ERROR_ACTION(M);\
3774 }\
3775 }\
3776 else\
3777 CORRUPTION_ERROR_ACTION(M);\
3778 }\
3779 }\
3780}
3781
3782/* Relays to large vs small bin operations */
3783
3784#define insert_chunk(M, P, S)\
3785 if (is_small(S)) insert_small_chunk(M, P, S)\
3786 else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
3787
3788#define unlink_chunk(M, P, S)\
3789 if (is_small(S)) unlink_small_chunk(M, P, S)\
3790 else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
3791
3792
3793/* Relays to internal calls to malloc/free from realloc, memalign etc */
3794
3795#if ONLY_MSPACES
3796#define internal_malloc(m, b) mspace_malloc(m, b)
3797#define internal_free(m, mem) mspace_free(m,mem);
3798#else /* ONLY_MSPACES */
3799#if MSPACES
3800#define internal_malloc(m, b)\
3801 ((m == gm)? dlmalloc(b) : mspace_malloc(m, b))
3802#define internal_free(m, mem)\
3803 if (m == gm) dlfree(mem); else mspace_free(m,mem);
3804#else /* MSPACES */
3805#define internal_malloc(m, b) dlmalloc(b)
3806#define internal_free(m, mem) dlfree(mem)
3807#endif /* MSPACES */
3808#endif /* ONLY_MSPACES */
3809
3810/* ----------------------- Direct-mmapping chunks ----------------------- */
3811
3812/*
3813 Directly mmapped chunks are set up with an offset to the start of
3814 the mmapped region stored in the prev_foot field of the chunk. This
3815 allows reconstruction of the required argument to MUNMAP when freed,
3816 and also allows adjustment of the returned chunk to meet alignment
3817 requirements (especially in memalign).
3818*/
3819
3820/* Malloc using mmap */
3821static void* mmap_alloc(mstate m, size_t nb) {
3822 size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
3823 if (m->footprint_limit != 0) {
3824 size_t fp = m->footprint + mmsize;
3825 if (fp <= m->footprint || fp > m->footprint_limit)
3826 return 0;
3827 }
3828 if (mmsize > nb) { /* Check for wrap around 0 */
3829 char* mm = (char*)(CALL_DIRECT_MMAP(mmsize));
3830 if (mm != CMFAIL) {
3831 size_t offset = align_offset(chunk2mem(mm));
3832 size_t psize = mmsize - offset - MMAP_FOOT_PAD;
3833 mchunkptr p = (mchunkptr)(mm + offset);
3834 p->prev_foot = offset;
3835 p->head = psize;
3836 mark_inuse_foot(m, p, psize);
3837 chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
3838 chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
3839
3840 if (m->least_addr == 0 || mm < m->least_addr)
3841 m->least_addr = mm;
3842 if ((m->footprint += mmsize) > m->max_footprint)
3843 m->max_footprint = m->footprint;
3844 assert(is_aligned(chunk2mem(p)));
3845 check_mmapped_chunk(m, p);
3846 return chunk2mem(p);
3847 }
3848 }
3849 return 0;
3850}
3851
3852/* Realloc using mmap */
3853static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb, int flags) {
3854 size_t oldsize = chunksize(oldp);
3855 (void)flags; /* placate people compiling -Wunused */
3856 if (is_small(nb)) /* Can't shrink mmap regions below small size */
3857 return 0;
3858 /* Keep old chunk if big enough but not too big */
3859 if (oldsize >= nb + SIZE_T_SIZE &&
3860 (oldsize - nb) <= (mparams.granularity << 1))
3861 return oldp;
3862 else {
3863 size_t offset = oldp->prev_foot;
3864 size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
3865 size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
3866 char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
3867 oldmmsize, newmmsize, flags);
3868 if (cp != CMFAIL) {
3869 mchunkptr newp = (mchunkptr)(cp + offset);
3870 size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
3871 newp->head = psize;
3872 mark_inuse_foot(m, newp, psize);
3873 chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
3874 chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
3875
3876 if (cp < m->least_addr)
3877 m->least_addr = cp;
3878 if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
3879 m->max_footprint = m->footprint;
3880 check_mmapped_chunk(m, newp);
3881 return newp;
3882 }
3883 }
3884 return 0;
3885}
3886
3887
3888/* -------------------------- mspace management -------------------------- */
3889
3890/* Initialize top chunk and its size */
3891static void init_top(mstate m, mchunkptr p, size_t psize) {
3892 /* Ensure alignment */
3893 size_t offset = align_offset(chunk2mem(p));
3894 p = (mchunkptr)((char*)p + offset);
3895 psize -= offset;
3896
3897 m->top = p;
3898 m->topsize = psize;
3899 p->head = psize | PINUSE_BIT;
3900 /* set size of fake trailing chunk holding overhead space only once */
3901 chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
3902 m->trim_check = mparams.trim_threshold; /* reset on each update */
3903}
3904
3905/* Initialize bins for a new mstate that is otherwise zeroed out */
3906static void init_bins(mstate m) {
3907 /* Establish circular links for smallbins */
3908 bindex_t i;
3909 for (i = 0; i < NSMALLBINS; ++i) {
3910 sbinptr bin = smallbin_at(m,i);
3911 bin->fd = bin->bk = bin;
3912 }
3913}
3914
3915#if PROCEED_ON_ERROR
3916
3917/* default corruption action */
3918static void reset_on_error(mstate m) {
3919 int i;
3920 ++malloc_corruption_error_count;
3921 /* Reinitialize fields to forget about all memory */
3922 m->smallmap = m->treemap = 0;
3923 m->dvsize = m->topsize = 0;
3924 m->seg.base = 0;
3925 m->seg.size = 0;
3926 m->seg.next = 0;
3927 m->top = m->dv = 0;
3928 for (i = 0; i < NTREEBINS; ++i)
3929 *treebin_at(m, i) = 0;
3930 init_bins(m);
3931}
3932#endif /* PROCEED_ON_ERROR */
3933
3934/* Allocate chunk and prepend remainder with chunk in successor base. */
3935static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
3936 size_t nb) {
3937 mchunkptr p = align_as_chunk(newbase);
3938 mchunkptr oldfirst = align_as_chunk(oldbase);
3939 size_t psize = (char*)oldfirst - (char*)p;
3940 mchunkptr q = chunk_plus_offset(p, nb);
3941 size_t qsize = psize - nb;
3942 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
3943
3944 assert((char*)oldfirst > (char*)q);
3945 assert(pinuse(oldfirst));
3946 assert(qsize >= MIN_CHUNK_SIZE);
3947
3948 /* consolidate remainder with first chunk of old base */
3949 if (oldfirst == m->top) {
3950 size_t tsize = m->topsize += qsize;
3951 m->top = q;
3952 q->head = tsize | PINUSE_BIT;
3953 check_top_chunk(m, q);
3954 }
3955 else if (oldfirst == m->dv) {
3956 size_t dsize = m->dvsize += qsize;
3957 m->dv = q;
3958 set_size_and_pinuse_of_free_chunk(q, dsize);
3959 }
3960 else {
3961 if (!is_inuse(oldfirst)) {
3962 size_t nsize = chunksize(oldfirst);
3963 unlink_chunk(m, oldfirst, nsize);
3964 oldfirst = chunk_plus_offset(oldfirst, nsize);
3965 qsize += nsize;
3966 }
3967 set_free_with_pinuse(q, qsize, oldfirst);
3968 insert_chunk(m, q, qsize);
3969 check_free_chunk(m, q);
3970 }
3971
3972 check_malloced_chunk(m, chunk2mem(p), nb);
3973 return chunk2mem(p);
3974}
3975
3976/* Add a segment to hold a new noncontiguous region */
3977static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
3978 /* Determine locations and sizes of segment, fenceposts, old top */
3979 char* old_top = (char*)m->top;
3980 msegmentptr oldsp = segment_holding(m, addr: old_top);
3981 char* old_end = oldsp->base + oldsp->size;
3982 size_t ssize = pad_request(sizeof(struct malloc_segment));
3983 char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
3984 size_t offset = align_offset(chunk2mem(rawsp));
3985 char* asp = rawsp + offset;
3986 char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
3987 mchunkptr sp = (mchunkptr)csp;
3988 msegmentptr ss = (msegmentptr)(chunk2mem(sp));
3989 mchunkptr tnext = chunk_plus_offset(sp, ssize);
3990 mchunkptr p = tnext;
3991 int nfences = 0;
3992
3993 /* reset top to new space */
3994 init_top(m, p: (mchunkptr)tbase, psize: tsize - TOP_FOOT_SIZE);
3995
3996 /* Set up segment record */
3997 assert(is_aligned(ss));
3998 set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
3999 *ss = m->seg; /* Push current record */
4000 m->seg.base = tbase;
4001 m->seg.size = tsize;
4002 m->seg.sflags = mmapped;
4003 m->seg.next = ss;
4004
4005 /* Insert trailing fenceposts */
4006 for (;;) {
4007 mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
4008 p->head = FENCEPOST_HEAD;
4009 ++nfences;
4010 if ((char*)(&(nextp->head)) < old_end)
4011 p = nextp;
4012 else
4013 break;
4014 }
4015 assert(nfences >= 2);
4016 (void) nfences; //Added by iG to silence warning about unused nfences
4017
4018 /* Insert the rest of old top into a bin as an ordinary free chunk */
4019 if (csp != old_top) {
4020 mchunkptr q = (mchunkptr)old_top;
4021 size_t psize = csp - old_top;
4022 mchunkptr tn = chunk_plus_offset(q, psize);
4023 set_free_with_pinuse(q, psize, tn);
4024 insert_chunk(m, q, psize);
4025 }
4026
4027 check_top_chunk(m, m->top);
4028}
4029
4030/* -------------------------- System allocation -------------------------- */
4031
4032/* Get memory from system using MORECORE or MMAP */
4033static void* sys_alloc(mstate m, size_t nb) {
4034 char* tbase = CMFAIL;
4035 size_t tsize = 0;
4036 flag_t mmap_flag = 0;
4037 size_t asize; /* allocation size */
4038
4039 ensure_initialization();
4040
4041 /* Directly map large chunks, but only if already initialized */
4042 if (use_mmap(m) && nb >= mparams.mmap_threshold && m->topsize != 0) {
4043 void* mem = mmap_alloc(m, nb);
4044 if (mem != 0)
4045 return mem;
4046 }
4047
4048 asize = granularity_align(nb + SYS_ALLOC_PADDING);
4049 if (asize <= nb)
4050 return 0; /* wraparound */
4051 if (m->footprint_limit != 0) {
4052 size_t fp = m->footprint + asize;
4053 if (fp <= m->footprint || fp > m->footprint_limit)
4054 return 0;
4055 }
4056
4057 /*
4058 Try getting memory in any of three ways (in most-preferred to
4059 least-preferred order):
4060 1. A call to MORECORE that can normally contiguously extend memory.
4061 (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
4062 or main space is mmapped or a previous contiguous call failed)
4063 2. A call to MMAP new space (disabled if not HAVE_MMAP).
4064 Note that under the default settings, if MORECORE is unable to
4065 fulfill a request, and HAVE_MMAP is true, then mmap is
4066 used as a noncontiguous system allocator. This is a useful backup
4067 strategy for systems with holes in address spaces -- in this case
4068 sbrk cannot contiguously expand the heap, but mmap may be able to
4069 find space.
4070 3. A call to MORECORE that cannot usually contiguously extend memory.
4071 (disabled if not HAVE_MORECORE)
4072
4073 In all cases, we need to request enough bytes from system to ensure
4074 we can malloc nb bytes upon success, so pad with enough space for
4075 top_foot, plus alignment-pad to make sure we don't lose bytes if
4076 not on boundary, and round this up to a granularity unit.
4077 */
4078
4079 if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
4080 char* br = CMFAIL;
4081 size_t ssize = asize; /* sbrk call size */
4082 msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, addr: (char*)m->top);
4083 ACQUIRE_MALLOC_GLOBAL_LOCK();
4084
4085 if (ss == 0) { /* First time through or recovery */
4086 char* base = (char*)CALL_MORECORE(0);
4087 if (base != CMFAIL) {
4088 size_t fp;
4089 /* Adjust to end on a page boundary */
4090 if (!is_page_aligned(base))
4091 ssize += (page_align((size_t)base) - (size_t)base);
4092 fp = m->footprint + ssize; /* recheck limits */
4093 if (ssize > nb && ssize < HALF_MAX_SIZE_T &&
4094 (m->footprint_limit == 0 ||
4095 (fp > m->footprint && fp <= m->footprint_limit)) &&
4096 (br = (char*)(CALL_MORECORE(ssize))) == base) {
4097 tbase = base;
4098 tsize = ssize;
4099 }
4100 }
4101 }
4102 else {
4103 /* Subtract out existing available top space from MORECORE request. */
4104 ssize = granularity_align(nb - m->topsize + SYS_ALLOC_PADDING);
4105 /* Use mem here only if it did continuously extend old space */
4106 if (ssize < HALF_MAX_SIZE_T &&
4107 (br = (char*)(CALL_MORECORE(ssize))) == ss->base+ss->size) {
4108 tbase = br;
4109 tsize = ssize;
4110 }
4111 }
4112
4113 if (tbase == CMFAIL) { /* Cope with partial failure */
4114 if (br != CMFAIL) { /* Try to use/extend the space we did get */
4115 if (ssize < HALF_MAX_SIZE_T &&
4116 ssize < nb + SYS_ALLOC_PADDING) {
4117 size_t esize = granularity_align(nb + SYS_ALLOC_PADDING - ssize);
4118 if (esize < HALF_MAX_SIZE_T) {
4119 char* end = (char*)CALL_MORECORE(esize);
4120 if (end != CMFAIL)
4121 ssize += esize;
4122 else { /* Can't use; try to release */
4123 (void) CALL_MORECORE(-ssize);
4124 br = CMFAIL;
4125 }
4126 }
4127 }
4128 }
4129 if (br != CMFAIL) { /* Use the space we did get */
4130 tbase = br;
4131 tsize = ssize;
4132 }
4133 else
4134 disable_contiguous(m); /* Don't try contiguous path in the future */
4135 }
4136
4137 RELEASE_MALLOC_GLOBAL_LOCK();
4138 }
4139
4140 if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */
4141 char* mp = (char*)(CALL_MMAP(asize));
4142 if (mp != CMFAIL) {
4143 tbase = mp;
4144 tsize = asize;
4145 mmap_flag = USE_MMAP_BIT;
4146 }
4147 }
4148
4149 if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
4150 if (asize < HALF_MAX_SIZE_T) {
4151 char* br = CMFAIL;
4152 char* end = CMFAIL;
4153 ACQUIRE_MALLOC_GLOBAL_LOCK();
4154 br = (char*)(CALL_MORECORE(asize));
4155 end = (char*)(CALL_MORECORE(0));
4156 RELEASE_MALLOC_GLOBAL_LOCK();
4157 if (br != CMFAIL && end != CMFAIL && br < end) {
4158 size_t ssize = end - br;
4159 if (ssize > nb + TOP_FOOT_SIZE) {
4160 tbase = br;
4161 tsize = ssize;
4162 }
4163 }
4164 }
4165 }
4166
4167 if (tbase != CMFAIL) {
4168
4169 if ((m->footprint += tsize) > m->max_footprint)
4170 m->max_footprint = m->footprint;
4171
4172 if (!is_initialized(m)) { /* first-time initialization */
4173 if (m->least_addr == 0 || tbase < m->least_addr)
4174 m->least_addr = tbase;
4175 m->seg.base = tbase;
4176 m->seg.size = tsize;
4177 m->seg.sflags = mmap_flag;
4178 m->magic = mparams.magic;
4179 m->release_checks = MAX_RELEASE_CHECK_RATE;
4180 init_bins(m);
4181#if !ONLY_MSPACES
4182 if (is_global(m))
4183 init_top(m, p: (mchunkptr)tbase, psize: tsize - TOP_FOOT_SIZE);
4184 else
4185#endif
4186 {
4187 /* Offset top by embedded malloc_state */
4188 mchunkptr mn = next_chunk(mem2chunk(m));
4189 init_top(m, p: mn, psize: (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
4190 }
4191 }
4192
4193 else {
4194 /* Try to merge with an existing segment */
4195 msegmentptr sp = &m->seg;
4196 /* Only consider most recent segment if traversal suppressed */
4197 while (sp != 0 && tbase != sp->base + sp->size)
4198 sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
4199 if (sp != 0 &&
4200 !is_extern_segment(sp) &&
4201 (sp->sflags & USE_MMAP_BIT) == mmap_flag &&
4202 segment_holds(sp, m->top)) { /* append */
4203 sp->size += tsize;
4204 init_top(m, p: m->top, psize: m->topsize + tsize);
4205 }
4206 else {
4207 if (tbase < m->least_addr)
4208 m->least_addr = tbase;
4209 sp = &m->seg;
4210 while (sp != 0 && sp->base != tbase + tsize)
4211 sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
4212 if (sp != 0 &&
4213 !is_extern_segment(sp) &&
4214 (sp->sflags & USE_MMAP_BIT) == mmap_flag) {
4215 char* oldbase = sp->base;
4216 sp->base = tbase;
4217 sp->size += tsize;
4218 return prepend_alloc(m, newbase: tbase, oldbase, nb);
4219 }
4220 else
4221 add_segment(m, tbase, tsize, mmapped: mmap_flag);
4222 }
4223 }
4224
4225 if (nb < m->topsize) { /* Allocate from new or extended top space */
4226 size_t rsize = m->topsize -= nb;
4227 mchunkptr p = m->top;
4228 mchunkptr r = m->top = chunk_plus_offset(p, nb);
4229 r->head = rsize | PINUSE_BIT;
4230 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
4231 check_top_chunk(m, m->top);
4232 check_malloced_chunk(m, chunk2mem(p), nb);
4233 return chunk2mem(p);
4234 }
4235 }
4236
4237 MALLOC_FAILURE_ACTION;
4238 return 0;
4239}
4240
4241/* ----------------------- system deallocation -------------------------- */
4242
4243/* Unmap and unlink any mmapped segments that don't contain used chunks */
4244static size_t release_unused_segments(mstate m) {
4245 size_t released = 0;
4246 int nsegs = 0;
4247 msegmentptr pred = &m->seg;
4248 msegmentptr sp = pred->next;
4249 while (sp != 0) {
4250 char* base = sp->base;
4251 size_t size = sp->size;
4252 msegmentptr next = sp->next;
4253 ++nsegs;
4254 if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
4255 mchunkptr p = align_as_chunk(base);
4256 size_t psize = chunksize(p);
4257 /* Can unmap if first chunk holds entire segment and not pinned */
4258 if (!is_inuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
4259 tchunkptr tp = (tchunkptr)p;
4260 assert(segment_holds(sp, (char*)sp));
4261 if (p == m->dv) {
4262 m->dv = 0;
4263 m->dvsize = 0;
4264 }
4265 else {
4266 unlink_large_chunk(m, tp);
4267 }
4268 if (CALL_MUNMAP(base, size) == 0) {
4269 released += size;
4270 m->footprint -= size;
4271 /* unlink obsoleted record */
4272 sp = pred;
4273 sp->next = next;
4274 }
4275 else { /* back out if cannot unmap */
4276 insert_large_chunk(m, tp, psize);
4277 }
4278 }
4279 }
4280 if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */
4281 break;
4282 pred = sp;
4283 sp = next;
4284 }
4285 /* Reset check counter */
4286 m->release_checks = (((size_t) nsegs > (size_t) MAX_RELEASE_CHECK_RATE)?
4287 (size_t) nsegs : (size_t) MAX_RELEASE_CHECK_RATE);
4288 return released;
4289}
4290
4291static int sys_trim(mstate m, size_t pad) {
4292 size_t released = 0;
4293 ensure_initialization();
4294 if (pad < MAX_REQUEST && is_initialized(m)) {
4295 pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
4296
4297 if (m->topsize > pad) {
4298 /* Shrink top space in granularity-size units, keeping at least one */
4299 size_t unit = mparams.granularity;
4300 size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
4301 SIZE_T_ONE) * unit;
4302 msegmentptr sp = segment_holding(m, addr: (char*)m->top);
4303
4304 if (!is_extern_segment(sp)) {
4305 if (is_mmapped_segment(sp)) {
4306 if (HAVE_MMAP &&
4307 sp->size >= extra &&
4308 !has_segment_link(m, ss: sp)) { /* can't shrink if pinned */
4309 size_t newsize = sp->size - extra;
4310 (void)newsize; /* placate people compiling -Wunused-variable */
4311 /* Prefer mremap, fall back to munmap */
4312 if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
4313 (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
4314 released = extra;
4315 }
4316 }
4317 }
4318 else if (HAVE_MORECORE) {
4319 if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
4320 extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
4321 ACQUIRE_MALLOC_GLOBAL_LOCK();
4322 {
4323 /* Make sure end of memory is where we last set it. */
4324 char* old_br = (char*)(CALL_MORECORE(0));
4325 if (old_br == sp->base + sp->size) {
4326 char* rel_br = (char*)(CALL_MORECORE(-extra));
4327 char* new_br = (char*)(CALL_MORECORE(0));
4328 if (rel_br != CMFAIL && new_br < old_br)
4329 released = old_br - new_br;
4330 }
4331 }
4332 RELEASE_MALLOC_GLOBAL_LOCK();
4333 }
4334 }
4335
4336 if (released != 0) {
4337 sp->size -= released;
4338 m->footprint -= released;
4339 init_top(m, p: m->top, psize: m->topsize - released);
4340 check_top_chunk(m, m->top);
4341 }
4342 }
4343
4344 /* Unmap any unused mmapped segments */
4345 if (HAVE_MMAP)
4346 released += release_unused_segments(m);
4347
4348 /* On failure, disable autotrim to avoid repeated failed future calls */
4349 if (released == 0 && m->topsize > m->trim_check)
4350 m->trim_check = MAX_SIZE_T;
4351 }
4352
4353 return (released != 0)? 1 : 0;
4354}
4355
4356/* Consolidate and bin a chunk. Differs from exported versions
4357 of free mainly in that the chunk need not be marked as inuse.
4358*/
4359static void dispose_chunk(mstate m, mchunkptr p, size_t psize) {
4360 mchunkptr next = chunk_plus_offset(p, psize);
4361 if (!pinuse(p)) {
4362 mchunkptr prev;
4363 size_t prevsize = p->prev_foot;
4364 if (is_mmapped(p)) {
4365 psize += prevsize + MMAP_FOOT_PAD;
4366 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
4367 m->footprint -= psize;
4368 return;
4369 }
4370 prev = chunk_minus_offset(p, prevsize);
4371 psize += prevsize;
4372 p = prev;
4373 if (RTCHECK(ok_address(m, prev))) { /* consolidate backward */
4374 if (p != m->dv) {
4375 unlink_chunk(m, p, prevsize);
4376 }
4377 else if ((next->head & INUSE_BITS) == INUSE_BITS) {
4378 m->dvsize = psize;
4379 set_free_with_pinuse(p, psize, next);
4380 return;
4381 }
4382 }
4383 else {
4384 CORRUPTION_ERROR_ACTION(m);
4385 return;
4386 }
4387 }
4388 if (RTCHECK(ok_address(m, next))) {
4389 if (!cinuse(next)) { /* consolidate forward */
4390 if (next == m->top) {
4391 size_t tsize = m->topsize += psize;
4392 m->top = p;
4393 p->head = tsize | PINUSE_BIT;
4394 if (p == m->dv) {
4395 m->dv = 0;
4396 m->dvsize = 0;
4397 }
4398 return;
4399 }
4400 else if (next == m->dv) {
4401 size_t dsize = m->dvsize += psize;
4402 m->dv = p;
4403 set_size_and_pinuse_of_free_chunk(p, dsize);
4404 return;
4405 }
4406 else {
4407 size_t nsize = chunksize(next);
4408 psize += nsize;
4409 unlink_chunk(m, next, nsize);
4410 set_size_and_pinuse_of_free_chunk(p, psize);
4411 if (p == m->dv) {
4412 m->dvsize = psize;
4413 return;
4414 }
4415 }
4416 }
4417 else {
4418 set_free_with_pinuse(p, psize, next);
4419 }
4420 insert_chunk(m, p, psize);
4421 }
4422 else {
4423 CORRUPTION_ERROR_ACTION(m);
4424 }
4425}
4426
4427/* ---------------------------- malloc --------------------------- */
4428
4429/* allocate a large request from the best fitting chunk in a treebin */
4430static void* tmalloc_large(mstate m, size_t nb) {
4431 tchunkptr v = 0;
4432 size_t rsize = -nb; /* Unsigned negation */
4433 tchunkptr t;
4434 bindex_t idx;
4435 compute_tree_index(nb, idx);
4436 if ((t = *treebin_at(m, idx)) != 0) {
4437 /* Traverse tree for this bin looking for node with size == nb */
4438 size_t sizebits = nb << leftshift_for_tree_index(idx);
4439 tchunkptr rst = 0; /* The deepest untaken right subtree */
4440 for (;;) {
4441 tchunkptr rt;
4442 size_t trem = chunksize(t) - nb;
4443 if (trem < rsize) {
4444 v = t;
4445 if ((rsize = trem) == 0)
4446 break;
4447 }
4448 rt = t->child[1];
4449 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
4450 if (rt != 0 && rt != t)
4451 rst = rt;
4452 if (t == 0) {
4453 t = rst; /* set t to least subtree holding sizes > nb */
4454 break;
4455 }
4456 sizebits <<= 1;
4457 }
4458 }
4459 if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
4460 binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
4461 if (leftbits != 0) {
4462 bindex_t i;
4463 binmap_t leastbit = least_bit(leftbits);
4464 compute_bit2idx(leastbit, i);
4465 t = *treebin_at(m, i);
4466 }
4467 }
4468
4469 while (t != 0) { /* find smallest of tree or subtree */
4470 size_t trem = chunksize(t) - nb;
4471 if (trem < rsize) {
4472 rsize = trem;
4473 v = t;
4474 }
4475 t = leftmost_child(t);
4476 }
4477
4478 /* If dv is a better fit, return 0 so malloc will use it */
4479 if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
4480 if (RTCHECK(ok_address(m, v))) { /* split */
4481 mchunkptr r = chunk_plus_offset(v, nb);
4482 assert(chunksize(v) == rsize + nb);
4483 if (RTCHECK(ok_next(v, r))) {
4484 unlink_large_chunk(m, v);
4485 if (rsize < MIN_CHUNK_SIZE)
4486 set_inuse_and_pinuse(m, v, (rsize + nb));
4487 else {
4488 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
4489 set_size_and_pinuse_of_free_chunk(r, rsize);
4490 insert_chunk(m, r, rsize);
4491 }
4492 return chunk2mem(v);
4493 }
4494 }
4495 CORRUPTION_ERROR_ACTION(m);
4496 }
4497 return 0;
4498}
4499
4500/* allocate a small request from the best fitting chunk in a treebin */
4501static void* tmalloc_small(mstate m, size_t nb) {
4502 tchunkptr t, v;
4503 size_t rsize;
4504 bindex_t i;
4505 binmap_t leastbit = least_bit(m->treemap);
4506 compute_bit2idx(leastbit, i);
4507 v = t = *treebin_at(m, i);
4508 rsize = chunksize(t) - nb;
4509
4510 while ((t = leftmost_child(t)) != 0) {
4511 size_t trem = chunksize(t) - nb;
4512 if (trem < rsize) {
4513 rsize = trem;
4514 v = t;
4515 }
4516 }
4517
4518 if (RTCHECK(ok_address(m, v))) {
4519 mchunkptr r = chunk_plus_offset(v, nb);
4520 assert(chunksize(v) == rsize + nb);
4521 if (RTCHECK(ok_next(v, r))) {
4522 unlink_large_chunk(m, v);
4523 if (rsize < MIN_CHUNK_SIZE)
4524 set_inuse_and_pinuse(m, v, (rsize + nb));
4525 else {
4526 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
4527 set_size_and_pinuse_of_free_chunk(r, rsize);
4528 replace_dv(m, r, rsize);
4529 }
4530 return chunk2mem(v);
4531 }
4532 }
4533
4534 CORRUPTION_ERROR_ACTION(m);
4535 return 0;
4536}
4537
4538#if !ONLY_MSPACES
4539
4540void* dlmalloc(size_t bytes) {
4541 /*
4542 Basic algorithm:
4543 If a small request (< 256 bytes minus per-chunk overhead):
4544 1. If one exists, use a remainderless chunk in associated smallbin.
4545 (Remainderless means that there are too few excess bytes to
4546 represent as a chunk.)
4547 2. If it is big enough, use the dv chunk, which is normally the
4548 chunk adjacent to the one used for the most recent small request.
4549 3. If one exists, split the smallest available chunk in a bin,
4550 saving remainder in dv.
4551 4. If it is big enough, use the top chunk.
4552 5. If available, get memory from system and use it
4553 Otherwise, for a large request:
4554 1. Find the smallest available binned chunk that fits, and use it
4555 if it is better fitting than dv chunk, splitting if necessary.
4556 2. If better fitting than any binned chunk, use the dv chunk.
4557 3. If it is big enough, use the top chunk.
4558 4. If request size >= mmap threshold, try to directly mmap this chunk.
4559 5. If available, get memory from system and use it
4560
4561 The ugly goto's here ensure that postaction occurs along all paths.
4562 */
4563
4564#if USE_LOCKS
4565 ensure_initialization(); /* initialize in sys_alloc if not using locks */
4566#endif
4567
4568 if (!PREACTION(gm)) {
4569 void* mem;
4570 size_t nb;
4571 if (bytes <= MAX_SMALL_REQUEST) {
4572 bindex_t idx;
4573 binmap_t smallbits;
4574 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
4575 idx = small_index(nb);
4576 smallbits = gm->smallmap >> idx;
4577
4578 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
4579 mchunkptr b, p;
4580 idx += ~smallbits & 1; /* Uses next bin if idx empty */
4581 b = smallbin_at(gm, idx);
4582 p = b->fd;
4583 assert(chunksize(p) == small_index2size(idx));
4584 unlink_first_small_chunk(gm, b, p, idx);
4585 set_inuse_and_pinuse(gm, p, small_index2size(idx));
4586 mem = chunk2mem(p);
4587 check_malloced_chunk(gm, mem, nb);
4588 goto postaction;
4589 }
4590
4591 else if (nb > gm->dvsize) {
4592 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
4593 mchunkptr b, p, r;
4594 size_t rsize;
4595 bindex_t i;
4596 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
4597 binmap_t leastbit = least_bit(leftbits);
4598 compute_bit2idx(leastbit, i);
4599 b = smallbin_at(gm, i);
4600 p = b->fd;
4601 assert(chunksize(p) == small_index2size(i));
4602 unlink_first_small_chunk(gm, b, p, i);
4603 rsize = small_index2size(i) - nb;
4604 /* Fit here cannot be remainderless if 4byte sizes */
4605 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
4606 set_inuse_and_pinuse(gm, p, small_index2size(i));
4607 else {
4608 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4609 r = chunk_plus_offset(p, nb);
4610 set_size_and_pinuse_of_free_chunk(r, rsize);
4611 replace_dv(gm, r, rsize);
4612 }
4613 mem = chunk2mem(p);
4614 check_malloced_chunk(gm, mem, nb);
4615 goto postaction;
4616 }
4617
4618 else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
4619 check_malloced_chunk(gm, mem, nb);
4620 goto postaction;
4621 }
4622 }
4623 }
4624 else if (bytes >= MAX_REQUEST)
4625 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
4626 else {
4627 nb = pad_request(bytes);
4628 if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
4629 check_malloced_chunk(gm, mem, nb);
4630 goto postaction;
4631 }
4632 }
4633
4634 if (nb <= gm->dvsize) {
4635 size_t rsize = gm->dvsize - nb;
4636 mchunkptr p = gm->dv;
4637 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
4638 mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
4639 gm->dvsize = rsize;
4640 set_size_and_pinuse_of_free_chunk(r, rsize);
4641 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4642 }
4643 else { /* exhaust dv */
4644 size_t dvs = gm->dvsize;
4645 gm->dvsize = 0;
4646 gm->dv = 0;
4647 set_inuse_and_pinuse(gm, p, dvs);
4648 }
4649 mem = chunk2mem(p);
4650 check_malloced_chunk(gm, mem, nb);
4651 goto postaction;
4652 }
4653
4654 else if (nb < gm->topsize) { /* Split top */
4655 size_t rsize = gm->topsize -= nb;
4656 mchunkptr p = gm->top;
4657 mchunkptr r = gm->top = chunk_plus_offset(p, nb);
4658 r->head = rsize | PINUSE_BIT;
4659 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4660 mem = chunk2mem(p);
4661 check_top_chunk(gm, gm->top);
4662 check_malloced_chunk(gm, mem, nb);
4663 goto postaction;
4664 }
4665
4666 mem = sys_alloc(gm, nb);
4667
4668 postaction:
4669 POSTACTION(gm);
4670 return mem;
4671 }
4672
4673 return 0;
4674}
4675
4676/* ---------------------------- free --------------------------- */
4677
4678void dlfree(void* mem) {
4679 /*
4680 Consolidate freed chunks with preceding or succeeding bordering
4681 free chunks, if they exist, and then place in a bin. Intermixed
4682 with special cases for top, dv, mmapped chunks, and usage errors.
4683 */
4684
4685 if (mem != 0) {
4686 mchunkptr p = mem2chunk(mem);
4687#if FOOTERS
4688 mstate fm = get_mstate_for(p);
4689 if (!ok_magic(fm)) {
4690 USAGE_ERROR_ACTION(fm, p);
4691 return;
4692 }
4693#else /* FOOTERS */
4694#define fm gm
4695#endif /* FOOTERS */
4696 if (!PREACTION(fm)) {
4697 check_inuse_chunk(fm, p);
4698 if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
4699 size_t psize = chunksize(p);
4700 mchunkptr next = chunk_plus_offset(p, psize);
4701 if (!pinuse(p)) {
4702 size_t prevsize = p->prev_foot;
4703 if (is_mmapped(p)) {
4704 psize += prevsize + MMAP_FOOT_PAD;
4705 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
4706 fm->footprint -= psize;
4707 goto postaction;
4708 }
4709 else {
4710 mchunkptr prev = chunk_minus_offset(p, prevsize);
4711 psize += prevsize;
4712 p = prev;
4713 if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
4714 if (p != fm->dv) {
4715 unlink_chunk(fm, p, prevsize);
4716 }
4717 else if ((next->head & INUSE_BITS) == INUSE_BITS) {
4718 fm->dvsize = psize;
4719 set_free_with_pinuse(p, psize, next);
4720 goto postaction;
4721 }
4722 }
4723 else
4724 goto erroraction;
4725 }
4726 }
4727
4728 if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
4729 if (!cinuse(next)) { /* consolidate forward */
4730 if (next == fm->top) {
4731 size_t tsize = fm->topsize += psize;
4732 fm->top = p;
4733 p->head = tsize | PINUSE_BIT;
4734 if (p == fm->dv) {
4735 fm->dv = 0;
4736 fm->dvsize = 0;
4737 }
4738 if (should_trim(fm, tsize))
4739 sys_trim(fm, pad: 0);
4740 goto postaction;
4741 }
4742 else if (next == fm->dv) {
4743 size_t dsize = fm->dvsize += psize;
4744 fm->dv = p;
4745 set_size_and_pinuse_of_free_chunk(p, dsize);
4746 goto postaction;
4747 }
4748 else {
4749 size_t nsize = chunksize(next);
4750 psize += nsize;
4751 unlink_chunk(fm, next, nsize);
4752 set_size_and_pinuse_of_free_chunk(p, psize);
4753 if (p == fm->dv) {
4754 fm->dvsize = psize;
4755 goto postaction;
4756 }
4757 }
4758 }
4759 else
4760 set_free_with_pinuse(p, psize, next);
4761
4762 if (is_small(psize)) {
4763 insert_small_chunk(fm, p, psize);
4764 check_free_chunk(fm, p);
4765 }
4766 else {
4767 tchunkptr tp = (tchunkptr)p;
4768 insert_large_chunk(fm, tp, psize);
4769 check_free_chunk(fm, p);
4770 if (--fm->release_checks == 0)
4771 release_unused_segments(fm);
4772 }
4773 goto postaction;
4774 }
4775 }
4776 erroraction:
4777 USAGE_ERROR_ACTION(fm, p);
4778 postaction:
4779 POSTACTION(fm);
4780 }
4781 }
4782#if !FOOTERS
4783#undef fm
4784#endif /* FOOTERS */
4785}
4786
4787void* dlcalloc(size_t n_elements, size_t elem_size) {
4788 void* mem;
4789 size_t req = 0;
4790 if (n_elements != 0) {
4791 req = n_elements * elem_size;
4792 if (((n_elements | elem_size) & ~(size_t)0xffff) &&
4793 (req / n_elements != elem_size))
4794 req = MAX_SIZE_T; /* force downstream failure on overflow */
4795 }
4796 mem = dlmalloc(bytes: req);
4797 if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
4798 memset(s: mem, c: 0, n: req);
4799 return mem;
4800}
4801
4802#endif /* !ONLY_MSPACES */
4803
4804/* ------------ Internal support for realloc, memalign, etc -------------- */
4805
4806/* Try to realloc; only in-place unless can_move true */
4807static mchunkptr try_realloc_chunk(mstate m, mchunkptr p, size_t nb,
4808 int can_move) {
4809 mchunkptr newp = 0;
4810 size_t oldsize = chunksize(p);
4811 mchunkptr next = chunk_plus_offset(p, oldsize);
4812 if (RTCHECK(ok_address(m, p) && ok_inuse(p) &&
4813 ok_next(p, next) && ok_pinuse(next))) {
4814 if (is_mmapped(p)) {
4815 newp = mmap_resize(m, oldp: p, nb, flags: can_move);
4816 }
4817 else if (oldsize >= nb) { /* already big enough */
4818 size_t rsize = oldsize - nb;
4819 if (rsize >= MIN_CHUNK_SIZE) { /* split off remainder */
4820 mchunkptr r = chunk_plus_offset(p, nb);
4821 set_inuse(m, p, nb);
4822 set_inuse(m, r, rsize);
4823 dispose_chunk(m, p: r, psize: rsize);
4824 }
4825 newp = p;
4826 }
4827 else if (next == m->top) { /* extend into top */
4828 if (oldsize + m->topsize > nb) {
4829 size_t newsize = oldsize + m->topsize;
4830 size_t newtopsize = newsize - nb;
4831 mchunkptr newtop = chunk_plus_offset(p, nb);
4832 set_inuse(m, p, nb);
4833 newtop->head = newtopsize |PINUSE_BIT;
4834 m->top = newtop;
4835 m->topsize = newtopsize;
4836 newp = p;
4837 }
4838 }
4839 else if (next == m->dv) { /* extend into dv */
4840 size_t dvs = m->dvsize;
4841 if (oldsize + dvs >= nb) {
4842 size_t dsize = oldsize + dvs - nb;
4843 if (dsize >= MIN_CHUNK_SIZE) {
4844 mchunkptr r = chunk_plus_offset(p, nb);
4845 mchunkptr n = chunk_plus_offset(r, dsize);
4846 set_inuse(m, p, nb);
4847 set_size_and_pinuse_of_free_chunk(r, dsize);
4848 clear_pinuse(n);
4849 m->dvsize = dsize;
4850 m->dv = r;
4851 }
4852 else { /* exhaust dv */
4853 size_t newsize = oldsize + dvs;
4854 set_inuse(m, p, newsize);
4855 m->dvsize = 0;
4856 m->dv = 0;
4857 }
4858 newp = p;
4859 }
4860 }
4861 else if (!cinuse(next)) { /* extend into next free chunk */
4862 size_t nextsize = chunksize(next);
4863 if (oldsize + nextsize >= nb) {
4864 size_t rsize = oldsize + nextsize - nb;
4865 unlink_chunk(m, next, nextsize);
4866 if (rsize < MIN_CHUNK_SIZE) {
4867 size_t newsize = oldsize + nextsize;
4868 set_inuse(m, p, newsize);
4869 }
4870 else {
4871 mchunkptr r = chunk_plus_offset(p, nb);
4872 set_inuse(m, p, nb);
4873 set_inuse(m, r, rsize);
4874 dispose_chunk(m, p: r, psize: rsize);
4875 }
4876 newp = p;
4877 }
4878 }
4879 }
4880 else {
4881 USAGE_ERROR_ACTION(m, chunk2mem(p));
4882 }
4883 return newp;
4884}
4885
4886static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
4887 void* mem = 0;
4888 if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
4889 alignment = MIN_CHUNK_SIZE;
4890 if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
4891 size_t a = MALLOC_ALIGNMENT << 1;
4892 while (a < alignment) a <<= 1;
4893 alignment = a;
4894 }
4895 if (bytes >= MAX_REQUEST - alignment) {
4896 if (m != 0) { /* Test isn't needed but avoids compiler warning */
4897 MALLOC_FAILURE_ACTION;
4898 }
4899 }
4900 else {
4901 size_t nb = request2size(bytes);
4902 size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
4903 mem = internal_malloc(m, req);
4904 if (mem != 0) {
4905 mchunkptr p = mem2chunk(mem);
4906 if (PREACTION(m))
4907 return 0;
4908 if ((((size_t)(mem)) & (alignment - 1)) != 0) { /* misaligned */
4909 /*
4910 Find an aligned spot inside chunk. Since we need to give
4911 back leading space in a chunk of at least MIN_CHUNK_SIZE, if
4912 the first calculation places us at a spot with less than
4913 MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
4914 We've allocated enough total room so that this is always
4915 possible.
4916 */
4917 char* br = (char*)mem2chunk((size_t)(((size_t)((char*)mem + alignment -
4918 SIZE_T_ONE)) &
4919 -alignment));
4920 char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
4921 br : br+alignment;
4922 mchunkptr newp = (mchunkptr)pos;
4923 size_t leadsize = pos - (char*)(p);
4924 size_t newsize = chunksize(p) - leadsize;
4925
4926 if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
4927 newp->prev_foot = p->prev_foot + leadsize;
4928 newp->head = newsize;
4929 }
4930 else { /* Otherwise, give back leader, use the rest */
4931 set_inuse(m, newp, newsize);
4932 set_inuse(m, p, leadsize);
4933 dispose_chunk(m, p, psize: leadsize);
4934 }
4935 p = newp;
4936 }
4937
4938 /* Give back spare room at the end */
4939 if (!is_mmapped(p)) {
4940 size_t size = chunksize(p);
4941 if (size > nb + MIN_CHUNK_SIZE) {
4942 size_t remainder_size = size - nb;
4943 mchunkptr remainder = chunk_plus_offset(p, nb);
4944 set_inuse(m, p, nb);
4945 set_inuse(m, remainder, remainder_size);
4946 dispose_chunk(m, p: remainder, psize: remainder_size);
4947 }
4948 }
4949
4950 mem = chunk2mem(p);
4951 assert (chunksize(p) >= nb);
4952 assert(((size_t)mem & (alignment - 1)) == 0);
4953 check_inuse_chunk(m, p);
4954 POSTACTION(m);
4955 }
4956 }
4957 return mem;
4958}
4959
4960/*
4961 Common support for independent_X routines, handling
4962 all of the combinations that can result.
4963 The opts arg has:
4964 bit 0 set if all elements are same size (using sizes[0])
4965 bit 1 set if elements should be zeroed
4966*/
4967static void** ialloc(mstate m,
4968 size_t n_elements,
4969 size_t* sizes,
4970 int opts,
4971 void* chunks[]) {
4972
4973 size_t element_size; /* chunksize of each element, if all same */
4974 size_t contents_size; /* total size of elements */
4975 size_t array_size; /* request size of pointer array */
4976 void* mem; /* malloced aggregate space */
4977 mchunkptr p; /* corresponding chunk */
4978 size_t remainder_size; /* remaining bytes while splitting */
4979 void** marray; /* either "chunks" or malloced ptr array */
4980 mchunkptr array_chunk; /* chunk for malloced ptr array */
4981 flag_t was_enabled; /* to disable mmap */
4982 size_t size;
4983 size_t i;
4984
4985 ensure_initialization();
4986 /* compute array length, if needed */
4987 if (chunks != 0) {
4988 if (n_elements == 0)
4989 return chunks; /* nothing to do */
4990 marray = chunks;
4991 array_size = 0;
4992 }
4993 else {
4994 /* if empty req, must still return chunk representing empty array */
4995 if (n_elements == 0)
4996 return (void**)internal_malloc(m, 0);
4997 marray = 0;
4998 array_size = request2size(n_elements * (sizeof(void*)));
4999 }
5000
5001 /* compute total element size */
5002 if (opts & 0x1) { /* all-same-size */
5003 element_size = request2size(*sizes);
5004 contents_size = n_elements * element_size;
5005 }
5006 else { /* add up all the sizes */
5007 element_size = 0;
5008 contents_size = 0;
5009 for (i = 0; i != n_elements; ++i)
5010 contents_size += request2size(sizes[i]);
5011 }
5012
5013 size = contents_size + array_size;
5014
5015 /*
5016 Allocate the aggregate chunk. First disable direct-mmapping so
5017 malloc won't use it, since we would not be able to later
5018 free/realloc space internal to a segregated mmap region.
5019 */
5020 was_enabled = use_mmap(m);
5021 disable_mmap(m);
5022 mem = internal_malloc(m, size - CHUNK_OVERHEAD);
5023 if (was_enabled)
5024 enable_mmap(m);
5025 if (mem == 0)
5026 return 0;
5027
5028 if (PREACTION(m)) return 0;
5029 p = mem2chunk(mem);
5030 remainder_size = chunksize(p);
5031
5032 assert(!is_mmapped(p));
5033
5034 if (opts & 0x2) { /* optionally clear the elements */
5035 memset(s: (size_t*)mem, c: 0, n: remainder_size - SIZE_T_SIZE - array_size);
5036 }
5037
5038 /* If not provided, allocate the pointer array as final part of chunk */
5039 if (marray == 0) {
5040 size_t array_chunk_size;
5041 array_chunk = chunk_plus_offset(p, contents_size);
5042 array_chunk_size = remainder_size - contents_size;
5043 marray = (void**) (chunk2mem(array_chunk));
5044 set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
5045 remainder_size = contents_size;
5046 }
5047
5048 /* split out elements */
5049 for (i = 0; ; ++i) {
5050 marray[i] = chunk2mem(p);
5051 if (i != n_elements-1) {
5052 if (element_size != 0)
5053 size = element_size;
5054 else
5055 size = request2size(sizes[i]);
5056 remainder_size -= size;
5057 set_size_and_pinuse_of_inuse_chunk(m, p, size);
5058 p = chunk_plus_offset(p, size);
5059 }
5060 else { /* the final element absorbs any overallocation slop */
5061 set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
5062 break;
5063 }
5064 }
5065
5066#if DEBUG
5067 if (marray != chunks) {
5068 /* final element must have exactly exhausted chunk */
5069 if (element_size != 0) {
5070 assert(remainder_size == element_size);
5071 }
5072 else {
5073 assert(remainder_size == request2size(sizes[i]));
5074 }
5075 check_inuse_chunk(m, mem2chunk(marray));
5076 }
5077 for (i = 0; i != n_elements; ++i)
5078 check_inuse_chunk(m, mem2chunk(marray[i]));
5079
5080#endif /* DEBUG */
5081
5082 POSTACTION(m);
5083 return marray;
5084}
5085
5086/* Try to free all pointers in the given array.
5087 Note: this could be made faster, by delaying consolidation,
5088 at the price of disabling some user integrity checks, We
5089 still optimize some consolidations by combining adjacent
5090 chunks before freeing, which will occur often if allocated
5091 with ialloc or the array is sorted.
5092*/
5093static size_t internal_bulk_free(mstate m, void* array[], size_t nelem) {
5094 size_t unfreed = 0;
5095 if (!PREACTION(m)) {
5096 void** a;
5097 void** fence = &(array[nelem]);
5098 for (a = array; a != fence; ++a) {
5099 void* mem = *a;
5100 if (mem != 0) {
5101 mchunkptr p = mem2chunk(mem);
5102 size_t psize = chunksize(p);
5103#if FOOTERS
5104 if (get_mstate_for(p) != m) {
5105 ++unfreed;
5106 continue;
5107 }
5108#endif
5109 check_inuse_chunk(m, p);
5110 *a = 0;
5111 if (RTCHECK(ok_address(m, p) && ok_inuse(p))) {
5112 void ** b = a + 1; /* try to merge with next chunk */
5113 mchunkptr next = next_chunk(p);
5114 if (b != fence && *b == chunk2mem(next)) {
5115 size_t newsize = chunksize(next) + psize;
5116 set_inuse(m, p, newsize);
5117 *b = chunk2mem(p);
5118 }
5119 else
5120 dispose_chunk(m, p, psize);
5121 }
5122 else {
5123 CORRUPTION_ERROR_ACTION(m);
5124 break;
5125 }
5126 }
5127 }
5128 if (should_trim(m, m->topsize))
5129 sys_trim(m, pad: 0);
5130 POSTACTION(m);
5131 }
5132 return unfreed;
5133}
5134
5135/* Traversal */
5136#if MALLOC_INSPECT_ALL
5137static void internal_inspect_all(mstate m,
5138 void(*handler)(void *start,
5139 void *end,
5140 size_t used_bytes,
5141 void* callback_arg),
5142 void* arg) {
5143 if (is_initialized(m)) {
5144 mchunkptr top = m->top;
5145 msegmentptr s;
5146 for (s = &m->seg; s != 0; s = s->next) {
5147 mchunkptr q = align_as_chunk(s->base);
5148 while (segment_holds(s, q) && q->head != FENCEPOST_HEAD) {
5149 mchunkptr next = next_chunk(q);
5150 size_t sz = chunksize(q);
5151 size_t used;
5152 void* start;
5153 if (is_inuse(q)) {
5154 used = sz - CHUNK_OVERHEAD; /* must not be mmapped */
5155 start = chunk2mem(q);
5156 }
5157 else {
5158 used = 0;
5159 if (is_small(sz)) { /* offset by possible bookkeeping */
5160 start = (void*)((char*)q + sizeof(struct malloc_chunk));
5161 }
5162 else {
5163 start = (void*)((char*)q + sizeof(struct malloc_tree_chunk));
5164 }
5165 }
5166 if (start < (void*)next) /* skip if all space is bookkeeping */
5167 handler(start, next, used, arg);
5168 if (q == top)
5169 break;
5170 q = next;
5171 }
5172 }
5173 }
5174}
5175#endif /* MALLOC_INSPECT_ALL */
5176
5177/* ------------------ Exported realloc, memalign, etc -------------------- */
5178
5179#if !ONLY_MSPACES
5180
5181void* dlrealloc(void* oldmem, size_t bytes) {
5182 void* mem = 0;
5183 if (oldmem == 0) {
5184 mem = dlmalloc(bytes);
5185 }
5186 else if (bytes >= MAX_REQUEST) {
5187 MALLOC_FAILURE_ACTION;
5188 }
5189#ifdef REALLOC_ZERO_BYTES_FREES
5190 else if (bytes == 0) {
5191 dlfree(oldmem);
5192 }
5193#endif /* REALLOC_ZERO_BYTES_FREES */
5194 else {
5195 size_t nb = request2size(bytes);
5196 mchunkptr oldp = mem2chunk(oldmem);
5197#if ! FOOTERS
5198 mstate m = gm;
5199#else /* FOOTERS */
5200 mstate m = get_mstate_for(oldp);
5201 if (!ok_magic(m)) {
5202 USAGE_ERROR_ACTION(m, oldmem);
5203 return 0;
5204 }
5205#endif /* FOOTERS */
5206 if (!PREACTION(m)) {
5207 mchunkptr newp = try_realloc_chunk(m, p: oldp, nb, can_move: 1);
5208 POSTACTION(m);
5209 if (newp != 0) {
5210 check_inuse_chunk(m, newp);
5211 mem = chunk2mem(newp);
5212 }
5213 else {
5214 mem = internal_malloc(m, bytes);
5215 if (mem != 0) {
5216 size_t oc = chunksize(oldp) - overhead_for(oldp);
5217 memcpy(dest: mem, src: oldmem, n: (oc < bytes)? oc : bytes);
5218 internal_free(m, oldmem);
5219 }
5220 }
5221 }
5222 }
5223 return mem;
5224}
5225
5226void* dlrealloc_in_place(void* oldmem, size_t bytes) {
5227 void* mem = 0;
5228 if (oldmem != 0) {
5229 if (bytes >= MAX_REQUEST) {
5230 MALLOC_FAILURE_ACTION;
5231 }
5232 else {
5233 size_t nb = request2size(bytes);
5234 mchunkptr oldp = mem2chunk(oldmem);
5235#if ! FOOTERS
5236 mstate m = gm;
5237#else /* FOOTERS */
5238 mstate m = get_mstate_for(oldp);
5239 if (!ok_magic(m)) {
5240 USAGE_ERROR_ACTION(m, oldmem);
5241 return 0;
5242 }
5243#endif /* FOOTERS */
5244 if (!PREACTION(m)) {
5245 mchunkptr newp = try_realloc_chunk(m, p: oldp, nb, can_move: 0);
5246 POSTACTION(m);
5247 if (newp == oldp) {
5248 check_inuse_chunk(m, newp);
5249 mem = oldmem;
5250 }
5251 }
5252 }
5253 }
5254 return mem;
5255}
5256
5257void* dlmemalign(size_t alignment, size_t bytes) {
5258 if (alignment <= MALLOC_ALIGNMENT) {
5259 return dlmalloc(bytes);
5260 }
5261 return internal_memalign(gm, alignment, bytes);
5262}
5263
5264int dlposix_memalign(void** pp, size_t alignment, size_t bytes) {
5265 void* mem = 0;
5266 if (alignment == MALLOC_ALIGNMENT)
5267 mem = dlmalloc(bytes);
5268 else {
5269 size_t d = alignment / sizeof(void*);
5270 size_t r = alignment % sizeof(void*);
5271 if (r != 0 || d == 0 || (d & (d-SIZE_T_ONE)) != 0)
5272 return EINVAL;
5273 else if (bytes <= MAX_REQUEST - alignment) {
5274 if (alignment < MIN_CHUNK_SIZE)
5275 alignment = MIN_CHUNK_SIZE;
5276 mem = internal_memalign(gm, alignment, bytes);
5277 }
5278 }
5279 if (mem == 0)
5280 return ENOMEM;
5281 else {
5282 *pp = mem;
5283 return 0;
5284 }
5285}
5286
5287void* dlvalloc(size_t bytes) {
5288 size_t pagesz;
5289 ensure_initialization();
5290 pagesz = mparams.page_size;
5291 return dlmemalign(alignment: pagesz, bytes);
5292}
5293
5294void* dlpvalloc(size_t bytes) {
5295 size_t pagesz;
5296 ensure_initialization();
5297 pagesz = mparams.page_size;
5298 return dlmemalign(alignment: pagesz, bytes: (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
5299}
5300
5301void** dlindependent_calloc(size_t n_elements, size_t elem_size,
5302 void* chunks[]) {
5303 size_t sz = elem_size; /* serves as 1-element array */
5304 return ialloc(gm, n_elements, sizes: &sz, opts: 3, chunks);
5305}
5306
5307void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
5308 void* chunks[]) {
5309 return ialloc(gm, n_elements, sizes, opts: 0, chunks);
5310}
5311
5312size_t dlbulk_free(void* array[], size_t nelem) {
5313 return internal_bulk_free(gm, array, nelem);
5314}
5315
5316#if MALLOC_INSPECT_ALL
5317void dlmalloc_inspect_all(void(*handler)(void *start,
5318 void *end,
5319 size_t used_bytes,
5320 void* callback_arg),
5321 void* arg) {
5322 ensure_initialization();
5323 if (!PREACTION(gm)) {
5324 internal_inspect_all(gm, handler, arg);
5325 POSTACTION(gm);
5326 }
5327}
5328#endif /* MALLOC_INSPECT_ALL */
5329
5330int dlmalloc_trim(size_t pad) {
5331 int result = 0;
5332 ensure_initialization();
5333 if (!PREACTION(gm)) {
5334 result = sys_trim(gm, pad);
5335 POSTACTION(gm);
5336 }
5337 return result;
5338}
5339
5340size_t dlmalloc_footprint(void) {
5341 return gm->footprint;
5342}
5343
5344size_t dlmalloc_max_footprint(void) {
5345 return gm->max_footprint;
5346}
5347
5348size_t dlmalloc_footprint_limit(void) {
5349 size_t maf = gm->footprint_limit;
5350 return maf == 0 ? MAX_SIZE_T : maf;
5351}
5352
5353size_t dlmalloc_set_footprint_limit(size_t bytes) {
5354 size_t result; /* invert sense of 0 */
5355 if (bytes == 0)
5356 result = granularity_align(1); /* Use minimal size */
5357 if (bytes == MAX_SIZE_T)
5358 result = 0; /* disable */
5359 else
5360 result = granularity_align(bytes);
5361 return gm->footprint_limit = result;
5362}
5363
5364#if !NO_MALLINFO
5365struct mallinfo dlmallinfo(void) {
5366 return internal_mallinfo(gm);
5367}
5368#endif /* NO_MALLINFO */
5369
5370#if !NO_MALLOC_STATS
5371void dlmalloc_stats() {
5372 internal_malloc_stats(gm);
5373}
5374#endif /* NO_MALLOC_STATS */
5375
5376int dlmallopt(int param_number, int value) {
5377 return change_mparam(param_number, value);
5378}
5379
5380size_t dlmalloc_usable_size(void* mem) {
5381 if (mem != 0) {
5382 mchunkptr p = mem2chunk(mem);
5383 if (is_inuse(p))
5384 return chunksize(p) - overhead_for(p);
5385 }
5386 return 0;
5387}
5388
5389#endif /* !ONLY_MSPACES */
5390
5391/* ----------------------------- user mspaces ---------------------------- */
5392
5393#if MSPACES
5394
5395static mstate init_user_mstate(char* tbase, size_t tsize) {
5396 size_t msize = pad_request(sizeof(struct malloc_state));
5397 mchunkptr mn;
5398 mchunkptr msp = align_as_chunk(tbase);
5399 mstate m = (mstate)(chunk2mem(msp));
5400 memset(s: m, c: 0, n: msize);
5401 (void)INITIAL_LOCK(&m->mutex);
5402 msp->head = (msize|INUSE_BITS);
5403 m->seg.base = m->least_addr = tbase;
5404 m->seg.size = m->footprint = m->max_footprint = tsize;
5405 m->magic = mparams.magic;
5406 m->release_checks = MAX_RELEASE_CHECK_RATE;
5407 m->mflags = mparams.default_mflags;
5408 m->extp = 0;
5409 m->exts = 0;
5410 disable_contiguous(m);
5411 init_bins(m);
5412 mn = next_chunk(mem2chunk(m));
5413 init_top(m, p: mn, psize: (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
5414 check_top_chunk(m, m->top);
5415 return m;
5416}
5417
5418mspace create_mspace(size_t capacity, int locked) {
5419 mstate m = 0;
5420 size_t msize;
5421 ensure_initialization();
5422 msize = pad_request(sizeof(struct malloc_state));
5423 if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
5424 size_t rs = ((capacity == 0)? mparams.granularity :
5425 (capacity + TOP_FOOT_SIZE + msize));
5426 size_t tsize = granularity_align(rs);
5427 char* tbase = (char*)(CALL_MMAP(tsize));
5428 if (tbase != CMFAIL) {
5429 m = init_user_mstate(tbase, tsize);
5430 m->seg.sflags = USE_MMAP_BIT;
5431 set_lock(m, locked);
5432 }
5433 }
5434 return (mspace)m;
5435}
5436
5437mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
5438 mstate m = 0;
5439 size_t msize;
5440 ensure_initialization();
5441 msize = pad_request(sizeof(struct malloc_state));
5442 if (capacity > msize + TOP_FOOT_SIZE &&
5443 capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
5444 m = init_user_mstate(tbase: (char*)base, tsize: capacity);
5445 m->seg.sflags = EXTERN_BIT;
5446 set_lock(m, locked);
5447 }
5448 return (mspace)m;
5449}
5450
5451int mspace_track_large_chunks(mspace msp, int enable) {
5452 int ret = 0;
5453 mstate ms = (mstate)msp;
5454 if (!PREACTION(ms)) {
5455 if (!use_mmap(ms)) {
5456 ret = 1;
5457 }
5458 if (!enable) {
5459 enable_mmap(ms);
5460 } else {
5461 disable_mmap(ms);
5462 }
5463 POSTACTION(ms);
5464 }
5465 return ret;
5466}
5467
5468size_t destroy_mspace(mspace msp) {
5469 size_t freed = 0;
5470 mstate ms = (mstate)msp;
5471 if (ok_magic(ms)) {
5472 msegmentptr sp = &ms->seg;
5473 (void)DESTROY_LOCK(&ms->mutex); /* destroy before unmapped */
5474 while (sp != 0) {
5475 char* base = sp->base;
5476 size_t size = sp->size;
5477 flag_t flag = sp->sflags;
5478 (void)base; /* placate people compiling -Wunused-variable */
5479 sp = sp->next;
5480 if ((flag & USE_MMAP_BIT) && !(flag & EXTERN_BIT) &&
5481 CALL_MUNMAP(base, size) == 0)
5482 freed += size;
5483 }
5484 }
5485 else {
5486 USAGE_ERROR_ACTION(ms,ms);
5487 }
5488 return freed;
5489}
5490
5491/*
5492 mspace versions of routines are near-clones of the global
5493 versions. This is not so nice but better than the alternatives.
5494*/
5495
5496void* mspace_malloc(mspace msp, size_t bytes) {
5497 mstate ms = (mstate)msp;
5498 if (!ok_magic(ms)) {
5499 USAGE_ERROR_ACTION(ms,ms);
5500 return 0;
5501 }
5502 if (!PREACTION(ms)) {
5503 void* mem;
5504 size_t nb;
5505 if (bytes <= MAX_SMALL_REQUEST) {
5506 bindex_t idx;
5507 binmap_t smallbits;
5508 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
5509 idx = small_index(nb);
5510 smallbits = ms->smallmap >> idx;
5511
5512 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
5513 mchunkptr b, p;
5514 idx += ~smallbits & 1; /* Uses next bin if idx empty */
5515 b = smallbin_at(ms, idx);
5516 p = b->fd;
5517 assert(chunksize(p) == small_index2size(idx));
5518 unlink_first_small_chunk(ms, b, p, idx);
5519 set_inuse_and_pinuse(ms, p, small_index2size(idx));
5520 mem = chunk2mem(p);
5521 check_malloced_chunk(ms, mem, nb);
5522 goto postaction;
5523 }
5524
5525 else if (nb > ms->dvsize) {
5526 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
5527 mchunkptr b, p, r;
5528 size_t rsize;
5529 bindex_t i;
5530 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
5531 binmap_t leastbit = least_bit(leftbits);
5532 compute_bit2idx(leastbit, i);
5533 b = smallbin_at(ms, i);
5534 p = b->fd;
5535 assert(chunksize(p) == small_index2size(i));
5536 unlink_first_small_chunk(ms, b, p, i);
5537 rsize = small_index2size(i) - nb;
5538 /* Fit here cannot be remainderless if 4byte sizes */
5539 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
5540 set_inuse_and_pinuse(ms, p, small_index2size(i));
5541 else {
5542 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
5543 r = chunk_plus_offset(p, nb);
5544 set_size_and_pinuse_of_free_chunk(r, rsize);
5545 replace_dv(ms, r, rsize);
5546 }
5547 mem = chunk2mem(p);
5548 check_malloced_chunk(ms, mem, nb);
5549 goto postaction;
5550 }
5551
5552 else if (ms->treemap != 0 && (mem = tmalloc_small(m: ms, nb)) != 0) {
5553 check_malloced_chunk(ms, mem, nb);
5554 goto postaction;
5555 }
5556 }
5557 }
5558 else if (bytes >= MAX_REQUEST)
5559 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
5560 else {
5561 nb = pad_request(bytes);
5562 if (ms->treemap != 0 && (mem = tmalloc_large(m: ms, nb)) != 0) {
5563 check_malloced_chunk(ms, mem, nb);
5564 goto postaction;
5565 }
5566 }
5567
5568 if (nb <= ms->dvsize) {
5569 size_t rsize = ms->dvsize - nb;
5570 mchunkptr p = ms->dv;
5571 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
5572 mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
5573 ms->dvsize = rsize;
5574 set_size_and_pinuse_of_free_chunk(r, rsize);
5575 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
5576 }
5577 else { /* exhaust dv */
5578 size_t dvs = ms->dvsize;
5579 ms->dvsize = 0;
5580 ms->dv = 0;
5581 set_inuse_and_pinuse(ms, p, dvs);
5582 }
5583 mem = chunk2mem(p);
5584 check_malloced_chunk(ms, mem, nb);
5585 goto postaction;
5586 }
5587
5588 else if (nb < ms->topsize) { /* Split top */
5589 size_t rsize = ms->topsize -= nb;
5590 mchunkptr p = ms->top;
5591 mchunkptr r = ms->top = chunk_plus_offset(p, nb);
5592 r->head = rsize | PINUSE_BIT;
5593 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
5594 mem = chunk2mem(p);
5595 check_top_chunk(ms, ms->top);
5596 check_malloced_chunk(ms, mem, nb);
5597 goto postaction;
5598 }
5599
5600 mem = sys_alloc(m: ms, nb);
5601
5602 postaction:
5603 POSTACTION(ms);
5604 return mem;
5605 }
5606
5607 return 0;
5608}
5609
5610void mspace_free(mspace msp, void* mem) {
5611 if (mem != 0) {
5612 mchunkptr p = mem2chunk(mem);
5613#if FOOTERS
5614 mstate fm = get_mstate_for(p);
5615 (void)msp; /* placate people compiling -Wunused */
5616#else /* FOOTERS */
5617 mstate fm = (mstate)msp;
5618#endif /* FOOTERS */
5619 if (!ok_magic(fm)) {
5620 USAGE_ERROR_ACTION(fm, p);
5621 return;
5622 }
5623 if (!PREACTION(fm)) {
5624 check_inuse_chunk(fm, p);
5625 if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
5626 size_t psize = chunksize(p);
5627 mchunkptr next = chunk_plus_offset(p, psize);
5628 if (!pinuse(p)) {
5629 size_t prevsize = p->prev_foot;
5630 if (is_mmapped(p)) {
5631 psize += prevsize + MMAP_FOOT_PAD;
5632 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
5633 fm->footprint -= psize;
5634 goto postaction;
5635 }
5636 else {
5637 mchunkptr prev = chunk_minus_offset(p, prevsize);
5638 psize += prevsize;
5639 p = prev;
5640 if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
5641 if (p != fm->dv) {
5642 unlink_chunk(fm, p, prevsize);
5643 }
5644 else if ((next->head & INUSE_BITS) == INUSE_BITS) {
5645 fm->dvsize = psize;
5646 set_free_with_pinuse(p, psize, next);
5647 goto postaction;
5648 }
5649 }
5650 else
5651 goto erroraction;
5652 }
5653 }
5654
5655 if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
5656 if (!cinuse(next)) { /* consolidate forward */
5657 if (next == fm->top) {
5658 size_t tsize = fm->topsize += psize;
5659 fm->top = p;
5660 p->head = tsize | PINUSE_BIT;
5661 if (p == fm->dv) {
5662 fm->dv = 0;
5663 fm->dvsize = 0;
5664 }
5665 if (should_trim(fm, tsize))
5666 sys_trim(m: fm, pad: 0);
5667 goto postaction;
5668 }
5669 else if (next == fm->dv) {
5670 size_t dsize = fm->dvsize += psize;
5671 fm->dv = p;
5672 set_size_and_pinuse_of_free_chunk(p, dsize);
5673 goto postaction;
5674 }
5675 else {
5676 size_t nsize = chunksize(next);
5677 psize += nsize;
5678 unlink_chunk(fm, next, nsize);
5679 set_size_and_pinuse_of_free_chunk(p, psize);
5680 if (p == fm->dv) {
5681 fm->dvsize = psize;
5682 goto postaction;
5683 }
5684 }
5685 }
5686 else
5687 set_free_with_pinuse(p, psize, next);
5688
5689 if (is_small(psize)) {
5690 insert_small_chunk(fm, p, psize);
5691 check_free_chunk(fm, p);
5692 }
5693 else {
5694 tchunkptr tp = (tchunkptr)p;
5695 insert_large_chunk(fm, tp, psize);
5696 check_free_chunk(fm, p);
5697 if (--fm->release_checks == 0)
5698 release_unused_segments(m: fm);
5699 }
5700 goto postaction;
5701 }
5702 }
5703 erroraction:
5704 USAGE_ERROR_ACTION(fm, p);
5705 postaction:
5706 POSTACTION(fm);
5707 }
5708 }
5709}
5710
5711void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
5712 void* mem;
5713 size_t req = 0;
5714 mstate ms = (mstate)msp;
5715 if (!ok_magic(ms)) {
5716 USAGE_ERROR_ACTION(ms,ms);
5717 return 0;
5718 }
5719 if (n_elements != 0) {
5720 req = n_elements * elem_size;
5721 if (((n_elements | elem_size) & ~(size_t)0xffff) &&
5722 (req / n_elements != elem_size))
5723 req = MAX_SIZE_T; /* force downstream failure on overflow */
5724 }
5725 mem = internal_malloc(ms, req);
5726 if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
5727 memset(s: mem, c: 0, n: req);
5728 return mem;
5729}
5730
5731void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
5732 void* mem = 0;
5733 if (oldmem == 0) {
5734 mem = mspace_malloc(msp, bytes);
5735 }
5736 else if (bytes >= MAX_REQUEST) {
5737 MALLOC_FAILURE_ACTION;
5738 }
5739#ifdef REALLOC_ZERO_BYTES_FREES
5740 else if (bytes == 0) {
5741 mspace_free(msp, oldmem);
5742 }
5743#endif /* REALLOC_ZERO_BYTES_FREES */
5744 else {
5745 size_t nb = request2size(bytes);
5746 mchunkptr oldp = mem2chunk(oldmem);
5747#if ! FOOTERS
5748 mstate m = (mstate)msp;
5749#else /* FOOTERS */
5750 mstate m = get_mstate_for(oldp);
5751 if (!ok_magic(m)) {
5752 USAGE_ERROR_ACTION(m, oldmem);
5753 return 0;
5754 }
5755#endif /* FOOTERS */
5756 if (!PREACTION(m)) {
5757 mchunkptr newp = try_realloc_chunk(m, p: oldp, nb, can_move: 1);
5758 POSTACTION(m);
5759 if (newp != 0) {
5760 check_inuse_chunk(m, newp);
5761 mem = chunk2mem(newp);
5762 }
5763 else {
5764 mem = mspace_malloc(msp: m, bytes);
5765 if (mem != 0) {
5766 size_t oc = chunksize(oldp) - overhead_for(oldp);
5767 memcpy(dest: mem, src: oldmem, n: (oc < bytes)? oc : bytes);
5768 mspace_free(msp: m, mem: oldmem);
5769 }
5770 }
5771 }
5772 }
5773 return mem;
5774}
5775
5776void* mspace_realloc_in_place(mspace msp, void* oldmem, size_t bytes) {
5777 void* mem = 0;
5778 if (oldmem != 0) {
5779 if (bytes >= MAX_REQUEST) {
5780 MALLOC_FAILURE_ACTION;
5781 }
5782 else {
5783 size_t nb = request2size(bytes);
5784 mchunkptr oldp = mem2chunk(oldmem);
5785#if ! FOOTERS
5786 mstate m = (mstate)msp;
5787#else /* FOOTERS */
5788 mstate m = get_mstate_for(oldp);
5789 (void)msp; /* placate people compiling -Wunused */
5790 if (!ok_magic(m)) {
5791 USAGE_ERROR_ACTION(m, oldmem);
5792 return 0;
5793 }
5794#endif /* FOOTERS */
5795 if (!PREACTION(m)) {
5796 mchunkptr newp = try_realloc_chunk(m, p: oldp, nb, can_move: 0);
5797 POSTACTION(m);
5798 if (newp == oldp) {
5799 check_inuse_chunk(m, newp);
5800 mem = oldmem;
5801 }
5802 }
5803 }
5804 }
5805 return mem;
5806}
5807
5808void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
5809 mstate ms = (mstate)msp;
5810 if (!ok_magic(ms)) {
5811 USAGE_ERROR_ACTION(ms,ms);
5812 return 0;
5813 }
5814 if (alignment <= MALLOC_ALIGNMENT)
5815 return mspace_malloc(msp, bytes);
5816 return internal_memalign(m: ms, alignment, bytes);
5817}
5818
5819void** mspace_independent_calloc(mspace msp, size_t n_elements,
5820 size_t elem_size, void* chunks[]) {
5821 size_t sz = elem_size; /* serves as 1-element array */
5822 mstate ms = (mstate)msp;
5823 if (!ok_magic(ms)) {
5824 USAGE_ERROR_ACTION(ms,ms);
5825 return 0;
5826 }
5827 return ialloc(m: ms, n_elements, sizes: &sz, opts: 3, chunks);
5828}
5829
5830void** mspace_independent_comalloc(mspace msp, size_t n_elements,
5831 size_t sizes[], void* chunks[]) {
5832 mstate ms = (mstate)msp;
5833 if (!ok_magic(ms)) {
5834 USAGE_ERROR_ACTION(ms,ms);
5835 return 0;
5836 }
5837 return ialloc(m: ms, n_elements, sizes, opts: 0, chunks);
5838}
5839
5840size_t mspace_bulk_free(mspace msp, void* array[], size_t nelem) {
5841 return internal_bulk_free(m: (mstate)msp, array, nelem);
5842}
5843
5844#if MALLOC_INSPECT_ALL
5845void mspace_inspect_all(mspace msp,
5846 void(*handler)(void *start,
5847 void *end,
5848 size_t used_bytes,
5849 void* callback_arg),
5850 void* arg) {
5851 mstate ms = (mstate)msp;
5852 if (ok_magic(ms)) {
5853 if (!PREACTION(ms)) {
5854 internal_inspect_all(ms, handler, arg);
5855 POSTACTION(ms);
5856 }
5857 }
5858 else {
5859 USAGE_ERROR_ACTION(ms,ms);
5860 }
5861}
5862#endif /* MALLOC_INSPECT_ALL */
5863
5864int mspace_trim(mspace msp, size_t pad) {
5865 int result = 0;
5866 mstate ms = (mstate)msp;
5867 if (ok_magic(ms)) {
5868 if (!PREACTION(ms)) {
5869 result = sys_trim(m: ms, pad);
5870 POSTACTION(ms);
5871 }
5872 }
5873 else {
5874 USAGE_ERROR_ACTION(ms,ms);
5875 }
5876 return result;
5877}
5878
5879#if !NO_MALLOC_STATS
5880void mspace_malloc_stats(mspace msp) {
5881 mstate ms = (mstate)msp;
5882 if (ok_magic(ms)) {
5883 internal_malloc_stats(ms);
5884 }
5885 else {
5886 USAGE_ERROR_ACTION(ms,ms);
5887 }
5888}
5889#endif /* NO_MALLOC_STATS */
5890
5891size_t mspace_footprint(mspace msp) {
5892 size_t result = 0;
5893 mstate ms = (mstate)msp;
5894 if (ok_magic(ms)) {
5895 result = ms->footprint;
5896 }
5897 else {
5898 USAGE_ERROR_ACTION(ms,ms);
5899 }
5900 return result;
5901}
5902
5903size_t mspace_max_footprint(mspace msp) {
5904 size_t result = 0;
5905 mstate ms = (mstate)msp;
5906 if (ok_magic(ms)) {
5907 result = ms->max_footprint;
5908 }
5909 else {
5910 USAGE_ERROR_ACTION(ms,ms);
5911 }
5912 return result;
5913}
5914
5915size_t mspace_footprint_limit(mspace msp) {
5916 size_t result = 0;
5917 mstate ms = (mstate)msp;
5918 if (ok_magic(ms)) {
5919 size_t maf = ms->footprint_limit;
5920 result = (maf == 0) ? MAX_SIZE_T : maf;
5921 }
5922 else {
5923 USAGE_ERROR_ACTION(ms,ms);
5924 }
5925 return result;
5926}
5927
5928size_t mspace_set_footprint_limit(mspace msp, size_t bytes) {
5929 size_t result = 0;
5930 mstate ms = (mstate)msp;
5931 if (ok_magic(ms)) {
5932 if (bytes == 0)
5933 result = granularity_align(1); /* Use minimal size */
5934 if (bytes == MAX_SIZE_T)
5935 result = 0; /* disable */
5936 else
5937 result = granularity_align(bytes);
5938 ms->footprint_limit = result;
5939 }
5940 else {
5941 USAGE_ERROR_ACTION(ms,ms);
5942 }
5943 return result;
5944}
5945
5946#if !NO_MALLINFO
5947struct mallinfo mspace_mallinfo(mspace msp) {
5948 mstate ms = (mstate)msp;
5949 if (!ok_magic(ms)) {
5950 USAGE_ERROR_ACTION(ms,ms);
5951 }
5952 return internal_mallinfo(ms);
5953}
5954#endif /* NO_MALLINFO */
5955
5956size_t mspace_usable_size(const void* mem) {
5957 if (mem != 0) {
5958 mchunkptr p = mem2chunk(mem);
5959 if (is_inuse(p))
5960 return chunksize(p) - overhead_for(p);
5961 }
5962 return 0;
5963}
5964
5965int mspace_mallopt(int param_number, int value) {
5966 return change_mparam(param_number, value);
5967}
5968
5969#endif /* MSPACES */
5970
5971
5972/* -------------------- Alternative MORECORE functions ------------------- */
5973
5974/*
5975 Guidelines for creating a custom version of MORECORE:
5976
5977 * For best performance, MORECORE should allocate in multiples of pagesize.
5978 * MORECORE may allocate more memory than requested. (Or even less,
5979 but this will usually result in a malloc failure.)
5980 * MORECORE must not allocate memory when given argument zero, but
5981 instead return one past the end address of memory from previous
5982 nonzero call.
5983 * For best performance, consecutive calls to MORECORE with positive
5984 arguments should return increasing addresses, indicating that
5985 space has been contiguously extended.
5986 * Even though consecutive calls to MORECORE need not return contiguous
5987 addresses, it must be OK for malloc'ed chunks to span multiple
5988 regions in those cases where they do happen to be contiguous.
5989 * MORECORE need not handle negative arguments -- it may instead
5990 just return MFAIL when given negative arguments.
5991 Negative arguments are always multiples of pagesize. MORECORE
5992 must not misinterpret negative args as large positive unsigned
5993 args. You can suppress all such calls from even occurring by defining
5994 MORECORE_CANNOT_TRIM,
5995
5996 As an example alternative MORECORE, here is a custom allocator
5997 kindly contributed for pre-OSX macOS. It uses virtually but not
5998 necessarily physically contiguous non-paged memory (locked in,
5999 present and won't get swapped out). You can use it by uncommenting
6000 this section, adding some #includes, and setting up the appropriate
6001 defines above:
6002
6003 #define MORECORE osMoreCore
6004
6005 There is also a shutdown routine that should somehow be called for
6006 cleanup upon program exit.
6007
6008 #define MAX_POOL_ENTRIES 100
6009 #define MINIMUM_MORECORE_SIZE (64 * 1024U)
6010 static int next_os_pool;
6011 void *our_os_pools[MAX_POOL_ENTRIES];
6012
6013 void *osMoreCore(int size)
6014 {
6015 void *ptr = 0;
6016 static void *sbrk_top = 0;
6017
6018 if (size > 0)
6019 {
6020 if (size < MINIMUM_MORECORE_SIZE)
6021 size = MINIMUM_MORECORE_SIZE;
6022 if (CurrentExecutionLevel() == kTaskLevel)
6023 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
6024 if (ptr == 0)
6025 {
6026 return (void *) MFAIL;
6027 }
6028 // save ptrs so they can be freed during cleanup
6029 our_os_pools[next_os_pool] = ptr;
6030 next_os_pool++;
6031 ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
6032 sbrk_top = (char *) ptr + size;
6033 return ptr;
6034 }
6035 else if (size < 0)
6036 {
6037 // we don't currently support shrink behavior
6038 return (void *) MFAIL;
6039 }
6040 else
6041 {
6042 return sbrk_top;
6043 }
6044 }
6045
6046 // cleanup any allocated memory pools
6047 // called as last thing before shutting down driver
6048
6049 void osCleanupMem(void)
6050 {
6051 void **ptr;
6052
6053 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
6054 if (*ptr)
6055 {
6056 PoolDeallocate(*ptr);
6057 *ptr = 0;
6058 }
6059 }
6060
6061*/
6062
6063
6064/* -----------------------------------------------------------------------
6065History:
6066 v2.8.6 Wed Aug 29 06:57:58 2012 Doug Lea
6067 * fix bad comparison in dlposix_memalign
6068 * don't reuse adjusted asize in sys_alloc
6069 * add LOCK_AT_FORK -- thanks to Kirill Artamonov for the suggestion
6070 * reduce compiler warnings -- thanks to all who reported/suggested these
6071
6072 v2.8.5 Sun May 22 10:26:02 2011 Doug Lea (dl at gee)
6073 * Always perform unlink checks unless INSECURE
6074 * Add posix_memalign.
6075 * Improve realloc to expand in more cases; expose realloc_in_place.
6076 Thanks to Peter Buhr for the suggestion.
6077 * Add footprint_limit, inspect_all, bulk_free. Thanks
6078 to Barry Hayes and others for the suggestions.
6079 * Internal refactorings to avoid calls while holding locks
6080 * Use non-reentrant locks by default. Thanks to Roland McGrath
6081 for the suggestion.
6082 * Small fixes to mspace_destroy, reset_on_error.
6083 * Various configuration extensions/changes. Thanks
6084 to all who contributed these.
6085
6086 V2.8.4a Thu Apr 28 14:39:43 2011 (dl at gee.cs.oswego.edu)
6087 * Update Creative Commons URL
6088
6089 V2.8.4 Wed May 27 09:56:23 2009 Doug Lea (dl at gee)
6090 * Use zeros instead of prev foot for is_mmapped
6091 * Add mspace_track_large_chunks; thanks to Jean Brouwers
6092 * Fix set_inuse in internal_realloc; thanks to Jean Brouwers
6093 * Fix insufficient sys_alloc padding when using 16byte alignment
6094 * Fix bad error check in mspace_footprint
6095 * Adaptations for ptmalloc; thanks to Wolfram Gloger.
6096 * Reentrant spin locks; thanks to Earl Chew and others
6097 * Win32 improvements; thanks to Niall Douglas and Earl Chew
6098 * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options
6099 * Extension hook in malloc_state
6100 * Various small adjustments to reduce warnings on some compilers
6101 * Various configuration extensions/changes for more platforms. Thanks
6102 to all who contributed these.
6103
6104 V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee)
6105 * Add max_footprint functions
6106 * Ensure all appropriate literals are size_t
6107 * Fix conditional compilation problem for some #define settings
6108 * Avoid concatenating segments with the one provided
6109 in create_mspace_with_base
6110 * Rename some variables to avoid compiler shadowing warnings
6111 * Use explicit lock initialization.
6112 * Better handling of sbrk interference.
6113 * Simplify and fix segment insertion, trimming and mspace_destroy
6114 * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
6115 * Thanks especially to Dennis Flanagan for help on these.
6116
6117 V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee)
6118 * Fix memalign brace error.
6119
6120 V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee)
6121 * Fix improper #endif nesting in C++
6122 * Add explicit casts needed for C++
6123
6124 V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee)
6125 * Use trees for large bins
6126 * Support mspaces
6127 * Use segments to unify sbrk-based and mmap-based system allocation,
6128 removing need for emulation on most platforms without sbrk.
6129 * Default safety checks
6130 * Optional footer checks. Thanks to William Robertson for the idea.
6131 * Internal code refactoring
6132 * Incorporate suggestions and platform-specific changes.
6133 Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
6134 Aaron Bachmann, Emery Berger, and others.
6135 * Speed up non-fastbin processing enough to remove fastbins.
6136 * Remove useless cfree() to avoid conflicts with other apps.
6137 * Remove internal memcpy, memset. Compilers handle builtins better.
6138 * Remove some options that no one ever used and rename others.
6139
6140 V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee)
6141 * Fix malloc_state bitmap array misdeclaration
6142
6143 V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee)
6144 * Allow tuning of FIRST_SORTED_BIN_SIZE
6145 * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
6146 * Better detection and support for non-contiguousness of MORECORE.
6147 Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
6148 * Bypass most of malloc if no frees. Thanks To Emery Berger.
6149 * Fix freeing of old top non-contiguous chunk im sysmalloc.
6150 * Raised default trim and map thresholds to 256K.
6151 * Fix mmap-related #defines. Thanks to Lubos Lunak.
6152 * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
6153 * Branch-free bin calculation
6154 * Default trim and mmap thresholds now 256K.
6155
6156 V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
6157 * Introduce independent_comalloc and independent_calloc.
6158 Thanks to Michael Pachos for motivation and help.
6159 * Make optional .h file available
6160 * Allow > 2GB requests on 32bit systems.
6161 * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
6162 Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
6163 and Anonymous.
6164 * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
6165 helping test this.)
6166 * memalign: check alignment arg
6167 * realloc: don't try to shift chunks backwards, since this
6168 leads to more fragmentation in some programs and doesn't
6169 seem to help in any others.
6170 * Collect all cases in malloc requiring system memory into sysmalloc
6171 * Use mmap as backup to sbrk
6172 * Place all internal state in malloc_state
6173 * Introduce fastbins (although similar to 2.5.1)
6174 * Many minor tunings and cosmetic improvements
6175 * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
6176 * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
6177 Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
6178 * Include errno.h to support default failure action.
6179
6180 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
6181 * return null for negative arguments
6182 * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
6183 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
6184 (e.g. WIN32 platforms)
6185 * Cleanup header file inclusion for WIN32 platforms
6186 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
6187 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
6188 memory allocation routines
6189 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
6190 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
6191 usage of 'assert' in non-WIN32 code
6192 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
6193 avoid infinite loop
6194 * Always call 'fREe()' rather than 'free()'
6195
6196 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
6197 * Fixed ordering problem with boundary-stamping
6198
6199 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
6200 * Added pvalloc, as recommended by H.J. Liu
6201 * Added 64bit pointer support mainly from Wolfram Gloger
6202 * Added anonymously donated WIN32 sbrk emulation
6203 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
6204 * malloc_extend_top: fix mask error that caused wastage after
6205 foreign sbrks
6206 * Add linux mremap support code from HJ Liu
6207
6208 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
6209 * Integrated most documentation with the code.
6210 * Add support for mmap, with help from
6211 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
6212 * Use last_remainder in more cases.
6213 * Pack bins using idea from colin@nyx10.cs.du.edu
6214 * Use ordered bins instead of best-fit threshold
6215 * Eliminate block-local decls to simplify tracing and debugging.
6216 * Support another case of realloc via move into top
6217 * Fix error occurring when initial sbrk_base not word-aligned.
6218 * Rely on page size for units instead of SBRK_UNIT to
6219 avoid surprises about sbrk alignment conventions.
6220 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
6221 (raymond@es.ele.tue.nl) for the suggestion.
6222 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
6223 * More precautions for cases where other routines call sbrk,
6224 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
6225 * Added macros etc., allowing use in linux libc from
6226 H.J. Lu (hjl@gnu.ai.mit.edu)
6227 * Inverted this history list
6228
6229 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
6230 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
6231 * Removed all preallocation code since under current scheme
6232 the work required to undo bad preallocations exceeds
6233 the work saved in good cases for most test programs.
6234 * No longer use return list or unconsolidated bins since
6235 no scheme using them consistently outperforms those that don't
6236 given above changes.
6237 * Use best fit for very large chunks to prevent some worst-cases.
6238 * Added some support for debugging
6239
6240 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
6241 * Removed footers when chunks are in use. Thanks to
6242 Paul Wilson (wilson@cs.texas.edu) for the suggestion.
6243
6244 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
6245 * Added malloc_trim, with help from Wolfram Gloger
6246 (wmglo@Dent.MED.Uni-Muenchen.DE).
6247
6248 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
6249
6250 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
6251 * realloc: try to expand in both directions
6252 * malloc: swap order of clean-bin strategy;
6253 * realloc: only conditionally expand backwards
6254 * Try not to scavenge used bins
6255 * Use bin counts as a guide to preallocation
6256 * Occasionally bin return list chunks in first scan
6257 * Add a few optimizations from colin@nyx10.cs.du.edu
6258
6259 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
6260 * faster bin computation & slightly different binning
6261 * merged all consolidations to one part of malloc proper
6262 (eliminating old malloc_find_space & malloc_clean_bin)
6263 * Scan 2 returns chunks (not just 1)
6264 * Propagate failure in realloc if malloc returns 0
6265 * Add stuff to allow compilation on non-ANSI compilers
6266 from kpv@research.att.com
6267
6268 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
6269 * removed potential for odd address access in prev_chunk
6270 * removed dependency on getpagesize.h
6271 * misc cosmetics and a bit more internal documentation
6272 * anticosmetics: mangled names in macros to evade debugger strangeness
6273 * tested on sparc, hp-700, dec-mips, rs6000
6274 with gcc & native cc (hp, dec only) allowing
6275 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
6276
6277 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
6278 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
6279 structure of old version, but most details differ.)
6280
6281*/
6282

source code of boost/libs/container/src/dlmalloc_2_8_6.c